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Abstract

We propose a multivariate model for financial assets which incorporates jumps, skewness,
kurtosis (and if wanted stochastic volatility), and discuss its applications in the context of
equity and credit risk. In the former case we describe the stochastic behavior of a series of
stocks or indexes, in the latter we apply the model in a multi-firm, value-based default model.

Starting from an independent Brownian world, we will introduce jumps and other deviations
from normality, as well as non-Gaussian dependence, by the simple but very strong technique
of stochastic time-changing. We work out the details in the case of a Gamma time-change, thus
obtaining a multivariate Variance Gamma (VG) setting.

A main feature of the model however is the fact that its risk neutral dependence can be
calibrated from univariate derivative prices. Furthermore, the model is computationally friendly,
since numerical results require a modest amount of time and the number of parameters grows
linearly with the number of assets.

Examples of calibration exercises on the equity and credit market show the goodness of fit
attained.
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OUTLINE

• From an independent Gaussian world to a dependent VG world.

• The multivariate VG model and its dependency structure.

• Applications in Equity modelling :

– multivariate VG stock price model;

– joint calibration on multiple underlyers;

– extention to stochastic volatility.

• Applications in Credit Risk modelling :

– multivariate VG firm value model;

– CDS pricing by solving PIDE;

– joint calibration on multiple underlyers;

• Conclusion



BLACK-SCHOLES WORLD - UNIVARIATE

• The geometric Brownian motion univariate asset price model:

At = A0 exp(θt + σWt), t ≥ 0,

where {Wt, t ≥ 0} is standard Brownian Motion and σ is the usual
volatility.

• This model is underlying the celebrated Black-Scholes model for stocks
and indexes.

• This model is used to describe the firm’s asset value process in credit
default models by Merton, Black and Cox, CreditGrades, etc.
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BLACK-SCHOLES WORLD - UNIVARIATE

• Shortcomings

– Normal Distribution: log-returns are normally distributed, whereas
empirical data typically shows skewness and excess kurtosis. This
was the main motivation for the consideration of Lévy Processes.

– Continuous Sample Paths:

∗ Brownian motion has continuous sample paths, whereas in reality
prices are driven by jumps.

∗ The Brownian motion needs a substantial amount of time to reach
a low barrier, whereas in reality jumps can cause an almost imme-
diate move over the barrier.

– Extreme Events: The model is not able to give realistic probabilities
of extreme events: the Normal distribution has too light tails.



BLACK-SCHOLES WORLD - UNIVARIATE
Empirical Density vs Normal Density
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Figure 1: Normal and Gaussian Kernel density estimator - daily log-returns SP500 index



BLACK-SCHOLES WORLD - MULTIVARIATE

• In order to describe n dependent price processes

(A
(1)
t , . . . , A

(n)
t )

one can consider a vector of n dependent Brownian motions

(W
(1)
t , . . . , W

(n)
t ).

• The dependence is uniquely defined by the correlation matrix of the
W ’s.

• Each individual price process is model by geometric Brownian motion

A
(i)
t = A

(i)
0 exp(θit + σiW

(i)
t ), t ≥ 0,

where σi is the ith prices process’ volatility.



BLACK-SCHOLES WORLD - MULTIVARIATE

• Shortcomings

– Gaussian Dependence: multivariate Brownian motion leads to the
Gaussian copula, which has, in contrast to empirical data, no tail
dependency.

– Estimation of Correlation:

∗ This is typically done on the basis of historical data. Under more
sophisticated models there is no garantuee any more that the his-
torical dependence structure coincides with the risk-neutral one.

∗ Moreover, as with all historical data, a sudden change into the
regime has only a marginal effect on the historical estimate, whereas
the effect on the risk-neutral one can be much more pronounced.

– Quadratic Growth of Parameters: The number of parameters grows
quadratically in n through the correlation matrix, however the avail-
able market data, say derivative instrument prices, are usually lin-
early in n.



BUILDING IN DEPENDENCE BY TIME-CHANGING

• By using the technique of stochastic time-changing we build a NEW
MULTIVARIATE MODEL with

– non-Normal underlying distribution: skewness and kurtosis;

– with jumps;

– with more realistic extreme events probabilities;

– a non-Gaussian dependence structure;

– with the number of parameters linearly in n;

– which can be calibrated using only the liquid univariate standard
derivatives in the market !



BUILDING IN DEPENDENCE BY TIME-CHANGING

• We starting from the independent Gaussian case.

• To introduce dependence, we time-change ALL the asset prices by a
COMMON stochastic time-change (new business time).

• Interpretation of time-change: a model of the information arrival of a
common economic environment (Mandelbrot, C, G, M, Y).

– no information is lossed → time change is non-decreasing.

– amount of new information is not affected by the amount already
released → independent increments.

– amount of information released in a certain interval is only depending
on the length of the interval → stationary increments.

• Hence we opt for a non-decreasing Lévy processes (subordinator) for
the time-change.

• We work out the details for the Gamma Lévy processes as new business
time.



THE GAMMA TIME-CHANGING

• The Gamma(a, b) distribution has a density

f (x; a, b) =
ba

Γ(a)
xa−1 exp(−bx), x ≥ 0.

and is infinitely divisible.

• A Gamma process G = {Gt, t ≥ 0} is a stochastic process with

– G0 = 0 (no initial information)

– stationary and independent increments

– Gt − Gs ≈ Gamma(a(t − s), b),

• Normalization : E[Gt] = t, which implies a = b := 1/ν.
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THE MULTIVARIATE VG MODEL

• Every price process is now modeled as Gamma-time-changed geometric
Brownian motion.

A
(i)
t = A

(i)
0 exp(θiGt + σiW

(i)
Gt

) := A
(i)
0 exp(X

(i)
t ), t ≥ 0.

• Brownian motion with drift time-changed by a Gamma processes leads
to the Variance Gamma (VG) model (Madan, Seneta, Carr, ...).

• The ith price process is the exponential of a VG-process
X(i) = {Xt, t ≥ 0} with parameters (σi, ν, θi).

• The variance Var




X
(i)
1





 = σ2
i + νθ2

i decompose into

– idiosyncratic component σ2
i ;

– exogenous component νθ2
i ;

θi governs the exposure to the global market uncertainty (ν).

• The univariate VG model has already proven its modeling capabilities.



THE MULTIVARIATE VG MODEL

• The processes are due to the common time-change dependent.

• Risk-neutral modelling can be done as in the univariate case:

A
(i)
t = A

(i)
0 exp((r − qi)t + X

(i)
t + ωit), t ≥ 0,

where r is the continuously compound interest rate, qi the continuous
dividend yield of the ith stock and

ωi = ν−1 log











1 − 1

2
σ2

i ν − θiν










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THE DEPENDENCY STRUCTURE

• Linear correlation of X
(1)
1 and X

(2)
1 : ρ = θ1θ2ν√

σ2
1+θ2

1ν
√

σ2
2+θ2

2ν
.

• Because, conditioned on the time-change the log-returns are indepen-
dent, the underlying copula can easily be compute numerically and
scatter plots can be provided.

• Spearman’s rho can be numerically calculated.

• Numerical calculations show lower-tail dependence.

σ1 θ1 σ2 θ2 ν ρ ρS λL

0.2 -0.10 0.25 -0.15 1 0.23 0.04 0.16
0.2 -0.10 0.25 -0.15 2.5 0.43 0.10 0.21
0.2 -0.25 0.25 -0.20 1 0.49 0.14 0.20
0.2 -0.25 0.25 -0.20 2.5 0.70 0.25 0.38
0.2 -0.35 0.25 -0.30 1 0.67 0.45 0.32
0.2 -0.35 0.25 -0.30 2.5 0.83 0.49 0.55



THE DEPENDENCY STRUCTURE

• Contour plots and scatter plots
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APPLICATIONS: EQUITY

• Multivariate VG stock price model:

S
(i)
t = S0 exp((r−qi)t+θiGt+σiW

(i)
Gt

+ωit), i = 1, . . . , n, t ≥ 0.

• It has been known that univariate VG can nicely capture the smile at
one maturity.

• Calibration is done on univariate vanilla data !!!!

– Do vanilla pricing with Carr-Madan formula using FFT.

– Calibrate the models by imposing a common ν-parameter and by
using essentially n times your univariate calibation algorithm.

• Example: Calibration on vanillas on SP500, Eurostoxx50 and Nikkei-
225 on April, 5, 2005 maturing in approx. 1 year.

• Correlation coming of of the calibration make sense: e.g. ρ for SP500-
Eurostoxx50 equal 0.71.

• If wanted one can impose correlation an take this into the calibration
algorithm.



APPLICATIONS: MULTIVARIATE VG CALIBRATION - EQUITY
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APPLICATIONS: MULTIVARIATE VG + SV - EQUITY

• If you like you can build in stochastic volatility by time-changing again.

• Speed at which time passes by should be mean reverting and positive.

• CGMY proposed i.a. to use CIR process to do this.

• In a multivariate setting, just take for each individual stock an inde-
pendent CIR process:

S
(i)
t = S

(i)
0

exp((r − qi)t)

E











exp











X
(i)

Y
(i)
t





















exp











X
(i)

Y
(i)
t











,

where

– X(i) = {X(i)
t = θiGt + σiW

(i)
Gt

, t ≥ 0} is a VG process (JUMPS)

– Y
(i)
t are mutually independent integrated CIR-processes (SV).

• univariate VG-SV can nicely capture globally the smile at all maturi-
ties.



APPLICATIONS: MULTIVARIATE VG + SV - EQUITY
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APPLICATIONS: MULTIVARIATE VG + SV - EQUITY
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APPLICATIONS: FIRM VALUE UNIVARIATE VG - CREDIT

• Firm-value models (Merton, Black-Cox, CreditGrades, ...) for Credit
Risk are typically using geometric Brownian motions to describe the
dynamics of the value of the firm.

• In order to get skewness, kurtosis and jumps (leading to possiblity of
instantaneus default) we propose to model the firm value V as the
exponential of a Lévy process (e.g. VG process) X

Vt = V0 exp(Xt), V0 > 0.

• Default occurs at the first crossing of some predetermined barrier H .

• The risk-neutral probability of no-default between 0 and t is given by

P (t) = PQ(Vs > H, for all 0 ≤ s ≤ t);

= EQ







1






 min
0≤s≤t

Vs > H














 .



APPLICATIONS: FIRM VALUE UNIVARIATE VG - CDS

• Recall that the par spread c of a CDS with maturity T equals.

c =
(1 − R)



1 − exp(−rT )P (T ) − r ∫T
0 exp(−rs)P (s)ds





∫T
0 exp(−rs)P (s)ds

=
(1 − R)



1 − BDOB(T, H) − r ∫T
0 BDOB(s, H)ds





∫T
0 BDOB(s, H)ds

.

where

* R is the firm specific recovery rate; r is default-free discount rate.

* BDOB(T, H) is the price of a digital down-and-out barrier option
with maturity T and barrier level H .

• Hence pricing CDS’s comes down to pricing Barriers.



APPLICATIONS: FIRM VALUE UNIVARIATE VG - CDS

• For VG, Barrier pricing can be done fast (< 5 sec.) by numerically
solving PIDE’s (Madan, Hirsa, Carr, Cariboni-Schoutens) of the form

∫ +∞
−∞











F (Vt−ex, t) − F (Vt−, t) − ∂F

∂V
(Vt−, t)Vt−(ex − 1)











k(dx)

+
∂F

∂t
(Vt, t) + rVt

∂F

∂V
(Vt, t) − rF (Vt, t) = 0,

where k(dx) is the Lévy measure of the underlying Lévy process.

• The Lévy measure for the VG explicitely now in closed formula.

• Fast CDS pricing allows fast calibration on CDS data.

• Example: calibration on 1, 3, 5, 7 and 10 year CDS on October 26,
2004.



APPLICATIONS: UNIVARIATE MODEL COMPARISON

• Below the Gaussian case, the classical CreditGrades model (with fixed
barrier standard deviation; typically one sets λ = 0.3) and the Credit-
Grades model with a free λ parameter is compared with the VG model.
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APPLICATIONS: MULTIVARIATE VG DEFAULT MODEL

• In a multivariate setting just model each firm-value by a geometric
Brownian Motion time-changed by a common Gamma process.

• Hence each individual firm value process is following an exponential
VG process.

• The ith firm defaults the first time its asset value process

A
(i)
t = A

(i)
0 exp





X
(i)
t





 , t ≥ 0.

hits a low barrier Hi.

• The the risk-neutral probability of no-default between 0 and t is given
by:

Pi(t) = PQ



A(i)
s > Hi, for all 0 ≤ s ≤ t



 ;

= EQ







1






 min
0≤s≤t

A(i)
s > Hi















 .



APPLICATIONS: MULTIVARIATE VG DEFAULT MODEL

• Calibration can easily be done by imposing a common ν-parameter and
by using essentially n times your univariate calibation algorithm.

• Example: Calibration on CDSs of 5 underlyers.

Company Moody 1y 3y 5y 7y 10y
Autozone Baa2 Market 25 65 102 117 127
Autozone Baa2 Model 21 69 101 117 126
Ford Credit Co. A3 Market 75 154 203 225 238
Ford Credit Co. A3 Model 66 165 209 224 224
Kraft A3 Market 4 19 31 40 51
Kraft A3 Model 4 18 32 41 50
Walt Disney Baa2 Market 6 21 36 45 56
Walt Disney Baa2 Model 5 21 36 46 55
Whirlpool Baa1 Market 16 36 66 73 86
Whirlpool Baa1 Model 12 40 63 76 85



APPLICATIONS: MULTIVARIATE VG DEFAULT MODEL
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CONCLUSION

• We have proposed a new Multivariate Variance Gamma model by time-
changing independent multivariate geometric Brownian motions by a
common Gamma process.

• The takes into account: skewness, kurtosis, jumps, non-gaussian de-
pendence.

• Univariate techniques (pricing, MC, introducing SV, ...) can be readily
transformed to the multivariate case.

– If you don’t have univariate VG running, you should.

– If you do, the extension to multivariate VG is straightforward.

• We have discussed applications in Equity and Credit Risk.

• Calibration can be done on UNIVARIATE data.

• Calibration fits are very satisfactory.

• The technique can also be used for other (Lévy) models, like NIG,
CGMY, GH, Meixner, ...

- THE END -


