
Chapter 5

RV64I Base Integer Instruction Set,
Version 2.1

This chapter describes the RV64I base integer instruction set, which builds upon the RV32I variant
described in Chapter 2. This chapter presents only the di↵erences with RV32I, so should be read
in conjunction with the earlier chapter.

5.1 Register State

RV64I widens the integer registers and supported user address space to 64 bits (XLEN=64 in
Figure 2.1).

5.2 Integer Computational Instructions

Most integer computational instructions operate on XLEN-bit values. Additional instruction vari-
ants are provided to manipulate 32-bit values in RV64I, indicated by a ‘W’ su�x to the opcode.
These “*W” instructions ignore the upper 32 bits of their inputs and always produce 32-bit signed
values, i.e. bits XLEN-1 through 31 are equal.

The compiler and calling convention maintain an invariant that all 32-bit values are held in a
sign-extended format in 64-bit registers. Even 32-bit unsigned integers extend bit 31 into bits 63
through 32. Consequently, conversion between unsigned and signed 32-bit integers is a no-op,
as is conversion from a signed 32-bit integer to a signed 64-bit integer. Existing 64-bit wide
SLTU and unsigned branch compares still operate correctly on unsigned 32-bit integers under
this invariant. Similarly, existing 64-bit wide logical operations on 32-bit sign-extended integers
preserve the sign-extension property. A few new instructions (ADD[I]W/SUBW/SxxW) are
required for addition and shifts to ensure reasonable performance for 32-bit values.

35



36 Volume I: RISC-V Unprivileged ISA V20191213

Integer Register-Immediate Instructions

31 20 19 15 14 12 11 7 6 0

imm[11:0] rs1 funct3 rd opcode
12 5 3 5 7

I-immediate[11:0] src ADDIW dest OP-IMM-32

ADDIW is an RV64I instruction that adds the sign-extended 12-bit immediate to register rs1
and produces the proper sign-extension of a 32-bit result in rd. Overflows are ignored and the
result is the low 32 bits of the result sign-extended to 64 bits. Note, ADDIW rd, rs1, 0 writes
the sign-extension of the lower 32 bits of register rs1 into register rd (assembler pseudoinstruction
SEXT.W).

31 26 25 24 20 19 15 14 12 11 7 6 0

imm[11:6] imm[5] imm[4:0] rs1 funct3 rd opcode
6 1 5 5 3 5 7

000000 shamt[5] shamt[4:0] src SLLI dest OP-IMM
000000 shamt[5] shamt[4:0] src SRLI dest OP-IMM
010000 shamt[5] shamt[4:0] src SRAI dest OP-IMM
000000 0 shamt[4:0] src SLLIW dest OP-IMM-32
000000 0 shamt[4:0] src SRLIW dest OP-IMM-32
010000 0 shamt[4:0] src SRAIW dest OP-IMM-32

Shifts by a constant are encoded as a specialization of the I-type format using the same instruction
opcode as RV32I. The operand to be shifted is in rs1, and the shift amount is encoded in the lower
6 bits of the I-immediate field for RV64I. The right shift type is encoded in bit 30. SLLI is a
logical left shift (zeros are shifted into the lower bits); SRLI is a logical right shift (zeros are shifted
into the upper bits); and SRAI is an arithmetic right shift (the original sign bit is copied into the
vacated upper bits).

SLLIW, SRLIW, and SRAIW are RV64I-only instructions that are analogously defined but operate
on 32-bit values and produce signed 32-bit results. SLLIW, SRLIW, and SRAIW encodings with
imm[5] 6= 0 are reserved.

Previously, SLLIW, SRLIW, and SRAIW with imm[5] 6= 0 were defined to cause illegal in-
struction exceptions, whereas now they are marked as reserved. This is a backwards-compatible
change.

31 12 11 7 6 0

imm[31:12] rd opcode
20 5 7

U-immediate[31:12] dest LUI
U-immediate[31:12] dest AUIPC

LUI (load upper immediate) uses the same opcode as RV32I. LUI places the 20-bit U-immediate
into bits 31–12 of register rd and places zero in the lowest 12 bits. The 32-bit result is sign-extended
to 64 bits.



Volume I: RISC-V Unprivileged ISA V20191213 37

AUIPC (add upper immediate to pc) uses the same opcode as RV32I. AUIPC is used to build pc-
relative addresses and uses the U-type format. AUIPC appends 12 low-order zero bits to the 20-bit
U-immediate, sign-extends the result to 64 bits, adds it to the address of the AUIPC instruction,
then places the result in register rd.

Integer Register-Register Operations

31 25 24 20 19 15 14 12 11 7 6 0

funct7 rs2 rs1 funct3 rd opcode
7 5 5 3 5 7

0000000 src2 src1 SLL/SRL dest OP
0100000 src2 src1 SRA dest OP
0000000 src2 src1 ADDW dest OP-32
0000000 src2 src1 SLLW/SRLW dest OP-32
0100000 src2 src1 SUBW/SRAW dest OP-32

ADDW and SUBW are RV64I-only instructions that are defined analogously to ADD and SUB
but operate on 32-bit values and produce signed 32-bit results. Overflows are ignored, and the low
32-bits of the result is sign-extended to 64-bits and written to the destination register.

SLL, SRL, and SRA perform logical left, logical right, and arithmetic right shifts on the value
in register rs1 by the shift amount held in register rs2. In RV64I, only the low 6 bits of rs2 are
considered for the shift amount.

SLLW, SRLW, and SRAW are RV64I-only instructions that are analogously defined but operate
on 32-bit values and produce signed 32-bit results. The shift amount is given by rs2[4:0].

5.3 Load and Store Instructions

RV64I extends the address space to 64 bits. The execution environment will define what portions
of the address space are legal to access.

31 20 19 15 14 12 11 7 6 0

imm[11:0] rs1 funct3 rd opcode
12 5 3 5 7

o↵set[11:0] base width dest LOAD

31 25 24 20 19 15 14 12 11 7 6 0

imm[11:5] rs2 rs1 funct3 imm[4:0] opcode
7 5 5 3 5 7

o↵set[11:5] src base width o↵set[4:0] STORE

The LD instruction loads a 64-bit value from memory into register rd for RV64I.


