============================ Truth Tables for Logic Gates [TOC] ============================ First, complete the truth table for a NAND gate: ---- IMAGE (width=600) ----------- session02/s02_1.png ---------------------------------- Background ~~~~~~~~~~ A NAND gate (logical NOT-AND, symbol: $\barwedge$) can be used as a basic building block to construct all other logic gates. This property is not only mathematically significant but also practical, as a NAND gate is sufficient to realize a variety of logic functions. Example: NOT Gate ================= First, verify if the truth table for $A \barwedge A$ is correctly filled out and if the expression is thus equivalent to the logical negation of $A$. Then implement the expression as shown in CircuitVerse. ---- IMAGE (width=600) ----------- session02/s02_2.png ---------------------------------- Exercise: AND Gate and OR Gate ============================== Fill out the truth table for the given expressions for the following logic gates. Then implement the expressions in CircuitVerse: AND Gate with 2 NAND gates -------------------------- ---- IMAGE (width=600) ----------- session02/s02_3.png ---------------------------------- OR Gate with 3 NAND gates ------------------------- ---- IMAGE (width=600) ----------- session02/s02_4.png ----------------------------------