#ifndef HPC_CUDA_AGGREGATE_HPP
#define HPC_CUDA_AGGREGATE_HPP 1
#ifdef __CUDACC__
#include <hpc/cuda/check.hpp>
#include <hpc/cuda/gematrix.hpp>
#include <hpc/cuda/properties.hpp>
namespace hpc { namespace cuda {
namespace aggregate_impl {
constexpr std::size_t BLOCK_DIM = 32;
template<
   template<typename> class MatrixA,
   template<typename> class MatrixB,
   typename T,
   typename Aggregator,
   Require<
      DeviceGe<MatrixA<T>>, DeviceView<MatrixA<T>>,
      DeviceGe<MatrixB<T>>, DeviceView<MatrixB<T>>
   > = true
>
__global__ void aggregate_row_wise(const MatrixA<T> A, MatrixB<T> B,
      Aggregator aggregator) {
   std::size_t i = threadIdx.x + blockIdx.x * BLOCK_DIM;
   std::size_t j = threadIdx.y + blockIdx.y * BLOCK_DIM;
   if (i < A.numRows()) {
      T val = A(i, j);
      std::size_t maxoffset = BLOCK_DIM;
      if (j + maxoffset >= A.numCols()) {
	 maxoffset = A.numCols() - j;
      }
      for (std::size_t offset = 1; offset < maxoffset; ++offset) {
	 val = aggregator(val, A(i, j + offset));
      }
      B(i, blockIdx.y) = val;
   }
}
template<
   template<typename> class MatrixA,
   template<typename> class MatrixB,
   typename T,
   typename Aggregator,
   Require<
      DeviceGe<MatrixA<T>>, DeviceView<MatrixA<T>>,
      DeviceGe<MatrixB<T>>, DeviceView<MatrixB<T>>
   > = true
>
__global__ void aggregate_col_wise(const MatrixA<T> A, MatrixB<T> B,
      Aggregator aggregator) {
   std::size_t i = threadIdx.x + blockIdx.x * BLOCK_DIM;
   std::size_t j = threadIdx.y + blockIdx.y * BLOCK_DIM;
   if (j < A.numCols()) {
      T val = A(i, j);
      std::size_t maxoffset = BLOCK_DIM;
      if (i + maxoffset >= A.numRows()) {
	 maxoffset = A.numRows() - i;
      }
      for (std::size_t offset = 1; offset < maxoffset; ++offset) {
	 val = aggregator(val, A(i + offset, j));
      }
      B(blockIdx.x, j) = val;
   }
}
inline constexpr std::size_t ceildiv(std::size_t x, std::size_t y) {
   /* note that we expect x > 0 && y > 0;
      not safe against overflows but we expect y to be small */
   return (x + y - 1) / y;
}
} // namespace aggregate_impl
template<
   template<typename> class Matrix,
   typename T,
   typename Aggregator,
   Require< DeviceGe<Matrix<T>> > = true
>
T aggregate(const Matrix<T>& A, Aggregator&& aggregator) {
   using namespace aggregate_impl;
   if (A.numRows() > 1 || A.numCols() > 1) {
      const auto source = A.view();
      dim3 grid_dim(ceildiv(A.numRows(), BLOCK_DIM),
	 ceildiv(A.numCols(), BLOCK_DIM));
      if (A.numRows() > A.numCols()) {
	 DeviceGeMatrix<T> B(ceildiv(A.numRows(), BLOCK_DIM), A.numCols());
	 auto target = B.view();
	 dim3 block_dim(1, BLOCK_DIM);
	 aggregate_col_wise<<<grid_dim, block_dim>>>(source, target,
	    aggregator);
	 return aggregate(target, std::move(aggregator));
      } else {
	 DeviceGeMatrix<T> B(A.numRows(), ceildiv(A.numCols(), BLOCK_DIM));
	 auto target = B.view();
	 dim3 block_dim(BLOCK_DIM, 1);
	 aggregate_row_wise<<<grid_dim, block_dim>>>(source, target,
	    aggregator);
	 return aggregate(target, std::move(aggregator));
      }
   } else {
      T result;
      CHECK_CUDA(cudaMemcpy, &result, A.data(), sizeof(T),
	 cudaMemcpyDeviceToHost);
      return result;
   }
}
} } // namespaces cuda and hpc
#else
#	error This CUDA source must be compiled using nvcc
#endif
#endif