

Software Quality Workshop @ NetObjectDays2004

Assessing and interpreting object-oriented software complexity with structured and independent metrics

R. Neumann D. Klemann

	Structure H"
1.	Introduction
2.	Preparing data
3.	Removing metrics correlation
4.	Interpreting complexity results
5.	Praxis example
6.	Prospects

Presentation SOQUA2004 30.09.04 Assessing and interpreting object-oriented software complexity

Data Preparation

O Missing data tampers statistics (e.g. average with no values)

O Techniques for treating missing data

- List Deletion deleting data row
- Mean Imputation replacing with metric mean
- Regression Imputation fitting curve, for time based metrics
- Siminar Response Pattern Imputation for multidimensional data
- Multiple Imputation filling with values of random other classes

De – correlation of metrics

O Interrelations between metrics complicate drawing conclusions

- Metrics are high correlated
- Linear factors of high correlatey metrics are variable constant sum
- A large class cannot be separated without increasing inheritance / coupling

O Principal Components Analysis removes Interrelations

- Basis technique for generating independent variables
- Every Principal Component is a linear combination of metrics
- Factors of linear combination make Principal Components interpretable
- Eigenvalues of Principal Components describing importance (data variance)

Principal Components Analysis

O Multivariate technique for independent metrics

Each Principal Component is a linear combination of metrics

$$y_1 = \sum_{i=1}^n a_{ii} * x_i; \quad \sum_{i=1}^n a_{ii}^2 = 1$$

- Principal Components describing decreasing data variance
- Rotation and orthogonalisation in n-dim. Space

Presentation SOQUA2004 30.09.04 Assessing and interpreting object-oriented software complexity

O Results of PCA technique describe aspects and importance

- Metric factors for linear combination indicate meaning of the Principal Component
- Eigenvalue indicates importance in the data set

PC / Metric	LOC	DIT	NOM	СВО
1: Factor loading	1.1	0.2	0.9	0.4
1: Contribution	40%	5%	30%	15%
2: Factor loading	-0.1	0.1	0.3	0.5
2: Constribution	5%	5%	30%	40%

O Example for interpretation

- PC1 size related
- PC2 coupling related independent to size

Usage and prospects

Characteristics

- Overview on complexity aspects of object-oriented Software
- Interpretation through descriptive vectors and metrics
- Improved system view with independent aspects
- Usable for object oriented source code and (shortened) UML-Design

Further usage

- Independent 'virtual metrics' for empirical modeling techniques
- Reduced calculation number

Complexity comparision between system classes for test, integration order or reengineering

