
Institut
Experimentelles
Software Engineering

Fraunhofer

IESE

Jörg Rech, Eric Ras,
Andreas Jedlitschka

Sauerwiesen 6
D-67661 Kaiserslautern
Germany

ExperienceExperience--based Refactoring for Goalbased Refactoring for Goal--
oriented Software Quality Improvementoriented Software Quality Improvement

International Workshop on Software QualityInternational Workshop on Software Quality
(SOQUA 2004)(SOQUA 2004)
ErfurtErfurt, Germany, September 30, 2004, Germany, September 30, 2004

Slide 1

Copyright © Fraunhofer IESE 2004

First International Workshop on Software Quality (SOQUA 2004)
Erfurt, Germany, September 30, 2004

IESE

—Overview

—Introduction

—Process

—Outlook

—Discussion

Outline

Overview

• Setting the scene
• Introduction
• Overview
• Details
• Outlook & Summary

Slide 2

Copyright © Fraunhofer IESE 2004

First International Workshop on Software Quality (SOQUA 2004)
Erfurt, Germany, September 30, 2004

IESE

—Overview

—Introduction

—Process

—Outlook

—Discussion

Outline

Extreme Programming XP

• XP as one example for agile SW development
• Essential values to be successful

– Communication
– Simplicity
– Feedback
– courage

• The 4 XP activities
– CODING

→ coding as learning
→ coding as communication
→ code as end result
→ code as specification

– Testing
– Listening
– Designing

Slide 3

Copyright © Fraunhofer IESE 2004

First International Workshop on Software Quality (SOQUA 2004)
Erfurt, Germany, September 30, 2004

IESE

—Overview

—Introduction

—Process

—Outlook

—Discussion

Outline

The 12 XP practices

• The Planning Game — quickly determine scope of next release
• Small releases — put a simple system in production quickly then

release new version on a short cycle
• Metaphor — guide development with a simple shared story
• Simple design — system should be as simple as possible, complexity

should be removed if at all possible
• Testing — continually write unit tests, customers write functional tests
• Refactoring — restructure the system without changing behavior
• Pair programming — all code written with 2 programmer at 1

machine
• Collective ownership — anyone can change code anywhere anytime
• Continuous integration — integrate and build many times a day
• 40-hour week — work no more than 40h/wk as a rule
• On-site customer — include a real, live user on the team full time
• Coding standards — code in accord. to rules emphasizing

communication

Slide 4

Copyright © Fraunhofer IESE 2004

First International Workshop on Software Quality (SOQUA 2004)
Erfurt, Germany, September 30, 2004

IESE

—Overview

—Introduction

—Process

—Outlook

—Discussion

Outline

Refactoring as one key practices

• Refactoring
– before changing the program: Is there a way of modifying the

program to make adding this new feature easier?
– after changing the program: Is there a way to make the program

simpler?
– you refactor only when the systems requires you to

• Refactoring is context sensitive
– Don’t refactor everything

(priorize and plan in order to reach specific quality-goals)
– Metrics help to detect quality defects

(but own competence for refactoring is needed)

functionality <-> quality

Slide 5

Copyright © Fraunhofer IESE 2004

First International Workshop on Software Quality (SOQUA 2004)
Erfurt, Germany, September 30, 2004

IESE

—Overview

—Introduction

—Process

—Outlook

—Discussion

Outline

ISO 9126 Quality Factors

ISO
9126

Portability Reliability

Is the software
easy to use

Usability

Functionality

Maintainability

Efficiency

How reliable
is the software

How efficient is the
software

How easy is it to modify the
software

How easy is it to transfer the software to
another environment

Are the required functions
available in the software

Slide 6

Copyright © Fraunhofer IESE 2004

First International Workshop on Software Quality (SOQUA 2004)
Erfurt, Germany, September 30, 2004

IESE

—Overview

—Introduction

—Process

—Outlook

—Discussion

Outline

Introduction

• Problems today
– Manual discovery of code smells is hard, esp. in large systems
– Selection and planning of refactoring activities is unclear.
– Application of refactorings is very subjective (heavily based on

expertise)
– Comprehension of experiences is typically complex in new

environments or for new users.
– Impact of refactoring activities on quality aspects is unclear

• Our approach
– Experience based support of the refactoring and planning processes
– A lightweight framework with semi-automated support for

refactoring
→ Based on metrics to detect quality defects (code smells, antipatterns, …)
→ Using Knowledge Discovery (KDD) technology adapted for source code

– Didactical augmentation of experiences for better comprehension

Slide 7

Copyright © Fraunhofer IESE 2004

First International Workshop on Software Quality (SOQUA 2004)
Erfurt, Germany, September 30, 2004

IESE

—Overview

—Introduction

—Process

—Outlook

—Discussion

Outline

Selected
refactoring
experience

Software Verification
e.g., Inspections

Software Validation
e.g., Code Testing

Software Diagnosis
e.g., Code Analysis,
Mining

Refactoring
Experiences

Defects
e.g., Bugs,
Code smells

Experience
Arrangement

e.g., augmented
refactoring experiences

Software Documents
e.g., Code, Designs, …

Learning about &
Correction of Defect

e.g., Refactoring

Project 1

Project n

Daily
Work

Finding bugs, code smells, defect flaws, ...

learning
goal

LEB PB
SE-Ontology

Pedagogical Agent

Refactoring
experience

pattern
learning
elements

Selection of Experience
e.g., Inspections

Defect Discovery

Creation of EAs

General Overview

Selected
refactoring
experience

Software Verification
e.g., Inspections

Software Validation
e.g., Code Testing

Software Diagnosis
e.g., Code Analysis,
Mining

Refactoring
Experiences

Defects
e.g., Bugs,
Code smells

Experience
Arrangement

e.g., augmented
refactoring experiences

Software Documents
e.g., Code, Designs, …

Learning about &
Correction of Defect

e.g., Refactoring

Project 1

Project n

Daily
Work

Finding bugs, code smells, defect flaws, ...

learning
goal

LEB PB
SE-Ontology

Pedagogical Agent

Refactoring
experience

pattern
learning
elements

Selection of Experience
e.g., Inspections

Defect Discovery

Creation of EAs

Defect removal

Quality-
Goals

New experience

former experience

Experience -
Management

Experiential
Learning

Slide 8

Copyright © Fraunhofer IESE 2004

First International Workshop on Software Quality (SOQUA 2004)
Erfurt, Germany, September 30, 2004

IESE

—Overview

—Introduction

—Process

—Outlook

—Discussion

Outline

Process-Step: Refactoring

Software Verification
e.g., Inspections

Software Validation
e.g., Code Testing

Software Diagnosis
e.g., Code Analysis,
Mining

Refactoring
Experiences

Defects
e.g., Bugs,
Code smells

Software Documents
e.g., Code, Designs, …

Learning about &
Correction of Defect

e.g., Refactoring

Project 1

Project n

Daily
Work

Finding bugs, code smells, defect flaws, ...

learnin
goa

Peda

Selection of Experience
e.g., Inspections

Defect Discovery

Crea

• Defect Discovery
– What might be a threat to the

software quality (e.g., maintainability,
reusability, or performance)?

• Selection of Defects & Experiences
– What should be refactored to reach

specific quality goals?
– What are the most important defects?
– How do we remove these defects?

• Correction of defects
– Based on augmented refactoring

experience
– Learn while refactoring

• Give feedback
– Refactoring experience is collected
– Provided experience is evaluated

New: Use
experience
to
categorize
defects

Slide 9

Copyright © Fraunhofer IESE 2004

First International Workshop on Software Quality (SOQUA 2004)
Erfurt, Germany, September 30, 2004

IESE

—Overview

—Introduction

—Process

—Outlook

—Discussion

Outline

Kolb’s Experiential Learning Phases

1: Concrete and
Experience

(Sensing / Feeling)

2: Reflection and
Observation

(Review & Watching)

3: Abstraction and
Conceptualization

(Thinking / Concluding)

4: Active
Experimentation
(Test Hypotheses
& new Situation)

Experiential
Learning
Phases

e.g., Lessons Learned

Slide 10

Copyright © Fraunhofer IESE 2004

First International Workshop on Software Quality (SOQUA 2004)
Erfurt, Germany, September 30, 2004

IESE

—Overview

—Introduction

—Process

—Outlook

—Discussion

Outline

Requirements for Micro-didactical Arrangements

Requirements for the creation process:
• Consider different instructional design rules (ID-rules)

(from ID Theories: e.g., elaboration theory, problem-based learning
etc.)

• Consider different learning goals (according to Bloom
taxonomy, [Bloom, 1956])

An ideal arrangement should:
• include each of the four learning phases
• anchor contextual knowledge (e.g., cases, experiences) with

declarative (e.g., facts, definitions, process descriptions) and
procedural knowledge (e.g., conditions and actions)

• facilitate self-directed learning
• support individual and social constructivism (e.g., by

integrating Communities of Practice)

Slide 11

Copyright © Fraunhofer IESE 2004

First International Workshop on Software Quality (SOQUA 2004)
Erfurt, Germany, September 30, 2004

IESE

—Overview

—Introduction

—Process

—Outlook

—Discussion

Outline

Process-Step Experiential Learning

Selected
refactoring
experience

sis
sis, Refactoring

Experiences

Experience
Arrangement

e.g., augmented
refactoring experiences

Learning about &
Correction of Defect

e.g., Refactoring

learning
goal

LEB PB
SE-Ontology

Pedagogical Agent

Refactoring
experience

pattern
learning
elements

Selection of Experience
e.g., Inspections

Creation of EAs

• “Learning is considered to be a
fundamental part of KM since
employees must internalize (learn)
shared knowledge before they can
use it to perform specific tasks”
[Rus and Lindvall, 2002, IEEE
Software]

• Learning goals: e.g., “application”
but comprehension is a
prerequisite

• Most of us learn through reflection
upon every day experience

• learning = Experience plus
reflection [Dewey, 1938]

• Synonym (but less popular):
experience-based learning

Slide 12

Copyright © Fraunhofer IESE 2004

First International Workshop on Software Quality (SOQUA 2004)
Erfurt, Germany, September 30, 2004

IESE

—Overview

—Introduction

—Process

—Outlook

—Discussion

Outline
6. Report 6. Report

ChangeChange

4. Refactor 4. Refactor
ProductProduct

3. Plan 3. Plan
RefactoringRefactoring

1. Define 1. Define
QualitiesQualities

2. 2. AnalyzeAnalyze
ProductProduct

5. Monitor 5. Monitor
QualityQuality

Refactoring Refactoring
ExperiencesExperiences

Simple Example: “Long Method” smell

Long Method
– Long methods are (typically) harder to

understand than short ones and therefore
make maintenance difficult.

1. Define Qualities: E.g.,
• Maintainability and Reusability is relevant
• Performance is irrelevant

2. Analyze: Measuring LOC
• Method A: 300 LOC (e.g., write data to database)
• Method B: 400 LOC (e.g., standard RSA encryption algorithm)
• Method C: 500 LOC (e.g., sort algorithm)

3. Plan:
• Refactor method A and C but not method B (due to Reusability)

4. Refactor: Apply the “Extract Method” refactoring
• Reuse experiences from previous refactorings

5. Monitor: effects of refactorings on product quality
6. Report & Adapt: quality model (learn about refactoring effects)

Slide 13

Copyright © Fraunhofer IESE 2004

First International Workshop on Software Quality (SOQUA 2004)
Erfurt, Germany, September 30, 2004

IESE

—Overview

—Introduction

—Process

—Outlook

—Discussion

Outline

Retrieving & Preprocessing Experience

• Filtering of Experiences to reduce number of hits
– Experience Profile is matched against the query to retrieve cases of interest.
– Activity profile is used to remove experiences irrelevant to activity / goal by

using metadata from the experience profile and the query (or Workflow
system).

– Learner Profile is used to remove experiences incomprehensible by using
metadata from the experience profile and the user profile (from a Skill
Management system).

Experiences
Experience

Profile
Activity
Profile

Learner
Profile

Selected
Experience

Filter Filter

What do I
need?

What do I
understand?

What do
we have?

Code
Smells

filtered
result

Slide 14

Copyright © Fraunhofer IESE 2004

First International Workshop on Software Quality (SOQUA 2004)
Erfurt, Germany, September 30, 2004

IESE

—Overview

—Introduction

—Process

—Outlook

—Discussion

Outline

Creation of Micro-didactical Learning Arrangement

ID-Design
Rules Library (PB)

Selection of
ID-Rules

Selection of
Learning Objective

Bloom’s taxonomy for
learning goals
• Knowledge
• Comprehension
• Application
• Synthesis
• Analysis
• Evaluation

Selection of
LE

Learning Elements
Base (LEB)

Experience Type Learner Profile SE-Ontology

Creation of
MDA

• Instructional Design-Theories
• Learning Styles

Selected
Experience

Micro-didactical
Arrangement

Slide 15

Copyright © Fraunhofer IESE 2004

First International Workshop on Software Quality (SOQUA 2004)
Erfurt, Germany, September 30, 2004

IESE

—Overview

—Introduction

—Process

—Outlook

—Discussion

Outline

Tool Basis: MASE

• MASE (a WIKI for Agile Software Engineering)
– Standard JSP-WIKI (Pages, Blogs, News, …)
– Planning of Iterations
– Definitions of Tasks
– User Stories

• Application
– Freeform tool to note experiences
– Metadata in pages used as experience profile
– Basis for communication about refactoring

• Similar tools:
– SnipSnap [http://snipsnap.org/]
– xpWeb [http://xpweb.sourceforge.net/]

Slide 16

Copyright © Fraunhofer IESE 2004

First International Workshop on Software Quality (SOQUA 2004)
Erfurt, Germany, September 30, 2004

IESE

—Overview

—Introduction

—Process

—Outlook

—Discussion

Outline

Outlook

• Discovery of quality defects
– Investigation of metrics and rules for defect discovery

→ Development of a Metric-Defect Model

– Investigation of the effect of defects on qualities (e.g., reusability)
→ Development of a Quality-Defect Model

• Knowledge presentation
– Definition of ontologies for defects and correction experiences

→ Can we use clustering or information retrieval techniques for
experiences? How effective are they?

→ What context information is required?

– Development of techniques for the creation of experience
arrangements

• Empirical evaluation

Slide 17

Copyright © Fraunhofer IESE 2004

First International Workshop on Software Quality (SOQUA 2004)
Erfurt, Germany, September 30, 2004

IESE

—Overview

—Introduction

—Process

—Outlook

—Discussion

Outline

Summary

• Our approach
– A lightweight framework with automated support for refactoring

→ Based on metrics to detect quality defects (code smells, antipatterns, …)
→ Using Knowledge Discovery (KDD) technology adapted for source code

– Experience based support of the refactoring and planning processes
– Didactical augmentation of experiences for better comprehension

• Benefits
– Improved internalization of experience through experiential

learning combined with experience management
– Active support for the task at hand
– Improved transferability of experience

Slide 18

Copyright © Fraunhofer IESE 2004

First International Workshop on Software Quality (SOQUA 2004)
Erfurt, Germany, September 30, 2004

IESE

—Overview

—Introduction

—Process

—Outlook

—Discussion

Outline

The End

Thank you for listening!
Any questions or comments?

Contact information:
Jörg Rech (Refactoring, Code Retrieval, Code Mining)
Eric Ras (Learning supported Software Engineering)
Andreas Jedlischka (Decision Support)

Address:
Fraunhofer IESE
Sauerwiesen 6
D-67661 Kaiserslautern
Germany

