
Allgemeine Informatik I || WS 2001/2002 || Übungsblatt 7

Partial Documentation from
Ulm’s Oberon Library:

Print

NAME

Print - formatted output to streams

SYNOPSIS
PROCEDURE F(fmt: ARRAY OF CHAR);
PROCEDURE F1(fmt: ARRAY OF CHAR; p1: ARRAY OF BYTE);
PROCEDURE F2(fmt: ARRAY OF CHAR; p1, p2: ARRAY OF BYTE);
PROCEDURE F3(fmt: ARRAY OF CHAR; p1, p2, p3: ARRAY OF BYTE);
PROCEDURE F4(fmt: ARRAY OF CHAR; p1, p2, p3, p4: ARRAY OF BYTE);
PROCEDURE F5(fmt: ARRAY OF CHAR; p1, p2, p3, p4, p5: ARRAY OF BYTE);
PROCEDURE F6(fmt: ARRAY OF CHAR; p1, p2, p3, p4, p5, p6: ARRAY OF BYTE);
PROCEDURE F7(fmt: ARRAY OF CHAR; p1, p2, p3, p4, p5, p6, p7: ARRAY OF BYTE);
PROCEDURE F8(fmt: ARRAY OF CHAR;
 p1, p2, p3, p4, p5, p6, p7, p8: ARRAY OF BYTE);
PROCEDURE F9(fmt: ARRAY OF CHAR;
 p1, p2, p3, p4, p5, p6, p7, p8, p9: ARRAY OF BYTE);

PROCEDURE S(out: Streams.Stream; fmt: ARRAY OF CHAR);
PROCEDURE S1(out: Streams.Stream; fmt: ARRAY OF CHAR; p1: ARRAY OF BYTE);
PROCEDURE S2(out: Streams.Stream; fmt: ARRAY OF CHAR; p1, p2: ARRAY OF BYTE);
PROCEDURE S3(out: Streams.Stream; fmt: ARRAY OF CHAR;
 p1, p2, p3: ARRAY OF BYTE);
PROCEDURE S4(out: Streams.Stream; fmt: ARRAY OF CHAR;
 p1, p2, p3, p4: ARRAY OF BYTE);
PROCEDURE S5(out: Streams.Stream; fmt: ARRAY OF CHAR;
 p1, p2, p3, p4, p5: ARRAY OF BYTE);
PROCEDURE S6(out: Streams.Stream; fmt: ARRAY OF CHAR;
 p1, p2, p3, p4, p5, p6: ARRAY OF BYTE);
PROCEDURE S7(out: Streams.Stream; fmt: ARRAY OF CHAR;
 p1, p2, p3, p4, p5, p6, p7: ARRAY OF BYTE);
PROCEDURE S8(out: Streams.Stream; fmt: ARRAY OF CHAR;
 p1, p2, p3, p4, p5, p6, p7, p8: ARRAY OF BYTE);
PROCEDURE S9(out: Streams.Stream; fmt: ARRAY OF CHAR;
 p1, p2, p3, p4, p5, p6, p7, p8, p9: ARRAY OF BYTE);

DESCRIPTION

Print offers formatted printing in printf(3) style to Streams.stdout (F through F9) or to out (S
through S9). The procedures convert their parameters (the number of parameters determines the
procedure name) and instantiate them into the format string fmt.

The format string is interpreted as follows: Any character not belonging to an escape sequence
introduced by \ or a format element introduced by % is simply appended to Streams.stdout resp.
out. Escape sequences are substituted by a single character while format elements are instantiated
by the next p? parameter.

Format elements must conform to the syntax following:

FormatElement = "%" {Flags} [Width] [Scale] Conversion .
Flags = "+" | "0" | "-" | "^" | "\" FillChar .
Width = Number | "*" .
Scale = "." Number .
Number = { DecDigits } .
DecDigits = "0" | "1" | "2" | "3" | "4" | "5" | "6" | "7" | "8" | "9" .
Conversion = "b" | "c" | "d" | "e" | "f" | "g" | "j" | "o" | "s" | "x" | "y" .

Each format element defines a field in the output stream that is by default as wide as necessary to
insert the result of a parameter conversion. The field width can be expanded by specifying Width. If
not given as an explicit Number but as * Print uses the value of the next yet unused parameter
(interpreted as an integer) as width indication. Values less or equal than the defaults have no effect.
In all other cases the output field is filled up by leading blanks. Padding character and alignment
strategy may be altered by use of Flags:

+
Any numeric output will be signed (by default positive values do not get a +sign).

--
The output will be left aligned within its field. This option has no effect if width is omitted.

0
The output of numeric values is padded with leading zeroes This option implies -- and ^.

^
The padding characters are inserted before the leading sign and the first digit of a number.

\FillChar
requires FillChar to become the padding character.

On output of real values, Scale fixes the number of digits following the decimal point. Other
numeric output is not affected while strings are cut to the length given by Scale before they are
aligned within their output fields. Print will use the next yet unused parameter as scale indication if
* is specified.

Since Print has no idea about the actual types of the arguments corresponding to its formal
parameters, convchar is used to determine the conversions to be executed for the next yet unused
parameter. Print will not accept any other conversion character than those listed and described
below. In detail the specifications of convchar have the following effect:

x
hexadecimal output of an integer

o
octal output of an integer

d
decimal output of an integer

f
output of a real number in floating point notation

e

output of a real number in its normalized exponential form
g

output of a real number in floating point (values with exponents greater or equal to -4 and less
than the scale (default: 6)) or exponential notation. Trailing zeroes are suppressed.

c
output of a single CHAR.

s
output of an ARRAY OF CHAR until the first null byte (0X) or the high bound of the array
is reached.

b
output of a BOOLEAN as text "TRUE" or "FALSE".

y
output of a BOOLEAN as text "yes" or "no".

j
output of a BOOLEAN as text "ja" or "nein".

Note that o, x, and d are legal conversion characters to output any type which has the same size (in
bytes) as the expected one. This feature can be used to output an address (integer size presumed).
Furthermore these conversion characters may be used to output the ascii-value of a CHAR. Vice
versa c may be used to output a character that is specified by a SHORTINT-value.

%% is not interpreted as a format element. A single percent character is output instead.

Any appearance of the following escape sequences in format string fmt is substituted as listed:

\n
newline (line terminator as defined by StreamDisciplines)

\r
carriage return (0DX)

\t
horizontal tab (09X)

\e
escape (1BX)

\f
form feed (0CX)

\b
backspace (08X)

\&
bell (07X)

\Q
double quote (22X)

\q
quote("’")

\\
backslash ("\")

\[0-9A-F]+
character specified by [0-9A-F]+X.

Edited by: Andreas Borchert, last change: 1996/09/16, revision: 1.6

