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» repartition of population is non homogenous
®» |ocalization of network nodes follows accordingly
®» this depends on the type of nodes and their hierarchical level
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$» so far, most telecommunication models assume spatial homogeneity
#® hierarchical models, Poisson Voronoi Agregated Tessellations. . .
#® road systems in the Stochastic Subscriber Line Model

» homogeneous models are useful
#® in some cases, ex : involving high level network nodes
#® as first order models to investigate faisability

» spatial non-homogeneity can be structurant

the cost of line of sight connection from node n (red) to closest node N (blue)
depends on the length distribution

3 o 4 Ll 1
.,... : . .: . .. .:Q 3.5 .’,.g.’:{o
. gt @Y X .
» : . 3 A5 . 0.8
5‘.:.. ° . e 2.5 3 . - 0.6
° o e e 2 .
R R
b e . 1.5 . 0.4
a T . e 0.2
¢ 0.5 - b ‘; .
: R S
Y Rt 2. .




&

® need for practical methods to deal with spatial inhomogeneity
® considering a variety of situations (shape, location)
® considering a great number of parameters
& computationally rapid
#® Dbased on parameters that can be infered from reality

® several theoretical approaches are possible
® modulated Poisson
perturbation of Poisson-based models

o
#» transform of homogeneous planar Poisson Point Processes (PPP)
o




» an homogeneous PPP (noted N)
# is defined by its constant intensity in R*(= F)

BA(du)

» a non-homogeneous PPP
# is defined by its non constant intensity in R*(= F)
p(dz) = p(x)A(dz)
# is animage-process X(N)in F'= X(F)

® the transform X
# must be a bicontinuous bijection
#» must be unigue — additional constraints
» can be analytically computed in some cases
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» computation of the transform X
# measures y and X areimages = X(\) < A= X "H(u)

[ Maw = [ x7oan = [ )

» usual change of variables with Jacobian Jx-:

/D)\(du):/X(D) ldetJx-1(z)|A\(dx)

» partial derivative equation p(x1, o) = |detJx-1(xq, x2)|

» specification of invariant 1D-sets ensures unicity
$ lines parallel to one axis
# lines radiating form a center
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example : discontinuous circle, radial transform
# non homogeneous X (N) in I, intensity u(dz) = p(x)A(dx)

p(x) ={aifz € disc I'(0, R), else 5}

» transformation to homogeneous X in E

X(N)in F NinFE

LTy L




» cxample : discontinuous circle, radial transform
# radial invariance (centered in O) demands

X2,

B
(ul,u2) = X_l(iCl,ZCQ) = gb(ZCl,ZCQ)(ZCl,ZCQ) 7< .

>°Z R x1

2

# unique solution ¢(z;,z,) = {Vaifz €T, \/ﬁ + (= B) s else }

iso-z; curves in E, from X ! ISO-u; curves in F', from X
 C.Gloaguen-France Telecor- Division Recherche et Developpement  Spatal models builton non-homogeneous Poisson Point Processes. Sollerhaus Workshop, March 27 2006 ~p.9
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Transform toffrom homogeneity | & |

®» exact transforms can easily be derived in other cases

#® direct calculation for complicated single shapes (ex general polygons)
careful choice of invariant varieties

® modification of existing results by changing
the intensity levels, rescaling both coordinates
the shapes and locations, translation and/or flattening .. .

D this does not cover all our needs

® somes cases cannot be solved exactely

continuity is not verified no exact transform for the set
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the idea is to describe complex situations by mixing
approximate & exact forms
analytical & numerical results

®» the "toolbox" contains

» far field approximation
formal definition from induced metrics
application to model juxtaposition and superposition
# "numerical" tools
fast realizations of non homogeneous PPP
transformation/construction of geometric figures

» "analytical" tools
formal reuse of homogeneous results
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» induced metrics recall: N in E intensity SA(du), X (N) in F intensity p(z)\(dz)

FE, Euclidian metric F', induced metric
ds® = nijdu;du; ds®> = guvdzx,dz,

z = X(u)

Ouy Ouj

g/“/ : nij 0z, Oz,

® metric g is location dependant and defined from p and its parameters
® metric g is continous and can be written analytically

® several other metrics can be defined in £ and F
induced from X or X1
considering Euclidian or polar coordinate systems
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® formal definition of far field limit

® compare natural polar metric 6 and induced polar metric m

® relative error (6 —m)/d < e farther from O than D(¢)(= R (O‘ ) for circle)
& stitching together homogeneous and non-homogeneous spaces
»

example : gaussian density o = 5,6 =1, R = 2, iIso-x; curves in £

u2 u2 u2

no stiching e =0.05,D =12.6 ce=0.1,D =89




» approximate transforms using far field assumption
» the transform affects points closer than D(e)
® juxtaposition same basis intensity

& superposition




. Toolbox= numerical applications = 4/ |
® fast generation of realizations of non-homogeneous PPP

® generate one reference set &/ homogeneous PPP of unit intensity
T radial simulations, coordinates of n points closest to O

® compute X (i) to build the non homogeneous set

$» statistics on non-homogeneous PPP

® example : distances between point A and the 3rd closest point from X ()
observe hom. N from X ~1(A), translation 4y = U + X1 (A)
compute X (U44) and order distances to A, extract the third item
a=30,8=1,R=2,A = (2,0) located on the circular discontunity

O stat on transformed set
—— theoretical
------ homogeneous a=30




transformation of geometric figure (Voronoi tessellation)
#® Euclidian n on straight A : nuclei from N — VnE, nuclei from X (N) — V¥

$» drawing of general bisectors

#® use non euclidian metrics and/or transforms of straight lines A in algorithms

u2

non A gonA gon X(A)
F — JF
dl'(A,p) =dF(B,p) g (A:p) =dy(B,p) df (A, p) = d; (B,p)

./p+\A' P A o[ 15 5110 ul P X(A)

A ‘ B A / B - . 3
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metrics provide formal identity of writing
® average area of Poisson Voronoi cell, nucleus in A

V,”, polar metrics 64 centered in A and 4,

— [ dz" \/ldet (5. (2"))]
AE(A) = [[ dz/]det(5a(2))] e T =3
E

le for bisectors : keep 64  different nuclei location N — X (N) : change d inm

V"', 64 and induced polar metric centered y m,,

- — [ dy’ \/ldet(my, ()]
AP(A) = [[ dy/Idet(0a(y))] e T®
F

® remarks
not too useful for areas (v/|det(m)| < p)
re-use of sensible multiD integration codes may not be straightforward
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$» computation and fitting of tessellation characteristics

® example : characteristics of Poisson Voronoi cells
VI tessellation
average area A’ (A) of cell nucleus in A
average perimeter P (A)

® study the dependance on A and on the density shape and parameters

circular discontinuity
gaussian density area
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& approximations for smooth densities : ex gaussian case A (A) ~ 1/p(A)

#® Dbuild a library from fitted results making the most of symmetries
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» explicit transforms and induced metrics allow
® to re-use results from homogeneous PPP : same formal writing

#® to be introduced in algorithms — radial simulation of "typical" cells...?

® practical interest for France Telecom

® gather a set of formulas and tools adapted to spreadsheet codes
no need of random generators to generate points of non homgeneous PPP

#® analysis of complex situations
by mixture of approximations, fitted and exact results
» perspective
#® working on length distributions
analysis of tessellations characteristics
consider several hierachical levels of non homogeneous PPP

o o 0

homogenization technique is not limited to PP
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homogeneous hierarchical stochastic telecommunication models

®» F Baccelli, M. Klein, M. Lebourges and S. Zuyev
Stochastic geometry and architecture of communication nerworks
Telecommun. Syst. 7 pp209-227 (1997)

®» K. Tchoumatchenko and S. Zuyev
Aggregate and fractal tessellations
Probab. Theory Relat. Fields 121, pp198-218 (2001)

B road systems in the Stochastic Subscriber Line Model

just have a look on http://www.geostoch.de

® computation of the transform

» R. Senoussi, J. Chadoeuf and D. Allard
Weak Homogenization of point processes by space deformations
Adv. Appl. Prob. (SGSA) 32 pp. 948-959 (2000)

Thank you for your attention !
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