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1 Introduction

Germ—grain models
e X = {X;} point process of germs
o M = {M;} process of grains, M; < My i.i.d. RACS

o IfE|My @ K| < 00, K C RY compact, then = = |J°,(M; + X;)
is well defined.

Figure: Germ—grain models of discs and line segments
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1 Introduction

Random fields associated with GGM
Stationary germ—grain model = suchthat =N K e R, K € K.
e p: R — R additive, i.e., p(0) =0,
p(K1U K2) = (K1) + (K2) — o(K1 N K2)
@ conditionally bounded:
sup{|o(K")|: K" CK,K' € K} < o0

e Random field Y = {Y(x), x € R9}, test set K € K:
YxX)=¢((Z-x)NK), xecR?.

Objective:  Estimation of = EY(x).
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1 Introduction

Examples

Stationary GGM =, random field Y(x) = ¢((= — x) N K),x € RY,
test set K € K.

o Vix)=I((=Z—x)n{o}) =1LI(x € 3)
with EY;(x) = E(|=n[0,1]9)) = p volume fraction
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1 Introduction

Examples

Stationary GGM =, random field Y(x) = ¢((= — x) N K),x € RY,
test set K € K.

o Yo(x)=T((Z-x)NK)=1I(x € = K)
with EY>(x) = P(=N K #0) = T=(K) capacity functional
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1 Introduction

Examples

Stationary GGM =, random field Y(x) = ¢((= — x) N K),x € RY,
test set K € K.

e Y3(x)=W({(E—-x)NB(0)) =W(E=ENB(x)), r>0

with EY3(x) = EVo(= N B.(0)) local Euler charakteristic
= J('I:o rf=ikq_jVj(Z)  spec. intrinsic volumes
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© Estimation of the mean
@ Unbiasedness and Consistency
@ Asymptotic normality
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2 Estimation of the mean

Preliminaries:

e Stationary random field Y(x) = p((Z—x)NK),xcRY Kec Kk
with = EY/(x).

@ Observation window W, = nWy with Wy € K, o € int (Wp).
e Weighting functional G : B x RY — [0, 00) with

G(Wp,x) =0, x e RY\ W, O K, G(W,,x)dx =1.
Wi

Unbiased estimator of u: E (j1,) = p for

ﬁn:/ Y (x) G(W,, x)dx
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2.1 Consistent estimation of the mean

Conditions:
e Covy(x) = Cov(Y(0), Y(x)) satisfies [rq|Covy(x)|dx < co.
@ Weighting functional G satisfying:

sup G(Wp, x) < 9 and  lim |Wi|Th(x)=20.
x€ERM | Wil n—0o0
for Ih(x) = [ G(W, G(W,,x+ y)dy and ¢, 0 < cc.

Mean—square consistency of i,: lim E (@, — u)z =0, since
n—oo

lim |W,|Var(tin) =60 [ Covy(x)dx.
n—oo Rd
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2.2 Asymptotic normality

Conditions:

Germ—grain model = = (J;5,(M; + X;) is
e a Boolean model with E(|M, & K|?) < oo

o or E2(H)NENK) < oo point process X = {X;} is 'strongly mixing’
and E(||My @ K|[290+1/0)+2) < o0, §,e > 0;]|Al| = sup{|x| : x € A}.

Then it holds that

VIWal (fin — 1) - N (0,0?)

for 02 = 6 [pq Covy(x) dx.
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2.2 Asymptotic normality

Conditions:

Germ—grain model = = J;5;(M; + Xi) is

e a Boolean model with E(|M, @ K|?) < oo
== / |Covy(x)] dx < o0
Rd

Then it holds that

VIWal (i — 1) -5 N (0,06%) |

for 02 = 6 [pq Covy(x) dx.
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© Estimation of the asymptotic variance
@ Weighted covariance estimator
o Consistency
@ Empirical covariance estimator
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3 Estimation of the asymptotic variance

Define

for

@ asymp. unbiased estimator (fo\v,,(x) of Covy(x),
o weight y(W,, x) = [Wh|ls(x),x € Rd»
e averaging window U, € (W, & K) @ (-W, © K), o € U, and

_|UA? :
lim =0 and lim sup |§ —~y(W,,x)|=0.

n—oo |Wn| n—oo XEUn
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3.1 Weighted variance estimator

Put WK =W, e K.
Uniform weights: G(W,, x) = I(x € W)/ |W|.

Define
— Y(y)Y(y+x) - pl
— n d
Covn () I T e
WEN(WE—x)
and let
~ o Wy n (W — x)|
52 Covp, (x) W dx .
Un "
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3.2 Unbiasedness and Consistency

Boolean model = = (J;5,(M; + X;)
If E (|[Mo ® K|?) < oo then

lim E62? =02, asymptotically unbiased
n—oo
and
. ~ 2 .
lim E (02 - 02) =0, mean—square consistent

n—oo

for 02 = 6 [pa Covy(x) dx.
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3.2 Unbiasedness and Consistency

Germ—grain model = = {J;5,(M; + X;)
o If [p4|Covy(x)| dx < oo then

lim E6% = 02, asymptotically unbiased,
n—oo

o If SupX17X2 fRd |C0V( Y(O) Y(X1)7 Y(y) Y(X2 + y))‘ dy < 0o and

SUPs o Jra [E ((Y(0) = 1)(Y(¥) = 1) Y (x1) Y (32))| dy < o0
(or Y is uniformly bounded) then

. ~ 2 .
lim E (02 — 02) =0, mean-square consistent.
n—oo
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3.3 Empirical covariance estimator

Subdivision of the sampling window: v
Let W,Sl), e W,Sm) for m = m(n) wo| 8 1

such that U, W € W, and d %"
int(W9) nint (WD) = 0,k # ¢

> (0 -m)’

k=1

and define

for ﬁg,k) estimate of 4 on W) and Hp=13T, ﬁgk) :
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3.3 Empirical covariance estimator

Germ—grain model = = (J;5;(M; + X;)

o If [z |Covy(x)| dx < oo then

lim E&2 = o2, asymptotically unbiased,
am y y

o If f]R3d ‘5(4)(O,X1,X2,X3)‘ d(x1,x2,x3) < 0o and m(n) — oo then

. _ 2 .
lim E (6® — 0?)" =0, mean-square consistent.

n—oo

Example:
= Boolean model and Y(x) = I((= — x) N K), then assume that

E(|M0@R|4) < 00.
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e Germ—grain model = = (J;5;(M; + X;),

e Random field Y (x) = ¢((Z — x) N K),x € R? with 1 = E Y(x)
and Covy(x) unknown, ¢ bounded valuation, K € K test set,

o weighted average fin = [}, Y(x)G(Wh, x) dx as unbiased and

mean-square consistent estimator of p,

° asymptotlc normality of /| W, — p) with asympt. variance
= Jga Covy(x) dx,

@ weighted average o, = fUn a/,,(x)v( W, x) dx as asymptotically

unbiased and mean-square consistent estimator of o2.
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5 Introduction

Steiner formula

Let K € IC and r > 0, then

d
|K® B (0)| = ;)fd_“id—j\/j(K)

J

for functionals V; : I — [0, 00), called the intrinsic volumes.

Figure: Steiner formula in R?
K®B,(0)

|K @ B, (0)| = mr?> Vo(K) + 2r Vi(K) + Vo(K).
=ar’+rS(K)+A(K).
A: area, S: boundary length
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5 Introduction

Let = be a stationary RACS in RY with P((ZNK) € R) = 1.

Let {W,} be a sequence of compact and convex observation
windows W, = nWy with [Wp| > 0 and o € int (Wp).

If E2NEN0.1Y) < 56 then the limit

V;(Z) = lim EV; (N W)

n—oo ’ Wn |

exists for each j = 0,...,d and is called the

j-th specific intrinsic volume.
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