Estimation of Specific Intrinsic Volumes and Asymptotical Tests

Ursa Pantle

University of Ulm

March 28, 2006

Overview

- Introduction
 - Germ-grain models
 - Associated random fields
- Estimation of the mean
 - Unbiasedness and Consistency
 - Asymptotic normality
- Estimation of the asymptotic variance
 - Weighted covariance estimator
 - Consistency
 - Empirical covariance estimator

Overview

- Introduction
 - Germ-grain models
 - Associated random fields
- Estimation of the mean
 - Unbiasedness and Consistency
 - Asymptotic normality
- Estimation of the asymptotic variance
 - Weighted covariance estimator
 - Consistency
 - Empirical covariance estimator

Germ-grain models

- $X = \{X_i\}$ point process of germs
- $M = \{M_i\}$ process of grains, $M_i \stackrel{d}{=} M_0$ i.i.d. RACS
- If $\mathbb{E}|M_0 \oplus \check{K}| < \infty$, $K \subset \mathbb{R}^d$ compact, then $\Xi = \bigcup_{i=1}^{\infty} (M_i + X_i)$ is well defined.

Figure: Germ-grain models of discs and line segments

Random fields associated with GGM

Stationary germ–grain model Ξ such that $\Xi \cap K \in \mathcal{R}$, $K \in \mathcal{K}$.

- $\varphi:\mathcal{R} o\mathbb{R}$ additive, i.e., $\varphi(\emptyset)=0$, $\varphi(\mathit{K}_1\cup\mathit{K}_2)=\varphi(\mathit{K}_1)+\varphi(\mathit{K}_2)-\varphi(\mathit{K}_1\cap\mathit{K}_2)$
- conditionally bounded:

$$\sup\{|\varphi(K')|: K'\subseteq K, K'\in\mathcal{K}\}<\infty$$

• Random field $Y = \{Y(x), x \in \mathbb{R}^d\}$, test set $K \in \mathcal{K}$:

$$Y(x) = \varphi((\Xi - x) \cap K), \quad x \in \mathbb{R}^d.$$

Objective: Estimation of $\mu = \mathbb{E}Y(x)$.

Examples

- $Y_1(x) = \mathbb{I}((\Xi x) \cap \{o\}) = \mathbb{I}(x \in \Xi)$ with $\mathbb{E}Y_1(x) = \mathbb{E}(|\Xi \cap [0, 1]^d|) = p$ volume fraction
- $Y_2(x) = \mathbb{1}((\Xi x) \cap K) = \mathbb{1}(x \in \Xi \oplus \check{K})$ with $\mathbb{E}Y_2(x) = P(\Xi \cap K \neq \emptyset) = T_{\Xi}(K)$ capacity functional
- $Y_3(x) = V_0((\Xi x) \cap B_r(o)) = V_0(\Xi \cap B_r(x)), r > 0$ with $\mathbb{E}Y_3(x) = \mathbb{E}V_0(\Xi \cap B_r(o))$ local Euler charakteristic $= \sum_{j=0}^{d} r^{d-j} \kappa_{d-j} \overline{V}_j(\Xi)$ spec. intrinsic volumes

Examples

- $Y_1(x) = \mathbb{1}((\Xi x) \cap \{o\}) = \mathbb{1}(x \in \Xi)$ with $\mathbb{E}Y_1(x) = \mathbb{E}(|\Xi \cap [0, 1]^d|) = p$ volume fraction
- $Y_2(x) = \mathbb{1}((\Xi x) \cap K) = \mathbb{1}(x \in \Xi \oplus \check{K})$ with $\mathbb{E}Y_2(x) = P(\Xi \cap K \neq \emptyset) = T_{\Xi}(K)$ capacity functional
- $Y_3(x) = V_0((\Xi x) \cap B_r(o)) = V_0(\Xi \cap B_r(x)), r > 0$ with $\mathbb{E}Y_3(x) = \mathbb{E}V_0(\Xi \cap B_r(o))$ local Euler charakteristic $= \sum_{j=0}^d r^{d-j} \kappa_{d-j} \overline{V_j}(\Xi)$ spec. intrinsic volumes

Examples

- $Y_1(x) = \mathbb{I}((\Xi x) \cap \{o\}) = \mathbb{I}(x \in \Xi)$ with $\mathbb{E}Y_1(x) = \mathbb{E}(|\Xi \cap [0,1]^d|) = p$ volume fraction
- $Y_2(x) = \mathbb{1}((\Xi x) \cap K) = \mathbb{1}(x \in \Xi \oplus \check{K})$ with $\mathbb{E}Y_2(x) = P(\Xi \cap K \neq \emptyset) = T_{\Xi}(K)$ capacity functional
- $Y_3(x) = V_0((\Xi x) \cap B_r(o)) = V_0(\Xi \cap B_r(x)), r > 0$ with $\mathbb{E}Y_3(x) = \mathbb{E}V_0(\Xi \cap B_r(o))$ local Euler charakteristic $= \sum_{j=0}^d r^{d-j} \kappa_{d-j} \overline{V}_j(\Xi)$ spec. intrinsic volumes

Examples

- $Y_1(x) = \mathbb{1}((\Xi x) \cap \{o\}) = \mathbb{1}(x \in \Xi)$ with $\mathbb{E}Y_1(x) = \mathbb{E}(|\Xi \cap [0,1]^d|) = p$ volume fraction
- $Y_2(x) = \mathbb{1}((\Xi x) \cap K) = \mathbb{1}(x \in \Xi \oplus \check{K})$ with $\mathbb{E}Y_2(x) = P(\Xi \cap K \neq \emptyset) = T_{\Xi}(K)$ capacity functional
- $Y_3(x) = V_0((\Xi x) \cap B_r(o)) = V_0(\Xi \cap B_r(x)), r > 0$ with $\mathbb{E}Y_3(x) = \mathbb{E}V_0(\Xi \cap B_r(o))$ local Euler charakteristic $= \sum_{j=0}^d r^{d-j} \kappa_{d-j} \overline{V}_j(\Xi)$ spec. intrinsic volumes

Overview

- Introduction
 - Germ-grain models
 - Associated random fields
- Estimation of the mean
 - Unbiasedness and Consistency
 - Asymptotic normality
- 3 Estimation of the asymptotic variance
 - Weighted covariance estimator
 - Consistency
 - Empirical covariance estimator

2 Estimation of the mean

Preliminaries:

- Stationary random field $Y(x) = \varphi((\Xi x) \cap K)$, $x \in \mathbb{R}^d$, $K \in K$ with $\mu = \mathbb{E}Y(x)$.
- Observation window $W_n = nW_0$ with $W_0 \in \mathcal{K}$, $o \in \operatorname{int}(W_0)$.
- ullet Weighting functional $G:\mathcal{B}_0^d imes\mathbb{R}^d o [0,\infty)$ with

$$G(W_n,x)=0,\;x\in\mathbb{R}^d\setminus W_n\ominus\check{K},\quad \int_{W_n}G(W_n,x)\,dx=1\,.$$

Unbiased estimator of μ : $\mathbb{E}(\widehat{\mu}_n) = \mu$ for

$$\widehat{\mu}_{n} = \int_{W_{n}} Y(x) \ G(W_{n}, x) dx$$

2.1 Consistent estimation of the mean

Conditions:

- $Cov_Y(x) = Cov(Y(o), Y(x))$ satisfies $\int_{\mathbb{R}^d} |Cov_Y(x)| dx < \infty$.
- Weighting functional *G* satisfying:

$$\sup_{x \in \mathbb{R}^d} G(W_n, x) \leq \frac{c_0}{|W_n|} \quad \text{and} \quad \lim_{n \to \infty} |W_n| \, \Gamma_n \left(x \right) = \theta \, .$$

for
$$\Gamma_n(x) = \int G(W_n, y)G(W_n, x + y) dy$$
 and $c_0, \theta < \infty$.

Mean–square consistency of $\widehat{\mu}_n$: $\lim_{n\to\infty} \mathbb{E}(\widehat{\mu}_n - \mu)^2 = 0$, since

$$\lim_{n\to\infty} |W_n| \mathrm{Var}(\widehat{\mu}_n) = \theta \int_{\mathbb{R}^d} \mathrm{Cov}_Y(x) \, dx \, .$$

2.2 Asymptotic normality

Conditions:

Germ-grain model
$$\Xi = \bigcup_{i \geq 1} (M_i + X_i)$$
 is

- ullet a Boolean model with $\mathbb{E}(|M_0 \oplus \check{K}|^2) < \infty$
- or $\mathbb{E} 2^{(2+\delta)N(\Xi\cap K)} < \infty$, point process $X = \{X_i\}$ is 'strongly mixing' and $\mathbb{E}(||M_0 \oplus \check{K}||^{2d(1+1/\delta)+\varepsilon}) < \infty$, $\delta, \varepsilon > 0; ||A|| = \sup\{|x| : x \in A\}.$

Then it holds that

$$\sqrt{|W_n|}\left(\widehat{\mu}_n - \mu\right) \stackrel{d}{\longrightarrow} \mathcal{N}\left(0, \sigma^2\right) \,,$$

for $\sigma^2 = \theta \int_{\mathbb{R}^d} \operatorname{Cov}_Y(x) dx$.

2.2 Asymptotic normality

Conditions:

Germ-grain model
$$\Xi = \bigcup_{i>1} (M_i + X_i)$$
 is

ullet a Boolean model with $\mathbb{E}(|M_0 \oplus \check{K}|^2) < \infty$

$$\implies \int_{\mathbb{R}^d} |\mathrm{Cov}_Y(x)| \, dx < \infty$$

Then it holds that

$$\sqrt{\left|W_{n}\right|}\left(\widehat{\mu}_{n}-\mu\right) \stackrel{d}{\longrightarrow} \mathcal{N}\left(0,\sigma^{2}\right)$$
,

for $\sigma^2 = \theta \int_{\mathbb{R}^d} \operatorname{Cov}_Y(x) dx$.

Overview

- Introduction
 - Germ-grain models
 - Associated random fields
- Estimation of the mean
 - Unbiasedness and Consistency
 - Asymptotic normality
- Estimation of the asymptotic variance
 - Weighted covariance estimator
 - Consistency
 - Empirical covariance estimator

3 Estimation of the asymptotic variance

Define

$$\widehat{\sigma}_n^2 = \int_{U_n} \widehat{\mathsf{Cov}}_n(x) \, \gamma(W_n, x) \, dx$$

for

- asymp. unbiased estimator $\widehat{Cov}_n(x)$ of $Cov_Y(x)$,
- weight $\gamma(W_n, x) = |W_n|\Gamma_n(x), x \in \mathbb{R}^d$,
- averaging window $U_n \subseteq (W_n \ominus \check{K}) \oplus (-W_n \ominus \check{K})$, $o \in U_n$ and

$$\lim_{n\to\infty}\frac{|U_n|^2}{|W_n|}=0\quad\text{and}\quad\lim_{n\to\infty}\sup_{x\in U_n}|\theta-\gamma(W_n,x)|=0.$$

3.1 Weighted variance estimator

Put $W_n^K = W_n \ominus \check{K}$.

Uniform weights: $G(W_n, x) = \mathbb{1}(x \in W_n^{\kappa})/|W_n^{\kappa}|$.

Define

$$\widehat{\mathsf{Cov}}_n(x) = \int_{W_n^K \cap (W_n^K - x)} \frac{\mathbf{Y}(\mathbf{y}) \mathbf{Y}(\mathbf{y} + \mathbf{x}) - \widehat{\mu}_n^2}{|W_n^K \cap (W_n^K - x)|} dy$$

and let

$$\widehat{\sigma}_n^2 \approx \int \widehat{\mathsf{Cov}}_n(x) \frac{|W_n^{\kappa} \cap (W_n^{\kappa} - x)|}{|W_n^{\kappa}|} dx.$$

3.2 Unbiasedness and Consistency

Boolean model
$$\Xi = \bigcup_{i>1} (M_i + X_i)$$

If
$$\mathbb{E}\left(|\emph{M}_0\oplus \check{K}|^2\right)<\infty$$
 then

$$\lim_{n\to\infty} \mathbb{E}\,\widehat{\sigma}^2 = \sigma^2\,, \quad \text{asymptotically unbiased}$$

and

$$\lim_{n\to\infty}\mathbb{E}\left(\widehat{\sigma}^2-\sigma^2\right)^2=0\,,\quad\text{mean-square consistent}$$

for
$$\sigma^2 = \theta \int_{\mathbb{R}^d} \mathsf{Cov}_Y(x) \, dx$$
.

3.2 Unbiasedness and Consistency

Germ-grain model
$$\Xi = \bigcup_{i>1} (M_i + X_i)$$

• If $\int_{\mathbb{R}^d} |\mathsf{Cov}_Y(x)| \ dx < \infty$ then

$$\lim_{n\to\infty}\mathbb{E}\,\widehat{\sigma}^2=\sigma^2\,,\quad \text{asymptotically unbiased,}$$

• If $\sup_{x_1,x_2} \int_{\mathbb{R}^d} |\mathsf{Cov}(Y(o)Y(x_1),Y(y)Y(x_2+y))| \ dy < \infty$ and $\sup_{x_1,x_2} \int_{\mathbb{R}^d} |\mathbb{E}\left((Y(o)-\mu)(Y(y)-\mu)Y(x_1)Y(x_2)\right)| \ dy < \infty$ (or Y is uniformly bounded) then

$$\lim_{n\to\infty} \mathbb{E}\left(\widehat{\sigma}^2 - \sigma^2\right)^2 = 0, \quad \text{mean-square consistent.}$$

3.3 Empirical covariance estimator

Subdivision of the sampling window:

Let
$$W_n^{(1)}, \ldots, W_n^{(m)}$$
 for $m = m(n)$ such that $\bigcup_{k=1}^m W_n^{(k)} \subseteq W_n$ and $\operatorname{int}(W_n^{(k)}) \cap \operatorname{int}(W_n^{(\ell)}) = \emptyset, k \neq \ell$

and define

$$\widetilde{\sigma}_n^2 = \frac{1}{m-1} \sum_{k=1}^m \left(\widehat{\mu}_n^{(k)} - \overline{\mu}_n \right)^2$$

for $\widehat{\mu}_n^{(k)}$ estimate of μ on $W_n^{(k)}$ and $\overline{\mu}_n = \frac{1}{m} \sum_{k=1}^m \widehat{\mu}_n^{(k)}$.

3.3 Empirical covariance estimator

Germ-grain model
$$\Xi = \bigcup_{i \geq 1} (M_i + X_i)$$

• If $\int_{\mathbb{R}^d} |\mathsf{Cov}_Y(x)| \ dx < \infty$ then

$$\lim_{n\to\infty}\mathbb{E}\,\widetilde{\sigma}^2=\sigma^2\,,\quad\text{asymptotically unbiased,}$$

• If $\int_{\mathbb{R}^{3d}} \left| s^{(4)}(o,x_1,x_2,x_3) \right| \ d(x_1,x_2,x_3) < \infty$ and $m(n) o \infty$ then

$$\lim_{n\to\infty} \mathbb{E}\left(\widetilde{\sigma}^2 - \sigma^2\right)^2 = 0$$
, mean–square consistent.

Example:

 Ξ Boolean model and $Y(x) = \mathbb{1}((\Xi - x) \cap K)$, then assume that

$$\mathbb{E}\left(|M_0\oplus \check{K}|^4\right)<\infty.$$

4 Resume

- Germ-grain model $\Xi = \bigcup_{i>1} (M_i + X_i)$,
- Random field $Y(x) = \varphi((\Xi x) \cap K), x \in \mathbb{R}^d$ with $\mu = \mathbb{E} Y(x)$ and $Cov_Y(x)$ unknown, φ bounded valuation, $K \in \mathcal{K}$ test set,
- weighted average $\widehat{\mu}_n = \int_{W_n} Y(x) G(W_n, x) dx$ as unbiased and mean-square consistent estimator of μ ,
- asymptotic normality of $\sqrt{|W_n|} (\widehat{\mu}_n \mu)$ with asympt. variance $\sigma^2 = \int_{\mathbb{R}^d} \operatorname{Cov}_Y(x) dx$,
- weighted average $\widehat{\sigma}_n = \int_{U_n} \widehat{\text{Cov}}_n(x) \gamma(W_n, x) dx$ as asymptotically unbiased and mean-square consistent estimator of σ^2 .

5 References

- Böhm S., Heinrich L. and Schmidt V. (2004), Asymptotic properties of estimators for the volume fraction of jointly stationary random sets. Statistica Neerlandica 58, 388–406.
- Weinrich L., Molchanov I. (1999), Central limit theorem for a class of random measures associated with germ-grain models. Advances in Applied Probability 31, 283-314.
- Heinrich L. (2005), Large deviations of the empirical volume fraction for stationary Poisson grain models. Annals of Applied Probability 15, 1A, 392–420.
- Schmidt, V., Spodarev, E. (2005), Joint estimators for the specific intrinsic volumes of stationary random sets, Stochastic Processes and their Applications, 115, 959 - 981
- Pantle, U., Schmidt, V., Spodarev, E. (2006), Central limit theorems for functionals of stationary germ-grain models, Advances in Applied Probability 38, (to appear)
- Pantle, U., Schmidt, V., Spodarev, E. (2006), On the estimation of the integrated covariance function of stationary random fields, Working paper (in preparation)

Steiner formula

Let $K \in \mathcal{K}$ and r > 0, then

$$|K \oplus B_r(o)| = \sum_{j=0}^{d} r^{d-j} \kappa_{d-j} V_j(K)$$

for functionals $V_i: \mathcal{K} \to [0, \infty)$, called the intrinsic volumes.

Figure: Steiner formula in \mathbb{R}^2

$$|K \oplus B_r(o)| = \pi r^2 V_0(K) + 2r V_1(K) + V_2(K).$$

= $\pi r^2 + r S(K) + A(K).$

A: area, S: boundary length

Let Ξ be a stationary RACS in \mathbb{R}^d with $P((\Xi \cap K) \in \mathcal{R}) = 1$.

Let $\{W_n\}$ be a sequence of compact and convex observation windows $W_n = nW_0$ with $|W_0| > 0$ and $o \in \text{int}(W_0)$.

If $\mathbb{E} 2^{N(\Xi \cap [0,1]^d)} < \infty$ then the limit

$$\overline{V}_{j}(\Xi) = \lim_{n \to \infty} \frac{\mathbb{E}V_{j}(\Xi \cap W_{n})}{|W_{n}|}$$

exists for each $j=0,\dots,d$ and is called the j-th specific intrinsic volume.