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Introduction
Aims

1. Explain some basic ideas for stochastic modelling of
spatial point patterns

stationarity (homogeneity) vs. spatial trends
isotropy (rotational invariance)
complete spatial randomness
interaction between points (clustering, repulsion)

2. Describe some basic characteristics of point–process
models

Intensity measure, conditional intensities
Pair correlation function, Ripley’s K-function, etc.

3. Present techniques for the statistical analysis of spatial
point patterns
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Introduction
Overview

1. Examples of spatial point patterns

point patterns in networks

other point patterns

2. Models for spatial point patterns
Poisson point processes

Cluster and hard–core processes

Gibbs point processes

3. Characteristics of point processes

4. Some statistical issues
Nonparametric estimation of model characteristics

Maximum pseudolikelihood estimation
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Söllerhaus–Workshop, March 2006 3



Introduction
Overview

1. Examples of spatial point patterns
point patterns in networks

other point patterns

2. Models for spatial point patterns
Poisson point processes

Cluster and hard–core processes

Gibbs point processes

3. Characteristics of point processes

4. Some statistical issues
Nonparametric estimation of model characteristics

Maximum pseudolikelihood estimation
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Examples
Point patterns in networks

Street system of Paris Cytoskeleton of a leukemia cell
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Examples
Random tessellations

Poisson line (PLT) Poisson-Voronoi (PVT) Poisson-Delaunay (PDT)

Simple and iterated tessellation models

PLT/PLT PLT/PDT PVT/PLT
Söllerhaus–Workshop, March 2006 5



Examples
Model fitting for network data

Street system of Paris Cutout
Tessellation model

(PLT/PLT)

Model fitting for telecommunication networks
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Examples
Analysis of biological networks

a) Actin network at the cell periphery

b) Lamellipodium c) Region behind lamellipodia

Actin filament networks
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Examples
Analysis of biological networks

SEM image (keratin) Graph structure
Tessellation model

(PVT/PLT)

Model fitting for keratin and actin networks

SEM image (actin) Graph structure
Tessellation model

(PLT/PDT)
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Other examples
Modelling of tropical storm tracks

Storm tracks of cyclons over Japan

1945-2004

Estimated intensity field for initial points of

storm tracks over Japan
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Other examples
Point patterns in biological cell nuclei

Heterochromatin structures in interphase nuclei

3D-reconstruction of NB4 cell nuclei (DNA shown in gray
levels) and centromere distributions (shown in red)
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Other examples
Point patterns in biological cell nuclei

Projections of the 3D chromocenter distributions of an
undifferentiated (left) NB4 cell and a differentiated (right)

NB4 cell onto the xy-plane
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Other examples
Point patterns in biological cell nuclei

Capsides of

cytomegalovirus
Extracted point pattern

Model for a point field

(cluster)
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Models
Basic ideas

1. Mathematical definition of spatial point processes
Let {X1, X2, ...} be a sequence of random vectors
with values in

� 2 and
let X(B) = #{n : Xn ∈ B} denote the number of
„points” Xn located in a set B ⊂ � 2.

If X(B) <∞ for each bounded set B ⊂ 2, then
{X1, X2, ...} is called a random point process.

2. A point process {X1, X2, ...} is called
stationary (homogeneous) if the distribution of
{X1, X2, ...} is invariant w.r.t translations of the origin,
i.e. {Xn} d

= {Xn − u} ∀u ∈ 2

isotropic if the distribution of {Xn} is invariant
w.r.t rotations around the origin
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Models
Basic ideas

1. Stochastic model vs. single realization

Point processes are mathematical models

Observed point patterns are their realizations

2. Some further remarks
Equivalent notions:
point field instead of spatial point process

Point processes are not necessarily dynamic

Dynamics (w.r.t. time/space) can be added
=> spatial birth-and-death processes
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Models
Stationary Poisson process

1. Definition of stationary Poisson processes
Poisson distribution of point counts:
X(B) ∼ Poi(λ|B|) for any bounded B ⊂ � 2 and some
λ > 0

Independent scattering of points: the point counts
X(B1), . . . , X(Bn) are independent random variables
for any pairwise disjoint sets B1, . . . , Bn ⊂ 2

2. Basic properties
X(B) = λ|B| =⇒ λ = intensity of points

Void–probabilities: (X(B) = 0) = exp(−λ|B|)
Conditional uniformity: Given X(B) = n, the locations
of the n points in B are independent and uniformly
distributed random variables
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Models
Stationary Poisson process

Simulated realization of a stationary Poisson process

convincingly shows

Complete spatial randomness

No spatial trend

No interaction between the points
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Models
General Poisson process

1. Definition of general (non–homogeneous) Poisson
processes

Poisson distribution of point counts:
X(B) ∼ Poi(Λ(B)) for any bounded B ⊂ � 2 and
some measure Λ : B(

� 2)→ [0,∞]

Independent scattering of points: the point counts
X(B1), . . . , X(Bn) are independent random variables
for any pairwise disjoint sets B1, . . . , Bn ⊂ 2

2. Basic properties
X(B) = Λ(B) =⇒ Λ = intensity measure

Void–probabilities: (X(B) = 0) = exp(−Λ(B))

Intensity function λ(x) ≥ 0 if Λ(B) =
∫
B λ(x) dx
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Further basic models
Poisson hardcore process

Realisation of a Poisson hardcore process

Constructed from stationary Poisson processes (by
random deletion of points)

Realizations are relatively regular point patterns (with
smaller spatial variability than in the Poisson case)
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Further basic models
Poisson hardcore process

Description of the model

Start from a stationary Poisson process (with some
intensity λ > 0)

Cancel all those points whose distance to their nearest
neighbor is smaller than some R > 0

Minimal (hardcore) distance between point–pairs
=> R/2 = hardcore radius

Spatial interaction between points (mutual repulsion)

Two–parametric model (with parameters λ and R)
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Further basic models
Matern–cluster process

Realization of a Matern-cluster process

Constructed from stationary Poisson processes (of
so–called cluster centers)

Realizations are clustered point patterns (with higher
spatial variability than in the Poisson case)
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Further basic models
Matern–cluster process

Description of the model

Centers of clusters form a stationary Poisson process
(with intensity λ0 > 0)

Cluster points are within a disc of radius R > 0 (around
the cluster center)

Inside these discs stationary Poisson processes are
realized (with intensity λ1 > 0)

Spatial interaction between points (mutual attraction,
clustering of points)

Three–parametric model (with parameters λ0, λ1 and R)
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More advanced models
Gibbs point processes

1. Define Gibbs processes via conditional intensities:

For each location u ∈ 2 and for each realization
x = {x1, x2, ...} of the point process X = {X1, X2, ...},
consider the value λ(u,x) ≥ 0,

where λ(u,x) du is the conditional probability that
X has a point in du, given the positions of all points
x \ {u} of X outside of the infinitesimal region du

2. Special cases
stationary Poisson process: λ(u,x) = λ

general Poisson process: λ(u,x) = λ(u)

Stationary Strauss process λ(u,x) = λγt(u,x), where
t(u,x) = #{n : |u− xn| < r} is the number of points
in x = {xn} that have a distance from u less than r

Söllerhaus–Workshop, March 2006 22
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More advanced models
Strauss process

3 Properties of the Strauss process with conditional
intensity λ(u,x) = λγt(u,x)

γ ∈ [0, 1] is the interaction parameter, and r > 0 the
interaction radius

Three-parametric model (with parameters λ, γ, r)

4 Special cases:
If γ = 1, then λ(u,x) = λ (Poisson process)

If γ = 0, then hardcore process

λ(u,x) =

{
0 for t(u,x) > 0

λ for t(u,x) = 0

If 0 < γ < 1, then softcore process (repulsion)
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More advanced models
Strauss processes in bounded sets

Probability density w.r.t. stationary Poisson processes
=> simulation algorithm

Consider an open bounded set W ⊂ 2, a Strauss
process X in W , and a (stationary) Poisson process
XPoi in W with XPoi(W ) = 1

Then, (X ∈ A) =
∫
A f(x) (XPoi ∈ dx) for some (local)

probability density f(x) with

f(x) ∼ λn(x)γs(x)

where n(x) is the number of points of x ⊂W , and

s(x) the number of pairs x, x′ ∈ x with |x− x′| < r
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More advanced models
Strauss processes in bounded sets

MCMC simulation by spatial birth-and-death processes

a)

Initial configuration

b)

Birth of a point

c)

Birth of another point

d)

Death of a point
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Söllerhaus–Workshop, March 2006 25



More advanced models
Strauss hardcore process

1. Definition of Strauss hardcore processes:

For some λ, γ, r, R > 0 with r < R, the conditional
intensity λ(u,x) is given by

λ(u,x) =

{
0 if tr(u,x) > 0

λγtR(u,x) if tr(u,x) = 0

where ts(u,x) = #{n : |u− xn| < s}
2. Properties:

Minimal interpoint distance r (hardcore radius r/2)

(r,R) = interval of interaction distances
(attraction/clustering if γ > 1, repulsion if γ < 1)

Four-parametric model (with parameters λ, γ, r, R)
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More advanced models
Strauss hardcore processes in bounded sets

Probability density f(x) w.r.t. stationary Poisson
process in an open bounded set W ⊂ � 2:

�

(X ∈ A) =

∫

A
f(x)

�

(XPoi ∈ dx)

MCMC simulation by spatial birth-and-death processes

Initial configuration Death of a point Death of another point
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Characteristics of point processes
Intensity measure

Consider an arbitrary point process {X1, X2, . . .} ⊂
� 2

Intensity measure Λ(B) = X(B)

Stationary case Λ(B) = λ|B|, where λ = intensity

λ = 0.01 λ = 0.1
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Characteristics of point processes
Factorial moment measure; product density

Consider the second-order factorial moment measure
α(2) : B(

� 2)⊗ B(

� 2)→ [0,∞] with

α(2)(B1 ×B2) = #{(i, j) : Xi ∈ B1, Xj ∈ B2 ∀ i 6= j}

Then
(
X(B1)X(B2)

)
= α(2)(B1 ×B2) + Λ(B1 ∩B2)

and VarX(B) = α(2)(B ×B) + Λ(B)−
(
Λ(B)

)2

Often α(2)(B1 ×B2) =
∫
B1

∫
B2
ρ(2)(u1, u2) du1 du2

ρ(2)(u1, u2) = product density

ρ(2)(u1, u2) du1 du2 ≈ probability that in each of the sets
du1, du2 there is at least one point of {Xn}

In the stationary case: ρ(2)(u1, u2) = ρ(2)(u1 − u2)
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Characteristics of motion-invariant point processes
Pair correlation function

For stationary and isotropic point processes:
ρ(2)(u1, u2) = ρ(2)(s) where s = |u1 − u2|

In the Poisson case: ρ(2)(s) = λ2

Pair correlation function: g(s) = ρ(2)(s) / λ2

Examples: Poisson case: g(s) ≡ 1

whereas g(s) > (<)1 indicates clustering (repulsion)

Matern-cluster process g(s) > 1 for s ≤ 2R

Hardcore processes g(s) = 0 for s < dmin
where dmin = minimal interpoint distance
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Characteristics of motion-invariant point processes
Reduced moment measure; Ripley’s K-function

Instead of using ρ(2)(s) or g(s), we can write

α(2)(B1 ×B2) = λ2

∫

B1

K(B2 − u) du

where λ2K(B) =
∫
B ρ

(2)(x) dx

Furthermore, K(s) = K(Bs(o)) is Ripley’s K-function,
where Bs(o) = {u ∈ R2 : |u| ≤ s} for s > 0

λK(s) = mean number of points within a ball of radius s
centred at the „typical” point of {Xn}, which itself is not
counted =⇒ K = reduced moment measure

In the Poisson case: K(s) = πs2 (= |Bs(o)|)

Thus, K(s) > (<)πs2 indicates clustering (repulsion)
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Characteristics of motion-invariant point processes
Other functions

Spherical contact distribution function

H(s) = 1− �(
X(Bs(o)) = 0

)
, s > 0

Nearest-neighbor distance distribution function

D(s) = 1− lim
ε↓0

(
X(Bs(o) \ Bε(o)) = 0 | X(Bε(o)) > 0

)

The J-function is then defined by

J(s) =
1−D(s)

1−H(s)
for any s > 0 with H(s) < 1

In the Poisson case: J(s) ≡ 1

whereas J(s) > (<)1 indicates clustering (repulsion)
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Estimation of model characteristics
Intensity

Suppose that
the point process {Xn} is stationary with intensity λ

and can be observed in the bounded sampling
window W ⊂ 2

Then, λ̂ = X(W )/|W | is a natural estimator for λ

Properties:

λ̂ is unbiased, i.e., λ̂ = λ

If {Xn} is ergodic, then λ̂→ λ with probability 1

(as |W | → ∞), i.e. λ̂ is strongly consistent
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Söllerhaus–Workshop, March 2006 33



Estimation of model characteristics
K-function

Recall that λK(s) = mean number of points within a ball of
radius s centered at the „typical” point of {Xn}, which itself
is not counted

Edge effects occurring in the estimation of λK(r)
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Estimation of model characteristics
K-function

Therefore, estimation of λ2K(s) =
∫
Bs(o)

ρ(2)(x) dx

by „weighted” average

Edge-corrected estimator for λ2K(s):

λ̂2K(s) =
∑

Xi,Xj∈W,i 6=j

1(|Xi −Xj | < s)

|(W +Xi) ∩ (W +Xj)|

Notice that λ̂2K(s) is unbiased, i.e., λ̂2K(s) = λ2K(s)

=> Edge-corrected estimator for K(s):

K̂(s) =
1

λ̂2

∑

Xi,Xj∈W, i6=j

1(|Xi −Xj | < s)

|(W +Xi) ∩ (W +Xj)|

where λ̂2 = X(W )(X(W )− 1)/|W |

Söllerhaus–Workshop, March 2006 35



Estimation of model characteristics
K-function

Therefore, estimation of λ2K(s) =
∫
Bs(o)

ρ(2)(x) dx

by „weighted” average

Edge-corrected estimator for λ2K(s):

λ̂2K(s) =
∑

Xi,Xj∈W,i6=j

1(|Xi −Xj | < s)

|(W +Xi) ∩ (W +Xj)|

Notice that λ̂2K(s) is unbiased, i.e., λ̂2K(s) = λ2K(s)

=> Edge-corrected estimator for K(s):

K̂(s) =
1

λ̂2

∑

Xi,Xj∈W, i6=j

1(|Xi −Xj | < s)

|(W +Xi) ∩ (W +Xj)|

where λ̂2 = X(W )(X(W )− 1)/|W |
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Estimation of model characteristics
Further edge-corrected estimators

Product density ρ(2)(s):

ρ̂(2)(s) =
1

2πr

∑

Xi,Xj∈W, i6=j

k(|Xi −Xj | − s)
|(W + Xi) ∩ (W +Xj)|

where k :

� → �

is some kernel function.

Pair correlation function g(s):

ĝ(s) = ρ̂(2)(s)/λ̂2

where λ̂2 = X(W )(X(W )− 1)/|W |
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Estimation of model characteristics
Further edge-corrected estimators

Spherical contact distribution function Ĥ(s):

Ĥ(s) =
|W 	Bs(o) ∪

⋃
Xn∈W Bs(Xn)|

|W 	Bs(o)|

Nearest-neighbor distance distribution function D̂(s):

D̂(s) =
∑

Xn∈W

1(Xn ∈W 	Bd(Xn)(o)) 1(d(Xn) < s)

|W 	Bd(Xn)(o)|

where d(Xn) is the distance from Xn to its nearest
neighbor
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Maximum pseudolikelihood estimation
Berman-Turner device

Suppose that
{Xn} is a Gibbs process with conditional intensity
λθ(u,x) which depends on some parameter θ

and that the realization x = {x1, . . . , xn} ⊂W of {Xn}
is observed

Consider the pseudolikelihood

PL(θ; x) =
n∏

i=1

λθ(xi,x) exp
(
−
∫

W
λθ(u,x) du

)

The maximum pseudolikelihood estimate θ̂ of θ is the
value which maximizes PL(θ; x)
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Maximum pseudolikelihood estimation
Berman-Turner device

To determine the maximum θ̂, discretise the integral
∫

W
λθ(u,x) du ≈

m∑

j=1

wjλθ(uj ,x)

where uj ∈W are „quadrature points” and wj ≥ 0 the
associated „quadrature weights”

The Berman-Turner device involves choosing a set of
quadrature points {uj}

which includes all the data points xj as well as some
„dummy” points

Let zj = 1 if uj is a data point, and zj = 0 if uj is a
dummy point
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Maximum pseudolikelihood estimation
Berman-Turner device

Then

log PL(θ; x) =
m∑

j=1

(
zj log λθ(uj ,x)− wjλθ(uj ,x)

)

=

m∑

j=1

wj(yj log λj − λj)

where yj = zj/wj and λj = λθ(uj ,x)

This is the log likelihood of m independent Poisson
random variables Yj with means λj and responses yj.

Thus, standard statistical software for fitting
generalized linear models can be used to compute θ̂
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zj log λθ(uj ,x)− wjλθ(uj ,x)

)

=

m∑

j=1

wj(yj log λj − λj)

where yj = zj/wj and λj = λθ(uj ,x)

This is the log likelihood of m independent Poisson
random variables Yj with means λj and responses yj.

Thus, standard statistical software for fitting
generalized linear models can be used to compute θ̂
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