Random Point Processes

Models, Characteristics and Structural Properties

Volker Schmidt

Department of Stochastics University of Ulm

Introduction Aims

- 1. Explain some basic ideas for stochastic modelling of spatial point patterns
 - stationarity (homogeneity) vs. spatial trends
 - isotropy (rotational invariance)
 - complete spatial randomness
 - interaction between points (clustering, repulsion)

Introduction Aims

- 1. Explain some basic ideas for stochastic modelling of spatial point patterns
 - stationarity (homogeneity) vs. spatial trends
 - isotropy (rotational invariance)
 - complete spatial randomness
 - interaction between points (clustering, repulsion)
- 2. Describe some basic characteristics of point-process models
 - Intensity measure, conditional intensities
 - Pair correlation function, Ripley's K-function, etc.

Introduction Aims

- 1. Explain some basic ideas for stochastic modelling of spatial point patterns
 - stationarity (homogeneity) vs. spatial trends
 - isotropy (rotational invariance)
 - complete spatial randomness
 - interaction between points (clustering, repulsion)
- 2. Describe some basic characteristics of point-process models
 - Intensity measure, conditional intensities
 - Pair correlation function, Ripley's K-function, etc.
- 3. Present techniques for the statistical analysis of spatial point patterns

1. Examples of spatial point patterns

- 1. Examples of spatial point patterns
 - point patterns in networks

- 1. Examples of spatial point patterns
 - point patterns in networks
 - other point patterns

- 1. Examples of spatial point patterns
 - point patterns in networks
 - other point patterns
- 2. Models for spatial point patterns

- 1. Examples of spatial point patterns
 - point patterns in networks
 - other point patterns
- 2. Models for spatial point patterns
 - Poisson point processes

- 1. Examples of spatial point patterns
 - point patterns in networks
 - other point patterns
- 2. Models for spatial point patterns
 - Poisson point processes
 - Cluster and hard—core processes

- 1. Examples of spatial point patterns
 - point patterns in networks
 - other point patterns
- 2. Models for spatial point patterns
 - Poisson point processes
 - Cluster and hard—core processes
 - Gibbs point processes

- 1. Examples of spatial point patterns
 - point patterns in networks
 - other point patterns
- 2. Models for spatial point patterns
 - Poisson point processes
 - Cluster and hard—core processes
 - Gibbs point processes
- 3. Characteristics of point processes

- 1. Examples of spatial point patterns
 - point patterns in networks
 - other point patterns
- 2. Models for spatial point patterns
 - Poisson point processes
 - Cluster and hard—core processes
 - Gibbs point processes
- 3. Characteristics of point processes
- 4. Some statistical issues

- 1. Examples of spatial point patterns
 - point patterns in networks
 - other point patterns
- 2. Models for spatial point patterns
 - Poisson point processes
 - Cluster and hard—core processes
 - Gibbs point processes
- 3. Characteristics of point processes
- 4. Some statistical issues
 - Nonparametric estimation of model characteristics

- 1. Examples of spatial point patterns
 - point patterns in networks
 - other point patterns
- 2. Models for spatial point patterns
 - Poisson point processes
 - Cluster and hard—core processes
 - Gibbs point processes
- 3. Characteristics of point processes
- 4. Some statistical issues
 - Nonparametric estimation of model characteristics
 - Maximum pseudolikelihood estimation

Examples *Point patterns in networks*

Street system of Paris

Cytoskeleton of a leukemia cell

Examples Random tessellations

Poisson line (PLT)

Poisson-Voronoi (PVT)

Poisson-Delaunay (PDT)

Simple and iterated tessellation models

Examples *Model fitting for network data*

Model fitting for telecommunication networks

Examples Analysis of biological networks

a) Actin network at the cell periphery

b) Lamellipodium

c) Region behind lamellipodia

Actin filament networks

Examples Analysis of biological networks

SEM image (keratin)

Graph structure

(PVT/PLT)

Model fitting for keratin and actin networks

SEM image (actin)

Graph structure

Tessellation model

(PLT/PDT)

Other examples Modelling of tropical storm tracks

Storm tracks of cyclons over Japan 1945-2004

Estimated intensity field for initial points of storm tracks over Japan

Other examples Point patterns in biological cell nuclei

Heterochromatin structures in interphase nuclei

3D-reconstruction of NB4 cell nuclei (DNA shown in gray levels) and centromere distributions (shown in red)

Other examples Point patterns in biological cell nuclei

Projections of the 3D chromocenter distributions of an undifferentiated (left) NB4 cell and a differentiated (right) NB4 cell onto the xy-plane

Other examples Point patterns in biological cell nuclei

Capsides of cytomegalovirus

Extracted point pattern

Model for a point field (cluster)

- 1. Mathematical definition of spatial point processes
 - Let $\{X_1, X_2, ...\}$ be a sequence of random vectors with values in \mathbb{R}^2 and
 - let $X(B) = \#\{n : X_n \in B\}$ denote the number of "points" X_n located in a set $B \subset \mathbb{R}^2$.

- 1. Mathematical definition of spatial point processes
 - Let $\{X_1, X_2, ...\}$ be a sequence of random vectors with values in \mathbb{R}^2 and
 - let $X(B) = \#\{n : X_n \in B\}$ denote the number of "points" X_n located in a set $B \subset \mathbb{R}^2$.
 - If $X(B) < \infty$ for each bounded set $B \subset \mathbb{R}^2$, then $\{X_1, X_2, ...\}$ is called a random point process.

- 1. Mathematical definition of spatial point processes
 - Let $\{X_1, X_2, ...\}$ be a sequence of random vectors with values in \mathbb{R}^2 and
 - let $X(B) = \#\{n : X_n \in B\}$ denote the number of "points" X_n located in a set $B \subset \mathbb{R}^2$.
 - If $X(B) < \infty$ for each bounded set $B \subset \mathbb{R}^2$, then $\{X_1, X_2, ...\}$ is called a random point process.
- 2. A point process $\{X_1, X_2, ...\}$ is called
 - stationary (homogeneous) if the distribution of {X₁, X₂, ...} is invariant w.r.t translations of the origin,
 i.e. {X_n} ^d = {X_n − u} ∀u ∈ ℝ²

- 1. Mathematical definition of spatial point processes
 - Let $\{X_1, X_2, ...\}$ be a sequence of random vectors with values in \mathbb{R}^2 and
 - let $X(B) = \#\{n : X_n \in B\}$ denote the number of "points" X_n located in a set $B \subset \mathbb{R}^2$.
 - If $X(B) < \infty$ for each bounded set $B \subset \mathbb{R}^2$, then $\{X_1, X_2, ...\}$ is called a random point process.
- 2. A point process $\{X_1, X_2, ...\}$ is called
 - stationary (homogeneous) if the distribution of {X₁, X₂, ...} is invariant w.r.t translations of the origin,
 i.e. {X_n} = {X_n - u} $\forall u \in \mathbb{R}^2$
 - isotropic if the distribution of $\{X_n\}$ is invariant w.r.t rotations around the origin

1. Stochastic model vs. single realization

- 1. Stochastic model vs. single realization
 - Point processes are mathematical models

- 1. Stochastic model vs. single realization
 - Point processes are mathematical models
 - Observed point patterns are their realizations

- 1. Stochastic model vs. single realization
 - Point processes are mathematical models
 - Observed point patterns are their realizations
- 2. Some further remarks
 - Equivalent notions: point field instead of spatial point process

- 1. Stochastic model vs. single realization
 - Point processes are mathematical models
 - Observed point patterns are their realizations
- 2. Some further remarks
 - Equivalent notions: point field instead of spatial point process
 - Point processes are not necessarily dynamic

- 1. Stochastic model vs. single realization
 - Point processes are mathematical models
 - Observed point patterns are their realizations
- 2. Some further remarks
 - Equivalent notions: point field instead of spatial point process
 - Point processes are not necessarily dynamic
 - Dynamics (w.r.t. time/space) can be added => spatial birth-and-death processes

Models Stationary Poisson process

- 1. Definition of stationary Poisson processes
 - Poisson distribution of point counts: $X(B) \sim \operatorname{Poi}(\lambda |B|) \text{ for any bounded } B \subset \mathbb{R}^2 \text{ and some}$ $\lambda > 0$

Models Stationary Poisson process

- 1. Definition of stationary Poisson processes
 - Poisson distribution of point counts: $X(B) \sim \operatorname{Poi}(\lambda |B|) \text{ for any bounded } B \subset \mathbb{R}^2 \text{ and some}$ $\lambda > 0$
 - Independent scattering of points: the point counts $X(B_1), \ldots, X(B_n)$ are independent random variables for any pairwise disjoint sets $B_1, \ldots, B_n \subset \mathbb{R}^2$
- 1. Definition of stationary Poisson processes
 - Poisson distribution of point counts: $X(B) \sim \operatorname{Poi}(\lambda |B|) \text{ for any bounded } B \subset \mathbb{R}^2 \text{ and some}$ $\lambda > 0$
 - Independent scattering of points: the point counts $X(B_1), \ldots, X(B_n)$ are independent random variables for any pairwise disjoint sets $B_1, \ldots, B_n \subset \mathbb{R}^2$
- 2. Basic properties
 - $\mathbb{E}X(B) = \lambda |B| \Longrightarrow \lambda = \text{intensity of points}$
 - Void–probabilities: $\mathbb{P}(X(B) = 0) = \exp(-\lambda |B|)$

- 1. Definition of stationary Poisson processes
 - Poisson distribution of point counts: $X(B) \sim \operatorname{Poi}(\lambda |B|) \text{ for any bounded } B \subset \mathbb{R}^2 \text{ and some}$ $\lambda > 0$
 - Independent scattering of points: the point counts $X(B_1), \ldots, X(B_n)$ are independent random variables for any pairwise disjoint sets $B_1, \ldots, B_n \subset \mathbb{R}^2$
- 2. Basic properties
 - $\mathbb{E}X(B) = \lambda |B| \Longrightarrow \lambda = \text{intensity of points}$
 - Void–probabilities: $\mathbb{P}(X(B) = 0) = \exp(-\lambda |B|)$
 - Conditional uniformity: Given X(B) = n, the locations of the n points in B are independent and uniformly distributed random variables

Simulated realization of a stationary Poisson process

Simulated realization of a stationary Poisson process

convincingly shows

Complete spatial randomness

Simulated realization of a stationary Poisson process

convincingly shows

- Complete spatial randomness
- No spatial trend

Simulated realization of a stationary Poisson process

convincingly shows

Complete spatial randomness

No spatial trend

No interaction between the points

- 1. Definition of general (non-homogeneous) Poisson processes
 - Poisson distribution of point counts: $X(B) \sim \operatorname{Poi}(\Lambda(B)) \text{ for any bounded } B \subset \mathbb{R}^2 \text{ and}$ some measure $\Lambda : \mathcal{B}(\mathbb{R}^2) \to [0,\infty]$

- 1. Definition of general (non-homogeneous) Poisson processes
 - Poisson distribution of point counts: $X(B) \sim \operatorname{Poi}(\Lambda(B)) \text{ for any bounded } B \subset \mathbb{R}^2 \text{ and}$ some measure \$\Lambda : \mathcal{B}(\mathbb{R}^2) \rightarrow [0, \infty]]\$
 - Independent scattering of points: the point counts $X(B_1), \ldots, X(B_n)$ are independent random variables for any pairwise disjoint sets $B_1, \ldots, B_n \subset \mathbb{R}^2$

- 1. Definition of general (non-homogeneous) Poisson processes
 - Poisson distribution of point counts: $X(B) \sim \operatorname{Poi}(\Lambda(B)) \text{ for any bounded } B \subset \mathbb{R}^2 \text{ and}$ some measure \$\Lambda : \mathcal{B}(\mathbb{R}^2) \rightarrow [0, \infty]]\$
 - Independent scattering of points: the point counts $X(B_1), \ldots, X(B_n)$ are independent random variables for any pairwise disjoint sets $B_1, \ldots, B_n \subset \mathbb{R}^2$
- 2. Basic properties
 - $\mathbb{E}X(B) = \Lambda(B) \Longrightarrow \Lambda = \text{intensity measure}$

- 1. Definition of general (non-homogeneous) Poisson processes
 - Poisson distribution of point counts: $X(B) \sim \operatorname{Poi}(\Lambda(B)) \text{ for any bounded } B \subset \mathbb{R}^2 \text{ and}$ some measure \$\Lambda : \mathcal{B}(\mathbb{R}^2) \rightarrow [0, \infty]]\$
 - Independent scattering of points: the point counts $X(B_1), \ldots, X(B_n)$ are independent random variables for any pairwise disjoint sets $B_1, \ldots, B_n \subset \mathbb{R}^2$
- 2. Basic properties
 - $\mathbb{E}X(B) = \Lambda(B) \Longrightarrow \Lambda = \text{intensity measure}$
 - Void–probabilities: $\mathbb{P}(X(B) = 0) = \exp(-\Lambda(B))$

- 1. Definition of general (non-homogeneous) Poisson processes
 - Poisson distribution of point counts: $X(B) \sim \operatorname{Poi}(\Lambda(B)) \text{ for any bounded } B \subset \mathbb{R}^2 \text{ and}$ some measure \$\Lambda : \mathcal{B}(\mathbb{R}^2) \rightarrow [0, \infty]]\$
 - Independent scattering of points: the point counts $X(B_1), \ldots, X(B_n)$ are independent random variables for any pairwise disjoint sets $B_1, \ldots, B_n \subset \mathbb{R}^2$
- 2. Basic properties
 - $\mathbb{E}X(B) = \Lambda(B) \Longrightarrow \Lambda = \text{intensity measure}$
 - Void–probabilities: $\mathbb{P}(X(B) = 0) = \exp(-\Lambda(B))$
 - Intensity function $\lambda(x) \ge 0$ if $\Lambda(B) = \int_B \lambda(x) \, dx$

Realisation of a Poisson hardcore process

Realisation of a Poisson hardcore process

Constructed from stationary Poisson processes (by random deletion of points)

Realisation of a Poisson hardcore process

- Constructed from stationary Poisson processes (by random deletion of points)
- Realizations are relatively regular point patterns (with smaller spatial variability than in the Poisson case)

Description of the model

Start from a stationary Poisson process (with some intensity $\lambda > 0$)

- Start from a stationary Poisson process (with some intensity $\lambda > 0$)
- Cancel all those points whose distance to their nearest neighbor is smaller than some R > 0

- Start from a stationary Poisson process (with some intensity $\lambda > 0$)
- Cancel all those points whose distance to their nearest neighbor is smaller than some R > 0
- Minimal (hardcore) distance between point-pairs => R/2 = hardcore radius

- Start from a stationary Poisson process (with some intensity $\lambda > 0$)
- Cancel all those points whose distance to their nearest neighbor is smaller than some R > 0
- Minimal (hardcore) distance between point-pairs => R/2 = hardcore radius
- Spatial interaction between points (mutual repulsion)

- Start from a stationary Poisson process (with some intensity $\lambda > 0$)
- Cancel all those points whose distance to their nearest neighbor is smaller than some R > 0
- Minimal (hardcore) distance between point-pairs => R/2 = hardcore radius
- Spatial interaction between points (mutual repulsion)
- Two-parametric model (with parameters λ and R)

Realization of a Matern-cluster process

Realization of a Matern-cluster process

Constructed from stationary Poisson processes (of so-called cluster centers)

Realization of a Matern-cluster process

- Constructed from stationary Poisson processes (of so-called cluster centers)
- Realizations are clustered point patterns (with higher spatial variability than in the Poisson case)

Description of the model

Centers of clusters form a stationary Poisson process (with intensity $\lambda_0 > 0$)

- Centers of clusters form a stationary Poisson process (with intensity $\lambda_0 > 0$)
- Cluster points are within a disc of radius R > 0 (around the cluster center)

- Centers of clusters form a stationary Poisson process (with intensity $\lambda_0 > 0$)
- Cluster points are within a disc of radius R > 0 (around the cluster center)
- Inside these discs stationary Poisson processes are realized (with intensity $\lambda_1 > 0$)

- Centers of clusters form a stationary Poisson process (with intensity $\lambda_0 > 0$)
- Cluster points are within a disc of radius R > 0 (around the cluster center)
- Inside these discs stationary Poisson processes are realized (with intensity $\lambda_1 > 0$)
- Spatial interaction between points (mutual attraction, clustering of points)

- Centers of clusters form a stationary Poisson process (with intensity $\lambda_0 > 0$)
- Cluster points are within a disc of radius R > 0 (around the cluster center)
- Inside these discs stationary Poisson processes are realized (with intensity $\lambda_1 > 0$)
- Spatial interaction between points (mutual attraction, clustering of points)
- Three–parametric model (with parameters λ_0, λ_1 and R)

1. Define Gibbs processes via conditional intensities:

- 1. Define Gibbs processes via conditional intensities:
 - For each location $u \in \mathbb{R}^2$ and for each realization $\mathbf{x} = \{x_1, x_2, ...\}$ of the point process $\mathbf{X} = \{X_1, X_2, ...\}$, consider the value $\lambda(u, \mathbf{x}) \ge 0$,

- 1. Define Gibbs processes via conditional intensities:
 - For each location $u \in \mathbb{R}^2$ and for each realization $\mathbf{x} = \{x_1, x_2, ...\}$ of the point process $\mathbf{X} = \{X_1, X_2, ...\}$, consider the value $\lambda(u, \mathbf{x}) \ge 0$,
 - where $\lambda(u, \mathbf{x}) du$ is the conditional probability that **X** has a point in du, given the positions of all points $\mathbf{x} \setminus \{u\}$ of **X** outside of the infinitesimal region du

- 1. Define Gibbs processes via conditional intensities:
 - For each location $u \in \mathbb{R}^2$ and for each realization $\mathbf{x} = \{x_1, x_2, ...\}$ of the point process $\mathbf{X} = \{X_1, X_2, ...\}$, consider the value $\lambda(u, \mathbf{x}) \ge 0$,
 - where λ(u, x) du is the conditional probability that
 X has a point in du, given the positions of all points
 x \ {u} of X outside of the infinitesimal region du
- 2. Special cases
 - stationary Poisson process: $\lambda(u, \mathbf{x}) = \lambda$

- 1. Define Gibbs processes via conditional intensities:
 - For each location $u \in \mathbb{R}^2$ and for each realization $\mathbf{x} = \{x_1, x_2, ...\}$ of the point process $\mathbf{X} = \{X_1, X_2, ...\}$, consider the value $\lambda(u, \mathbf{x}) \ge 0$,
 - where λ(u, x) du is the conditional probability that
 X has a point in du, given the positions of all points
 x \ {u} of X outside of the infinitesimal region du
- 2. Special cases
 - stationary Poisson process: $\lambda(u, \mathbf{x}) = \lambda$
 - general Poisson process: $\lambda(u, \mathbf{x}) = \lambda(u)$

- 1. Define Gibbs processes via conditional intensities:
 - For each location $u \in \mathbb{R}^2$ and for each realization $\mathbf{x} = \{x_1, x_2, ...\}$ of the point process $\mathbf{X} = \{X_1, X_2, ...\}$, consider the value $\lambda(u, \mathbf{x}) \ge 0$,
 - where λ(u, x) du is the conditional probability that
 X has a point in du, given the positions of all points
 x \ {u} of X outside of the infinitesimal region du
- 2. Special cases
 - stationary Poisson process: $\lambda(u, \mathbf{x}) = \lambda$
 - general Poisson process: $\lambda(u, \mathbf{x}) = \lambda(u)$
- Stationary Strauss process $\lambda(u, \mathbf{x}) = \lambda \gamma^{t(u, \mathbf{x})}$, where $t(u, \mathbf{x}) = \#\{n : |u x_n| < r\}$ is the number of points in $\mathbf{x} = \{x_n\}$ that have a distance from u less than r

More advanced models Strauss process

3 Properties of the Strauss process with conditional intensity $\lambda(u, \mathbf{x}) = \lambda \gamma^{t(u, \mathbf{x})}$

More advanced models Strauss process

- 3 Properties of the Strauss process with conditional intensity $\lambda(u, \mathbf{x}) = \lambda \gamma^{t(u, \mathbf{x})}$
 - $\gamma \in [0,1]$ is the interaction parameter, and r > 0 the interaction radius

More advanced models Strauss process

- 3 Properties of the Strauss process with conditional intensity $\lambda(u, \mathbf{x}) = \lambda \gamma^{t(u, \mathbf{x})}$
 - $\gamma \in [0,1]$ is the interaction parameter, and r > 0 the interaction radius
 - Three-parametric model (with parameters λ, γ, r)
More advanced models Strauss process

- 3 Properties of the Strauss process with conditional intensity $\lambda(u, \mathbf{x}) = \lambda \gamma^{t(u, \mathbf{x})}$
 - $\gamma \in [0,1]$ is the interaction parameter, and r > 0 the interaction radius
 - Three-parametric model (with parameters λ, γ, r)
- 4 Special cases:
 - If $\gamma = 1$, then $\lambda(u, \mathbf{x}) = \lambda$ (Poisson process)

More advanced models Strauss process

- 3 Properties of the Strauss process with conditional intensity $\lambda(u, \mathbf{x}) = \lambda \gamma^{t(u, \mathbf{x})}$
 - $\gamma \in [0, 1]$ is the interaction parameter, and r > 0 the interaction radius
 - Three-parametric model (with parameters λ, γ, r)
- 4 Special cases:
 - If $\gamma = 1$, then $\lambda(u, \mathbf{x}) = \lambda$ (Poisson process)
 - If $\gamma = 0$, then hardcore process

$$\lambda(u, \mathbf{x}) = \begin{cases} 0 & \text{for } t(u, \mathbf{x}) > 0\\ \lambda & \text{for } t(u, \mathbf{x}) = 0 \end{cases}$$

More advanced models Strauss process

- 3 Properties of the Strauss process with conditional intensity $\lambda(u, \mathbf{x}) = \lambda \gamma^{t(u, \mathbf{x})}$
 - $\gamma \in [0, 1]$ is the interaction parameter, and r > 0 the interaction radius
 - Three-parametric model (with parameters λ, γ, r)
- 4 Special cases:
 - If $\gamma = 1$, then $\lambda(u, \mathbf{x}) = \lambda$ (Poisson process)
 - If $\gamma = 0$, then hardcore process

$$\lambda(u, \mathbf{x}) = \begin{cases} 0 & \text{for } t(u, \mathbf{x}) > 0\\ \lambda & \text{for } t(u, \mathbf{x}) = 0 \end{cases}$$

• If $0 < \gamma < 1$, then softcore process (repulsion)

Probability density w.r.t. stationary Poisson processes
=> simulation algorithm

• Consider an open bounded set $W \subset \mathbb{R}^2$, a Strauss process X in W, and a (stationary) Poisson process X_{Poi} in W with $\mathbb{E}X_{Poi}(W) = 1$

- Consider an open bounded set $W \subset \mathbb{R}^2$, a Strauss process X in W, and a (stationary) Poisson process X_{Poi} in W with $\mathbb{E}X_{Poi}(W) = 1$
- Then, $\mathbb{P}(\mathbf{X} \in A) = \int_A f(\mathbf{x}) \mathbb{P}(\mathbf{X}_{\text{Poi}} \in d\mathbf{x})$ for some (local) probability density $f(\mathbf{x})$ with

- Consider an open bounded set $W \subset \mathbb{R}^2$, a Strauss process X in W, and a (stationary) Poisson process X_{Poi} in W with $\mathbb{E}X_{Poi}(W) = 1$
- Then, $\mathbb{P}(\mathbf{X} \in A) = \int_A f(\mathbf{x}) \mathbb{P}(\mathbf{X}_{\text{Poi}} \in d\mathbf{x})$ for some (local) probability density $f(\mathbf{x})$ with

 $f(\mathbf{x}) \sim \lambda^{n(\mathbf{x})} \gamma^{s(\mathbf{x})}$

- Consider an open bounded set $W \subset \mathbb{R}^2$, a Strauss process X in W, and a (stationary) Poisson process X_{Poi} in W with $\mathbb{E}X_{Poi}(W) = 1$
- Then, $\mathbb{P}(\mathbf{X} \in A) = \int_A f(\mathbf{x}) \mathbb{P}(\mathbf{X}_{\text{Poi}} \in d\mathbf{x})$ for some (local) probability density $f(\mathbf{x})$ with

$$f(\mathbf{x}) \sim \lambda^{n(\mathbf{x})} \gamma^{s(\mathbf{x})}$$

where $n(\mathbf{x})$ is the number of points of $\mathbf{x} \subset W$, and

- Consider an open bounded set $W \subset \mathbb{R}^2$, a Strauss process X in W, and a (stationary) Poisson process X_{Poi} in W with $\mathbb{E}X_{Poi}(W) = 1$
- Then, $\mathbb{P}(\mathbf{X} \in A) = \int_A f(\mathbf{x}) \mathbb{P}(\mathbf{X}_{\text{Poi}} \in d\mathbf{x})$ for some (local) probability density $f(\mathbf{x})$ with

$$f(\mathbf{x}) \sim \lambda^{n(\mathbf{x})} \gamma^{s(\mathbf{x})}$$

where $n(\mathbf{x})$ is the number of points of $\mathbf{x} \subset W$, and

• $s(\mathbf{x})$ the number of pairs $x, x' \in \mathbf{x}$ with |x - x'| < r

1. Definition of Strauss hardcore processes:

- 1. Definition of Strauss hardcore processes:
 - For some $\lambda, \gamma, r, R > 0$ with r < R, the conditional intensity $\lambda(u, \mathbf{x})$ is given by

$$\lambda(u, \mathbf{x}) = \begin{cases} 0 & \text{if } t_r(u, \mathbf{x}) > 0\\ \lambda \gamma^{t_R(u, \mathbf{x})} & \text{if } t_r(u, \mathbf{x}) = 0 \end{cases}$$

- 1. Definition of Strauss hardcore processes:
 - For some $\lambda, \gamma, r, R > 0$ with r < R, the conditional intensity $\lambda(u, \mathbf{x})$ is given by

$$\lambda(u, \mathbf{x}) = \begin{cases} 0 & \text{if } t_r(u, \mathbf{x}) > 0\\ \lambda \gamma^{t_R(u, \mathbf{x})} & \text{if } t_r(u, \mathbf{x}) = 0 \end{cases}$$

where $t_s(u, \mathbf{x}) = \#\{n : |u - x_n| < s\}$

2. Properties:

- 1. Definition of Strauss hardcore processes:
 - For some $\lambda, \gamma, r, R > 0$ with r < R, the conditional intensity $\lambda(u, \mathbf{x})$ is given by

$$\lambda(u, \mathbf{x}) = \begin{cases} 0 & \text{if } t_r(u, \mathbf{x}) > 0\\ \lambda \gamma^{t_R(u, \mathbf{x})} & \text{if } t_r(u, \mathbf{x}) = 0 \end{cases}$$

- 2. Properties:
 - Minimal interpoint distance r (hardcore radius r/2)

- 1. Definition of Strauss hardcore processes:
 - For some $\lambda, \gamma, r, R > 0$ with r < R, the conditional intensity $\lambda(u, \mathbf{x})$ is given by

$$\lambda(u, \mathbf{x}) = \begin{cases} 0 & \text{if } t_r(u, \mathbf{x}) > 0\\ \lambda \gamma^{t_R(u, \mathbf{x})} & \text{if } t_r(u, \mathbf{x}) = 0 \end{cases}$$

- 2. Properties:
 - Minimal interpoint distance r (hardcore radius r/2)
 - (r, R) = interval of interaction distances (attraction/clustering if $\gamma > 1$, repulsion if $\gamma < 1$)

- 1. Definition of Strauss hardcore processes:
 - For some $\lambda, \gamma, r, R > 0$ with r < R, the conditional intensity $\lambda(u, \mathbf{x})$ is given by

$$\lambda(u, \mathbf{x}) = \begin{cases} 0 & \text{if } t_r(u, \mathbf{x}) > 0\\ \lambda \gamma^{t_R(u, \mathbf{x})} & \text{if } t_r(u, \mathbf{x}) = 0 \end{cases}$$

- 2. Properties:
 - Minimal interpoint distance r (hardcore radius r/2)
 - (r, R) = interval of interaction distances (attraction/clustering if $\gamma > 1$, repulsion if $\gamma < 1$)
 - Four-parametric model (with parameters λ, γ, r, R)

Probability density $f(\mathbf{x})$ w.r.t. stationary Poisson process in an open bounded set $W \subset \mathbb{R}^2$:

$$\mathbb{P}(\mathbf{X} \in A) = \int_{A} f(\mathbf{x}) \mathbb{P}(\mathbf{X}_{\text{Poi}} \in d\mathbf{x})$$

Probability density $f(\mathbf{x})$ w.r.t. stationary Poisson process in an open bounded set $W \subset \mathbb{R}^2$:

$$\mathbb{P}(\mathbf{X} \in A) = \int_{A} f(\mathbf{x}) \mathbb{P}(\mathbf{X}_{\text{Poi}} \in d\mathbf{x})$$

Probability density $f(\mathbf{x})$ w.r.t. stationary Poisson process in an open bounded set $W \subset \mathbb{R}^2$:

$$\mathbb{P}(\mathbf{X} \in A) = \int_{A} f(\mathbf{x}) \mathbb{P}(\mathbf{X}_{\text{Poi}} \in d\mathbf{x})$$

Consider an arbitrary point process $\{X_1, X_2, \ldots\} \subset \mathbb{R}^2$

Consider an arbitrary point process $\{X_1, X_2, \ldots\} \subset \mathbb{R}^2$

• Intensity measure $\Lambda(B) = \mathbb{E}X(B)$

Consider an arbitrary point process $\{X_1, X_2, \ldots\} \subset \mathbb{R}^2$

- Intensity measure $\Lambda(B) = \mathbb{E}X(B)$
- Stationary case $\Lambda(B) = \lambda |B|$, where $\lambda = \text{intensity}$

Consider an arbitrary point process $\{X_1, X_2, \ldots\} \subset \mathbb{R}^2$

- Intensity measure $\Lambda(B) = \mathbb{E}X(B)$
- Stationary case $\Lambda(B) = \lambda |B|$, where $\lambda = \text{intensity}$

• Consider the second-order factorial moment measure $\alpha^{(2)}: \mathcal{B}(\mathbb{R}^2) \otimes \mathcal{B}(\mathbb{R}^2) \to [0,\infty]$ with

- Consider the second-order factorial moment measure $\alpha^{(2)}: \mathcal{B}(\mathbb{R}^2) \otimes \mathcal{B}(\mathbb{R}^2) \to [0,\infty]$ with
 - $\alpha^{(2)}(B_1 \times B_2) = \mathbb{E} \# \{ (i,j) : X_i \in B_1, X_j \in B_2 \ \forall i \neq j \}$

- Consider the second-order factorial moment measure $\alpha^{(2)}: \mathcal{B}(\mathbb{R}^2) \otimes \mathcal{B}(\mathbb{R}^2) \to [0,\infty]$ with
 - $\alpha^{(2)}(B_1 \times B_2) = \mathbb{E} \# \{ (i,j) : X_i \in B_1, X_j \in B_2 \ \forall i \neq j \}$
- Then $\mathbb{E}(X(B_1)X(B_2)) = \alpha^{(2)}(B_1 \times B_2) + \Lambda(B_1 \cap B_2)$

- Consider the second-order factorial moment measure $\alpha^{(2)}: \mathcal{B}(\mathbb{R}^2) \otimes \mathcal{B}(\mathbb{R}^2) \to [0,\infty]$ with
 - $\alpha^{(2)}(B_1 \times B_2) = \mathbb{E} \# \{ (i,j) : X_i \in B_1, X_j \in B_2 \ \forall i \neq j \}$
- Then $\mathbb{E}(X(B_1)X(B_2)) = \alpha^{(2)}(B_1 \times B_2) + \Lambda(B_1 \cap B_2)$

and
$$\operatorname{Var} X(B) = \alpha^{(2)}(B \times B) + \Lambda(B) - (\Lambda(B))^2$$

Consider the second-order factorial moment measure \$\alpha^{(2)}: \mathcal{B}(\mathbb{R}^2) \otimes \mathbb{B}(\mathbb{R}^2) \otimes [0,\infty]]\$ with \$\alpha^{(2)}(B_1 \times B_2) = \mathbb{E} \mid \{(i,j): X_i \in B_1, X_j \in B_2 \otimes i \neq j\}\$ Then \$\mathbb{E}(X(B_1)X(B_2)) = \alpha^{(2)}(B_1 \times B_2) + \Lambda(B_1 \cap B_2)\$

and
$$\operatorname{Var} X(B) = \alpha^{(2)}(B \times B) + \Lambda(B) - (\Lambda(B))^2$$

• Often $\alpha^{(2)}(B_1 \times B_2) = \int_{B_1} \int_{B_2} \rho^{(2)}(u_1, u_2) du_1 du_2$ $\rho^{(2)}(u_1, u_2) = \text{product density}$

• Consider the second-order factorial moment measure $\alpha^{(2)}: \mathcal{B}(\mathbb{R}^2) \otimes \mathcal{B}(\mathbb{R}^2) \to [0,\infty]$ with

 $\alpha^{(2)}(B_1 \times B_2) = \mathbb{E} \# \{ (i,j) : X_i \in B_1, X_j \in B_2 \ \forall i \neq j \}$

• Then $\mathbb{E}(X(B_1)X(B_2)) = \alpha^{(2)}(B_1 \times B_2) + \Lambda(B_1 \cap B_2)$

and
$$\operatorname{Var} X(B) = \alpha^{(2)}(B \times B) + \Lambda(B) - (\Lambda(B))^2$$

- Often $\alpha^{(2)}(B_1 \times B_2) = \int_{B_1} \int_{B_2} \rho^{(2)}(u_1, u_2) du_1 du_2$ $\rho^{(2)}(u_1, u_2) = \text{product density}$
- $\rho^{(2)}(u_1, u_2) du_1 du_2 \approx$ probability that in each of the sets du_1, du_2 there is at least one point of $\{X_n\}$

- Consider the second-order factorial moment measure $\alpha^{(2)}: \mathcal{B}(\mathbb{R}^2) \otimes \mathcal{B}(\mathbb{R}^2) \to [0,\infty]$ with
 - $\alpha^{(2)}(B_1 \times B_2) = \mathbb{E} \# \{ (i, j) : X_i \in B_1, X_j \in B_2 \ \forall i \neq j \}$
- Then $\mathbb{E}(X(B_1)X(B_2)) = \alpha^{(2)}(B_1 \times B_2) + \Lambda(B_1 \cap B_2)$

and
$$\operatorname{Var} X(B) = \alpha^{(2)}(B \times B) + \Lambda(B) - (\Lambda(B))^2$$

- Often $\alpha^{(2)}(B_1 \times B_2) = \int_{B_1} \int_{B_2} \rho^{(2)}(u_1, u_2) du_1 du_2$ $\rho^{(2)}(u_1, u_2) = \text{product density}$
- $\rho^{(2)}(u_1, u_2) du_1 du_2 \approx$ probability that in each of the sets du_1, du_2 there is at least one point of $\{X_n\}$

In the stationary case:
$$\rho^{(2)}(u_1, u_2) = \rho^{(2)}(u_1 - u_2)$$

For stationary and isotropic point processes: $\rho^{(2)}(u_1, u_2) = \rho^{(2)}(s)$ where $s = |u_1 - u_2|$

• For stationary and isotropic point processes: $\rho^{(2)}(u_1, u_2) = \rho^{(2)}(s)$ where $s = |u_1 - u_2|$

In the Poisson case: $\rho^{(2)}(s) = \lambda^2$

• For stationary and isotropic point processes: $\rho^{(2)}(u_1, u_2) = \rho^{(2)}(s)$ where $s = |u_1 - u_2|$

In the Poisson case: $\rho^{(2)}(s) = \lambda^2$

• Pair correlation function: $g(s) = \rho^{(2)}(s) / \lambda^2$

• For stationary and isotropic point processes: $\rho^{(2)}(u_1, u_2) = \rho^{(2)}(s)$ where $s = |u_1 - u_2|$

In the Poisson case: $\rho^{(2)}(s) = \lambda^2$

- Pair correlation function: $g(s) = \rho^{(2)}(s) / \lambda^2$
- Examples: Poisson case: $g(s) \equiv 1$
Characteristics of motion-invariant point processes Pair correlation function

• For stationary and isotropic point processes: $\rho^{(2)}(u_1, u_2) = \rho^{(2)}(s)$ where $s = |u_1 - u_2|$

In the Poisson case: $\rho^{(2)}(s) = \lambda^2$

- Pair correlation function: $g(s) = \rho^{(2)}(s) / \lambda^2$
- **Examples:** Poisson case: $g(s) \equiv 1$

whereas g(s) > (<)1 indicates clustering (repulsion)

Characteristics of motion-invariant point processes Pair correlation function

• For stationary and isotropic point processes: $\rho^{(2)}(u_1, u_2) = \rho^{(2)}(s)$ where $s = |u_1 - u_2|$

In the Poisson case: $\rho^{(2)}(s) = \lambda^2$

- Pair correlation function: $g(s) = \rho^{(2)}(s) / \lambda^2$
- **Examples:** Poisson case: $g(s) \equiv 1$

whereas g(s) > (<)1 indicates clustering (repulsion)

Matern-cluster process g(s) > 1 for $s \leq 2R$

Characteristics of motion-invariant point processes Pair correlation function

• For stationary and isotropic point processes: $\rho^{(2)}(u_1, u_2) = \rho^{(2)}(s)$ where $s = |u_1 - u_2|$

In the Poisson case: $\rho^{(2)}(s) = \lambda^2$

- Pair correlation function: $g(s) = \rho^{(2)}(s) / \lambda^2$
- **Examples:** Poisson case: $g(s) \equiv 1$

whereas g(s) > (<)1 indicates clustering (repulsion)

- Matern-cluster process g(s) > 1 for $s \leq 2R$
- Hardcore processes g(s) = 0 for $s < d_{min}$ where d_{min} = minimal interpoint distance

Instead of using
$$\rho^{(2)}(s)$$
 or $g(s)$, we can write
 $\alpha^{(2)}(B_1 \times B_2) = \lambda^2 \int_{B_1} \mathcal{K}(B_2 - u) \, du$

where $\lambda^2 \mathcal{K}(B) = \int_B \rho^{(2)}(x) \, dx$

Instead of using
$$\rho^{(2)}(s)$$
 or $g(s)$, we can write
 $\alpha^{(2)}(B_1 \times B_2) = \lambda^2 \int_{B_1} \mathcal{K}(B_2 - u) \, du$

where $\lambda^2 \mathcal{K}(B) = \int_B \rho^{(2)}(x) dx$

• Furthermore, $K(s) = \mathcal{K}(B_s(o))$ is Ripley's K-function, where $B_s(o) = \{u \in \mathbb{R}^2 : |u| \le s\}$ for s > 0

Instead of using
$$\rho^{(2)}(s)$$
 or $g(s)$, we can write
 $\alpha^{(2)}(B_1 \times B_2) = \lambda^2 \int_{B_1} \mathcal{K}(B_2 - u) \, du$

where $\lambda^2 \mathcal{K}(B) = \int_B \rho^{(2)}(x) dx$

- Furthermore, $K(s) = \mathcal{K}(B_s(o))$ is Ripley's K-function, where $B_s(o) = \{u \in \mathbb{R}^2 : |u| \le s\}$ for s > 0
- $\lambda K(s) =$ mean number of points within a ball of radius *s* centred at the "typical" point of $\{X_n\}$, which itself is not counted $\implies \mathcal{K} =$ reduced moment measure

Instead of using
$$\rho^{(2)}(s)$$
 or $g(s)$, we can write
 $\alpha^{(2)}(B_1 \times B_2) = \lambda^2 \int_{B_1} \mathcal{K}(B_2 - u) \, du$

where $\lambda^2 \mathcal{K}(B) = \int_B \rho^{(2)}(x) dx$

- Furthermore, $K(s) = \mathcal{K}(B_s(o))$ is Ripley's K-function, where $B_s(o) = \{u \in \mathbb{R}^2 : |u| \le s\}$ for s > 0
- $\lambda K(s) =$ mean number of points within a ball of radius *s* centred at the "typical" point of $\{X_n\}$, which itself is not counted $\implies \mathcal{K} =$ reduced moment measure

• In the Poisson case:
$$K(s) = \pi s^2$$
 $(= |B_s(o)|)$

Instead of using
$$\rho^{(2)}(s)$$
 or $g(s)$, we can write
 $\alpha^{(2)}(B_1 \times B_2) = \lambda^2 \int_{B_1} \mathcal{K}(B_2 - u) \, du$

where $\lambda^2 \mathcal{K}(B) = \int_B \rho^{(2)}(x) dx$

- Furthermore, $K(s) = \mathcal{K}(B_s(o))$ is Ripley's K-function, where $B_s(o) = \{u \in \mathbb{R}^2 : |u| \le s\}$ for s > 0
- $\lambda K(s) =$ mean number of points within a ball of radius *s* centred at the "typical" point of $\{X_n\}$, which itself is not counted $\implies \mathcal{K} =$ reduced moment measure

In the Poisson case:
$$K(s) = \pi s^2$$
 $(= |B_s(o)|)$

Thus, $K(s) > (<)\pi s^2$ indicates clustering (repulsion)

Spherical contact distribution function

$$H(s) = 1 - \mathbb{P}(X(B_s(o)) = 0), \quad s > 0$$

Spherical contact distribution function

$$H(s) = 1 - \mathbb{P}(X(B_s(o)) = 0), \quad s > 0$$

Nearest-neighbor distance distribution function

$$D(s) = 1 - \lim_{\varepsilon \downarrow 0} \mathbb{P} \left(X(B_s(o) \setminus B_\varepsilon(o)) = 0 \mid X(B_\varepsilon(o)) > 0 \right)$$

Spherical contact distribution function

$$H(s) = 1 - \mathbb{P}(X(B_s(o)) = 0), \quad s > 0$$

Nearest-neighbor distance distribution function

$$D(s) = 1 - \lim_{\varepsilon \downarrow 0} \mathbb{P} \left(X(B_s(o) \setminus B_{\varepsilon}(o)) = 0 \mid X(B_{\varepsilon}(o)) > 0 \right)$$

The J-function is then defined by

$$J(s) = \frac{1 - D(s)}{1 - H(s)} \qquad \text{for any } s > 0 \text{ with } H(s) < 1$$

Spherical contact distribution function

$$H(s) = 1 - \mathbb{P}(X(B_s(o)) = 0), \quad s > 0$$

Nearest-neighbor distance distribution function

$$D(s) = 1 - \lim_{\varepsilon \downarrow 0} \mathbb{P} \left(X(B_s(o) \setminus B_{\varepsilon}(o)) = 0 \mid X(B_{\varepsilon}(o)) > 0 \right)$$

The J-function is then defined by

 $J(s) = \frac{1 - D(s)}{1 - H(s)}$ for any s > 0 with H(s) < 1

In the Poisson case:
$$J(s) \equiv 1$$

Spherical contact distribution function

$$H(s) = 1 - \mathbb{P}(X(B_s(o)) = 0), \quad s > 0$$

Nearest-neighbor distance distribution function

$$D(s) = 1 - \lim_{\varepsilon \downarrow 0} \mathbb{P} \left(X(B_s(o) \setminus B_\varepsilon(o)) = 0 \mid X(B_\varepsilon(o)) > 0 \right)$$

The J-function is then defined by

 $J(s) = \frac{1 - D(s)}{1 - H(s)} \qquad \text{for any } s > 0 \text{ with } H(s) < 1$

• In the Poisson case: $J(s) \equiv 1$

whereas J(s) > (<)1 indicates clustering (repulsion)

Suppose that

• the point process $\{X_n\}$ is stationary with intensity λ

Suppose that

- the point process $\{X_n\}$ is stationary with intensity λ
- and can be observed in the bounded sampling window $W \subset \mathbb{R}^2$

Suppose that

- the point process $\{X_n\}$ is stationary with intensity λ
- ${}^{\rameshawline}$ and can be observed in the bounded sampling window $W\subset \mathbb{R}^2$

Then, $\widehat{\lambda} = X(W)/|W|$ is a natural estimator for λ

Suppose that

- the point process $\{X_n\}$ is stationary with intensity λ
- and can be observed in the bounded sampling window $W \subset \mathbb{R}^2$

Then, $\widehat{\lambda} = X(W)/|W|$ is a natural estimator for λ

Properties:

• $\widehat{\lambda}$ is unbiased, i.e., $\mathbb{E}\widehat{\lambda} = \lambda$

Suppose that

- the point process $\{X_n\}$ is stationary with intensity λ
- and can be observed in the bounded sampling window $W \subset \mathbb{R}^2$

Then, $\widehat{\lambda} = X(W)/|W|$ is a natural estimator for λ

Properties:

- $\widehat{\lambda}$ is unbiased, i.e., $\mathbb{E}\widehat{\lambda} = \lambda$
- If $\{X_n\}$ is ergodic, then $\widehat{\lambda} \to \lambda$ with probability 1 (as $|W| \to \infty$), i.e. $\widehat{\lambda}$ is strongly consistent

Recall that $\lambda K(s)$ = mean number of points within a ball of radius *s* centered at the "typical" point of $\{X_n\}$, which itself is not counted

Recall that $\lambda K(s)$ = mean number of points within a ball of radius *s* centered at the "typical" point of $\{X_n\}$, which itself is not counted

Therefore, estimation of $\lambda^2 K(s) = \int_{B_s(o)} \rho^{(2)}(x) dx$ by "weighted" average

Therefore, estimation of $\lambda^2 K(s) = \int_{B_s(o)} \rho^{(2)}(x) dx$ by "weighted" average

• Edge-corrected estimator for $\lambda^2 K(s)$: $\widehat{\lambda^2 K(s)} = \sum_{X_i, X_j \in W, i \neq j} \frac{\mathbf{1}(|X_i - X_j| < s)}{|(W + X_i) \cap (W + X_j)|}$

Therefore, estimation of $\lambda^2 K(s) = \int_{B_s(o)} \rho^{(2)}(x) dx$ by "weighted" average

• Edge-corrected estimator for $\lambda^2 K(s)$: $\widehat{\lambda^2 K(s)} = \sum_{X_i, X_j \in W, i \neq j} \frac{1(|X_i - X_j| < s)}{|(W + X_i) \cap (W + X_j)|}$

• Notice that $\widehat{\lambda^2 K(s)}$ is unbiased, i.e., $\mathbb{E}\widehat{\lambda^2 K(s)} = \lambda^2 K(s)$

- Therefore, estimation of $\lambda^2 K(s) = \int_{B_s(o)} \rho^{(2)}(x) dx$ by "weighted" average
- Edge-corrected estimator for $\lambda^2 K(s)$: $\widehat{\lambda^2 K(s)} = \sum_{X_i, X_j \in W, i \neq j} \frac{1(|X_i - X_j| < s)}{|(W + X_i) \cap (W + X_j)|}$
- Notice that $\widehat{\lambda^2 K(s)}$ is unbiased, i.e., $\mathbb{E}\widehat{\lambda^2 K(s)} = \lambda^2 K(s)$
 - $\Rightarrow \quad \text{Edge-corrected estimator for } K(s):$ $\widehat{K(s)} = \frac{1}{\widehat{\lambda^2}} \sum_{X_i, X_j \in W, \ i \neq j} \frac{\mathbf{1}(|X_i X_j| < s)}{|(W + X_i) \cap (W + X_j)|}$

where
$$\widehat{\lambda^2} = X(W)(X(W) - 1)/|W|$$

• Product density $\rho^{(2)}(s)$:

$$\widehat{\rho}^{(2)}(s) = \frac{1}{2\pi r} \sum_{X_i, X_j \in W, \ i \neq j} \frac{k(|X_i - X_j| - s)}{|(W + X_i) \cap (W + X_j)|}$$

where $k : \mathbb{R} \to \mathbb{R}$ is some kernel function.

• Product density $\rho^{(2)}(s)$:

$$\widehat{\rho}^{(2)}(s) = \frac{1}{2\pi r} \sum_{X_i, X_j \in W, \ i \neq j} \frac{k(|X_i - X_j| - s)}{|(W + X_i) \cap (W + X_j)|}$$

where $k : \mathbb{R} \to \mathbb{R}$ is some kernel function.

Pair correlation function g(s):

$$\widehat{g}(s) = \widehat{\rho}^{(2)}(s) / \widehat{\lambda}^2$$

Product density $\rho^{(2)}(s)$:

$$\widehat{\rho}^{(2)}(s) = \frac{1}{2\pi r} \sum_{X_i, X_j \in W, \ i \neq j} \frac{k(|X_i - X_j| - s)}{|(W + X_i) \cap (W + X_j)|}$$

where $k : \mathbb{R} \to \mathbb{R}$ is some kernel function.

Pair correlation function g(s):

$$\widehat{g}(s) = \widehat{\rho}^{(2)}(s) / \widehat{\lambda}^2$$

where $\widehat{\lambda^2} = X(W)(X(W) - 1)/|W|$

Spherical contact distribution function $\widehat{H}(s)$:

$$\widehat{H}(s) = \frac{|W \ominus B_s(o) \cup \bigcup_{X_n \in W} B_s(X_n)|}{|W \ominus B_s(o)|}$$

Spherical contact distribution function $\widehat{H}(s)$:

$$\widehat{H}(s) = \frac{|W \ominus B_s(o) \cup \bigcup_{X_n \in W} B_s(X_n)|}{|W \ominus B_s(o)|}$$

• Nearest-neighbor distance distribution function $\widehat{D}(s)$: $\widehat{D}(s) = \sum_{X_n \in W} \frac{\mathbf{1}(X_n \in W \ominus B_{d(X_n)}(o)) \mathbf{1}(d(X_n) < s)}{|W \ominus B_{d(X_n)}(o)|}$

Spherical contact distribution function $\widehat{H}(s)$:

$$\widehat{H}(s) = \frac{|W \ominus B_s(o) \cup \bigcup_{X_n \in W} B_s(X_n)|}{|W \ominus B_s(o)|}$$

• Nearest-neighbor distance distribution function $\widehat{D}(s)$: $\widehat{D}(s) = \sum_{X_n \in W} \frac{\mathbf{1}(X_n \in W \ominus B_{d(X_n)}(o)) \mathbf{1}(d(X_n) < s)}{|W \ominus B_{d(X_n)}(o)|}$

where $d(X_n)$ is the distance from X_n to its nearest neighbor

Suppose that

• $\{X_n\}$ is a Gibbs process with conditional intensity $\lambda_{\theta}(u, \mathbf{x})$ which depends on some parameter θ

Suppose that

- $\{X_n\}$ is a Gibbs process with conditional intensity $\lambda_{\theta}(u, \mathbf{x})$ which depends on some parameter θ
- And that the realization $x = \{x_1, \ldots, x_n\} ⊂ W$ of $\{X_n\}$ is observed

Suppose that

- $\{X_n\}$ is a Gibbs process with conditional intensity $\lambda_{\theta}(u, \mathbf{x})$ which depends on some parameter θ
- In and that the realization $\mathbf{x} = \{x_1, \ldots, x_n\} \subset W$ of $\{X_n\}$ is observed
- Consider the pseudolikelihood

$$PL(\theta; \mathbf{x}) = \prod_{i=1}^{n} \lambda_{\theta}(x_i, \mathbf{x}) \exp\left(-\int_{W} \lambda_{\theta}(u, \mathbf{x}) \, du\right)$$

Suppose that

- $\{X_n\}$ is a Gibbs process with conditional intensity $\lambda_{\theta}(u, \mathbf{x})$ which depends on some parameter θ
- In and that the realization $x = \{x_1, \ldots, x_n\} ⊂ W$ of $\{X_n\}$ is observed
- Consider the pseudolikelihood

$$PL(\theta; \mathbf{x}) = \prod_{i=1}^{n} \lambda_{\theta}(x_i, \mathbf{x}) \exp\left(-\int_{W} \lambda_{\theta}(u, \mathbf{x}) \, du\right)$$

The maximum pseudolikelihood estimate $\hat{\theta}$ of θ is the value which maximizes $PL(\theta; \mathbf{x})$

To determine the maximum $\hat{\theta}$, discretise the integral

$$\int_{W} \lambda_{\theta}(u, \mathbf{x}) \, du \approx \sum_{j=1}^{m} w_j \lambda_{\theta}(u_j, \mathbf{x})$$

To determine the maximum $\hat{\theta}$, discretise the integral

$$\int_{W} \lambda_{\theta}(u, \mathbf{x}) \, du \approx \sum_{j=1}^{m} w_j \lambda_{\theta}(u_j, \mathbf{x})$$

where $u_j \in W$ are "quadrature points" and $w_j \ge 0$ the associated "quadrature weights"
To determine the maximum $\hat{\theta}$, discretise the integral

$$\int_{W} \lambda_{\theta}(u, \mathbf{x}) \, du \approx \sum_{j=1}^{m} w_j \lambda_{\theta}(u_j, \mathbf{x})$$

where $u_j \in W$ are "quadrature points" and $w_j \ge 0$ the associated "quadrature weights"

The Berman-Turner device involves choosing a set of quadrature points $\{u_j\}$

To determine the maximum $\hat{\theta}$, discretise the integral

$$\int_{W} \lambda_{\theta}(u, \mathbf{x}) \, du \approx \sum_{j=1}^{m} w_j \lambda_{\theta}(u_j, \mathbf{x})$$

where $u_j \in W$ are "quadrature points" and $w_j \ge 0$ the associated "quadrature weights"

- The Berman-Turner device involves choosing a set of quadrature points $\{u_j\}$
 - which includes all the data points x_j as well as some "dummy" points

To determine the maximum $\hat{\theta}$, discretise the integral

$$\int_{W} \lambda_{\theta}(u, \mathbf{x}) \, du \approx \sum_{j=1}^{m} w_j \lambda_{\theta}(u_j, \mathbf{x})$$

where $u_j \in W$ are "quadrature points" and $w_j \ge 0$ the associated "quadrature weights"

- The Berman-Turner device involves choosing a set of quadrature points $\{u_j\}$
 - which includes all the data points x_j as well as some "dummy" points
 - Let $z_j = 1$ if u_j is a data point, and $z_j = 0$ if u_j is a dummy point

Then

$$\log PL(\theta; \mathbf{x}) = \sum_{j=1}^{m} \left(z_j \log \lambda_{\theta}(u_j, \mathbf{x}) - w_j \lambda_{\theta}(u_j, \mathbf{x}) \right)$$
$$= \sum_{j=1}^{m} w_j (y_j \log \lambda_j - \lambda_j)$$

where $y_j = z_j/w_j$ and $\lambda_j = \lambda_{\theta}(u_j, \mathbf{x})$

Then

$$\log PL(\theta; \mathbf{x}) = \sum_{j=1}^{m} \left(z_j \log \lambda_{\theta}(u_j, \mathbf{x}) - w_j \lambda_{\theta}(u_j, \mathbf{x}) \right)$$
$$= \sum_{j=1}^{m} w_j (y_j \log \lambda_j - \lambda_j)$$

where $y_j = z_j/w_j$ and $\lambda_j = \lambda_{\theta}(u_j, \mathbf{x})$

This is the log likelihood of m independent Poisson random variables Y_j with means λ_j and responses y_j .

Then

$$\log PL(\theta; \mathbf{x}) = \sum_{j=1}^{m} \left(z_j \log \lambda_{\theta}(u_j, \mathbf{x}) - w_j \lambda_{\theta}(u_j, \mathbf{x}) \right)$$
$$= \sum_{j=1}^{m} w_j (y_j \log \lambda_j - \lambda_j)$$

where $y_j = z_j/w_j$ and $\lambda_j = \lambda_{\theta}(u_j, \mathbf{x})$

- This is the log likelihood of m independent Poisson random variables Y_j with means λ_j and responses y_j .
- Thus, standard statistical software for fitting generalized linear models can be used to compute $\hat{\theta}$

References

- A. Baddeley, P. Gregori, J. Mateu, R. Stoica, D. Stoyan (eds.): *Case Studies in Spatial Point Process Modeling*. Lecture Notes in Statistics 185, Springer, New York 2006.
- J. Moeller, R.P. Waagepetersen: Statistical Inference and Simulation for Spatial Point Processes. Monographs on Statistics and Applied Probability 100, Chapman and Hall, Boca Raton 2004.
- D. Stoyan, W.S. Kendall, J. Mecke: Stochastic Geometry and Its Applications (2nd ed.). J. Wiley & Sons, Chichester 1995.
- D. Stoyan, H. Stoyan: Fractals, Random Shapes and Point Fields. J. Wiley & Sons, Chichester 1994.