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Section of a gradient sinter filter made of bronze powder
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Locally scaled point processes 4

A point process X on X C 9 is a locally scaled version of a stationary
point process Xp with respect to the scale function c: ¢ — (0, 00) if to
every B € BY there exists B D B such that

c(x)=¢forallxe B
implies
XNBLex,nB.

Consequences:
Mx(x) = ¢ I\, for x € B,

E!

X

(X(b(x,r))) = EL(Xo(b(x, r/€))) if b(x,r) C B.



Locally scaled point processes: Examples
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Scale invariant versions of summary functions
for stationary point processes

T: any statistics of a stationary point process X with intensity \.
T*: corresponding scale invariant version,

T :=ToSys,
S.: scaling operator, Sex = cx, x € 9.
Example: K-function
Kx(r) = Kx-(r)
L (X (b(0, 1)) = EL (X(b(o,r/¥R))) = MKx(r/ V)

Ax

with X* = S%X = /AX: point process X rescaled to unit intensity.



Scale invariant versions of summary functions

K-function
K*(r) = EL(X(b(x. r/¥/A)) = AK(£/¥/)
pair correlation function

. dK*
g (r)

L-function

L*(r) = /K*(r)Jwa = VAL(t//N)

/d g(t/(jf)\) (wa: unit sphere volume)

nearest neighbour distance distribution, aka G-function
D*(r) = PL(X(b(x,r/VX)) > 0) = D(t/V\)
spherical contact distribution, aka F-function

H:(t) = P(X(b(o,r/V\)) > 0) = Hy(t/VX)



Locally scaled summary statistics

Example: K*-function

K*() = EL(X(b(x, /V3) = EL(X(ba(x,1)))
with
ba(x,r):={y e 9:d\(x,y) <r},
da(x,y) = - VA(u)du,

[x,y]: line segment connecting x and y.
Individual K*-function
Ki(r) = Ex(X(ba(x, 1)),

averaged over a window W:

K (r) = ﬁ /W K2 (NA(dx).



Locally scaled summary statistics 9

Proposition: Let X be a locally scaled version of the unit rate point
process point process Xy with respect to the scale function c.
Assume that

c(u) = ¢ for all u € B D b(x, &r),

with B large enough to ensure that
X N b(x, &r) £ &Xo N b(x, Er).

Then
K:(r) = Ko(r).

If the scale function does not vary very much within the scaled distance r,
Ky (r) = Ko(r)

very closely.



Analysis of the bronze data
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Analysis of the bronze data
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Nearest neighbour distance distribution

D (non scaled) D* (locally scaled)

1.0
1

0.8
0.8

estimated D(r)
0.6
A
Dw(r)
0.6

0.4
0.4

0.2
0.2
1

0.0
I
0.0

0.0 0.2 0.4 0.6 0.8 0.0 0.5

Dotted lines: corresponding Poisson point process
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Analysis of the bronze data
Checking the local scaling assumption
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Division into subwindows
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Analysis of the bronze data:
Checking the local scaling assumption

13

PP-plot of the D* for the two subwindows
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Dashed lines: horizontal division of the window into two halves



Analysis of the bronze data:
Checking the local scaling assumption
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Locally scaled pair correlation function g* for the two subwindows
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Analysis of the bronze data:
Checking for second-order intensity-reweighted stationarity 15

Inhomogeneous pair correlation function ginhom for the two subwindows
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