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Seminar für Statistik, ETH Zürich
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Background

The goal of soil physics is to describe and predict the transport
of water, air and solutes through the pores between the soil
surface and the aquifer.
This is a largely unsolved problem: The pore space is not
known for applications and too complex for solving the
hydrodynamic equations (Navier-Stokes).
To some extent, continuum theory (Richards equation) is
applicable. It requires a parametrization of the relations
between saturation and pressure and between hydraulic
conductivity and pressure. These are purely empirical.

Hans Künsch, ETHZ Stochastic geometry and porous media
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Aim of the Fimotum project

The Fimotum project aims to improve the understanding of the
influence of the pore structure at the microscale on transport
properties.

It uses recent progress in imaging technology: We have
3d-binary images of two sand samples (coarse and fine). An
image consists of 8003 voxels of size (11µ)3.

It also uses progress in the numerical solution of the
Navier-Stokes equation with complicated boundary conditions
(Lattice Boltzmann method).

Hans Künsch, ETHZ Stochastic geometry and porous media



Introduction
Characteristics

Simulating pore spaces
Results

Discussion

Coarse sand image
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Permeability and water retention curve

For this measured pore space, we can compute the saturated
permeability by solving the Navier-Stokes equation.
Permeability is viscosity times flow rate divided by applied
pressure gradient. Saturated means that the pore space is
completely filled with the fluid.
With a pore network model, we can also compute the water
retention curve, i.e. saturation as a function of applied pressure
(starting with the saturated condition).

Hans Künsch, ETHZ Stochastic geometry and porous media
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Our main questions

For a better understanding, we would like to find simple
geometric characteristics of the microstructure of porous media
that determine the transport properties of the medium.

When we have candidates for such characteristics, we want to
generate artificial pore spaces with prescribed values of these
characteristics and compute the permeability and the water
retention curves for them.
As prescribed values, take those of the real sand probes and
vary them in a systemtic manner.

Hans Künsch, ETHZ Stochastic geometry and porous media
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Minkowski functionals
Other characteristics

Minkowski functionals

It is clear that transport properties of a porous medium depend
on the volume, the surface (because of friction at the solid
walls) and some measures of connectivity.

The Euler characteristic is a measure of 3d connectivity.
Because of the Crofton formula, the mean curvature is a
measure of average 2d connectivity.

Hence we use the 4 Minkowski functionals as our candidates
for the geometric characteristics. The Hadwiger theorem can
be seen as an indication that they might be sufficient.

Hans Künsch, ETHZ Stochastic geometry and porous media
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Minkowski functionals
Other characteristics

Minkowski functionals for openings

One can argue that when draining a porous medium by
increasing the suction, pores of different size are emptied at
different suctions. This means the Minkowski functionals not for
all pores, but for those with a given diameter are relevant.

Hence consider the Minkowski functionals of the morphological
openings with balls of radius r as a function of r . We call these
the Minkowski functions.

Hans Künsch, ETHZ Stochastic geometry and porous media
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Minkowski functionals
Other characteristics

Chord length

Another characteristic that might be relevant is the chord length
distribution because this also describes how frequent pores of
different width are.

In the following, we simulate pore spaces with prescribed
values for the 4 Minkowski functionals. We then use the
Minkowski functions and the chord length distribution as an
indication how different the simulated and the real pore spaces
are.

Hans Künsch, ETHZ Stochastic geometry and porous media
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Simulated annealing
Boolean models
Thresholded Gaussian models

Simulated annealing I

Assume we have m functionals F1, . . . , Fm and m real numbers
f1, . . . , fm and an observation window W . We want to generate
one or many pore spaces P ⊂ W such that

Fj(P)

vol(W )
= fj (j = 1, . . . , m).

This can be done by minimizing the cost function

J(P) =
∑

αj

∣∣∣∣ Fj(P)

vol(W )
− fj

∣∣∣∣ .

Simulated annealing is a stochastic minimization algorithm
which avoids being trapped in local minima.

Hans Künsch, ETHZ Stochastic geometry and porous media
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imulated annealing II

Simulated annealing proceeds iteratively
Choose a simple modification of P ′ = T (P) randomly (e.g.
flipping the values of two voxels).
If J(P ′) ≤ J(P), always accept the modification. Otherwise,
accept with probability

exp(−β(J(P ′)− J(P)).

Increase β and iterate.
Practical issues are the choice of the basic modifications, of the
weights αj and of the speed with which we increase β with the
number of iterations.

Hans Künsch, ETHZ Stochastic geometry and porous media
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Simulated annealing III

In theory, with an appropriate choice of β →∞, we end up
sampling from the uniform distribution on the set {P; J(P) = 0}.

In the literature, successes with simulated annealing are
reported. Our own experience is less positive. If we match only
the Minkowski functionals, we often obtain strange
“non-stationary” P. Using additional functionals, we have
problems with convergence even though we worked only in 2d .

Hans Künsch, ETHZ Stochastic geometry and porous media
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Boolean models I

For Boolean models, we can express the four (specific)
Minkowski functionals in terms of the intensity of the germs and
the 3 expected Minkowski functionals of the typical convex
grain. (Davy 1978, Mecke 2000). Moreover, this relation is
invertible.

Hence we need to construct grain distributions with prescribed
values of the expected Minkowski functionals.

Hans Künsch, ETHZ Stochastic geometry and porous media
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Boolean models II

We use the Boolean model for the solid phase and choose
ellipsoids for the grains. For a fast algorithm there are at least
two possibilities:
Choose ellipsoids where two half axes are the same, and take
the two different half axes to be independent (Arns et al., 2003).
Choose ellipsoids of the form Z · E0 where E0 is fixed and Z is
random (our solution).
Open questions: Can we obtain all possible specific Minkowski
functionals with ellipsoid grains ? How do we obtain the “least
eccentric” grains?

Hans Künsch, ETHZ Stochastic geometry and porous media
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Thresholded Gaussian models

Consider a Gaussian stationary and isotropic random field
(Z (x)) with correlation function ρ and the thresholded binary
field

Ξ(x) = 1[a,b](Z (x)).

Results of Adler show that the four specific Minkowski
functionals depend only on the thresholds a, b and the second
derivative of ρ at the origin. Hence we can obtain in this way
only a 3d subset of the 4d space of all specific Minkowski
functionals. By chance (?) the values of the real sand images
are very close to this 3d subset.

Hans Künsch, ETHZ Stochastic geometry and porous media
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Real sand
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Boolean model, increased surface
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Gaussian model, 4 functionals matched
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Chord length distributions
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Porosity as a function of pore size
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Hans Künsch, ETHZ Stochastic geometry and porous media



Introduction
Characteristics

Simulating pore spaces
Results

Discussion

Comparing other geometric characteristics
Permeability
Water retention curves

Surface as a function of pore size
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Euler char. as a function of pore size
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Permeability for real and simulated pore spaces

Values for solid phase, relative to real sand probe

origin volume surface curvature Euler permeability
10−12 m2

model 0.92 1.0 1.0 1.0 194.6
model 1.0 1.0 1.0 1.5 162.0
model 1.0 1.0 1.0 0.5 161.3
model 1.0 1.0 1.0 1.0 149.0

real 1.0 1.0 1.0 1.0 149.0
model 1.0 1.0 2.0 1.0 148.5
model 1.0 0.75 1.0 1.0 144.9
model 1.0 1.0 0.5 1.0 143.8
model 1.0 1.2 1.0 1.0 105.8
model 1.08 1.0 1.0 1.0 79.5

Hans Künsch, ETHZ Stochastic geometry and porous media
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Water retention curves I
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Water retention curves II
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Discussion

Boolean models are not suitable for these images, even when
we are satisfied with a rough approximation. Thresholded
Gaussian models are better, but less flexible.
Minkowski functionals alone are not sufficient for transport
properties.
Can we match Minkowski functions ? Are they sufficient for
transport properties ?
How would packing of hard or soft grains with random shape
and size work ? Could we relate the properties of the grain
distribution to transport properties ?

Hans Künsch, ETHZ Stochastic geometry and porous media
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