Einführung in die statistische Testtheorie

Seminar Simulation und Bildanalyse mit Java

von Benjamin Burr und Philipp Orth

(Inhalt)

- 1. Ein erstes Beispiel
- 2. Einführung in die statistische Testtheorie
- 3. Die Gütefunktion
- 4. Gleichmäßig beste Tests (UMP-Tests)

1 Einführendes Beispiel

Problem:

- ullet Supermarkt kauft n=1000 Tomaten beim Großhändler
- Zwei verschiedene Handelsklassen, die sich im Durchschnittsgewicht und im Preis unterscheiden
- Filialleiter möchte prüfen, ob die gelieferten Tomaten der bezahlten Handelsklasse entsprechen

Intuitives Vorgehen:

- Filialleiter bestimmt das Durchschnittsgewicht, indem er das Gesamtgewicht der Tomaten durch ihre Anzahl teilt (arithmetisches Mittel)
- Bei signifikantem Abweichen vom Durchschnittsgewicht der Handelsklasse, wird er die Lieferung reklamieren

Formalisierung:

ullet Gewicht einer Tomate wird aufgefasst als Realisierung einer Zufallsvariablen X

Annahme:

- Gewicht einer Tomate ist normalverteilt
- Erwartungswert μ_0 , μ_1 entspricht dem bekannten Durchschnittsgewicht der entsprechenden Handelsklasse
- Standardabweichung $\sigma_0,\ \sigma_1$ entspricht der durchschnittlichen Abweichung vom Mittelwert
- Gewichte sind unabhängig voneinander

- 2 Einführung in die statische Testtheorie
- 2.1 Die statistische Hypothese
- 2.2 Fehlerwahrscheinlichkeiten
- 2.3 Beispiel: Alternativtest

2.1 Die statistische Hypothese

Definition (Statistische Hypothese):

Eine statistische Hypothese ist eine Annahme über die Verteilung einer Zufallsvariablen:

Annahme:
$$F_{\vartheta} \in \mathcal{D}_0 = \{F_{\vartheta} : \vartheta \in \Theta_0\}$$

Die Hypothese heißt einfach, falls $\Theta_0 = \{\vartheta_0\}, \vartheta_0 \in \Theta$, ansonsten heißt sie zusammengesetzt. Die Annahme $\vartheta \in \Theta_0$ heißt Nullhypothese und $\vartheta \in \Theta_1$ Alternativhypothese:

$$H_0: \vartheta \in \Theta_0$$
 vs. $H_1: \vartheta \in \Theta_1$

Bezug zum Beispiel

- $\mathcal{D} = \{N(\mu, \sigma^2) : \mu \in \mathbb{R}, \sigma > 0\}$
- $\bullet \ \vartheta = (\mu, \sigma^2)$
- $\Theta = \{(\mu_o, \sigma_0^2), (\mu_1, \sigma_1^2)\}$
- $F_{\vartheta}=$ Verteilungsfunktion von X in Abhängigkeit von $\vartheta=(\mu,\sigma^2)$
- $\Theta_i = \{(\mu_i, \sigma_i^2)\}$ einfache Hypothesen, i = 0, 1

Bei einem Test wird ein kritischer Bereich $K \subset \mathcal{X} (= X^n(\Omega) \subset \mathbb{R}^n)$ festgelegt mit folgender Entscheidungsvorschrift:

- $\bullet \ \mathbf{x} \in \mathbf{K} \Rightarrow$
 - H_0 ablehnen aufgrund des Tests: Entscheidung d_1
 - " ${f x}$ steht im Widerspruch zu H_0 "
- $\bullet \ \mathbf{x} \in \mathcal{X} \backslash \mathbf{K} \Rightarrow$
 - H_0 nicht verwerfen aufgrund des Tests: Entscheidung d_0
 - " ${f x}$ steht nicht im Widerspruch zu H_0 "

2.2 Fehlerwahrscheinlichkeiten

	H_0	H_1
d_0	richtig	Fehler 2.Art $\beta(\vartheta)$
d_1	Fehler 1.Art $\alpha(\vartheta)$	richtig

Ziel:

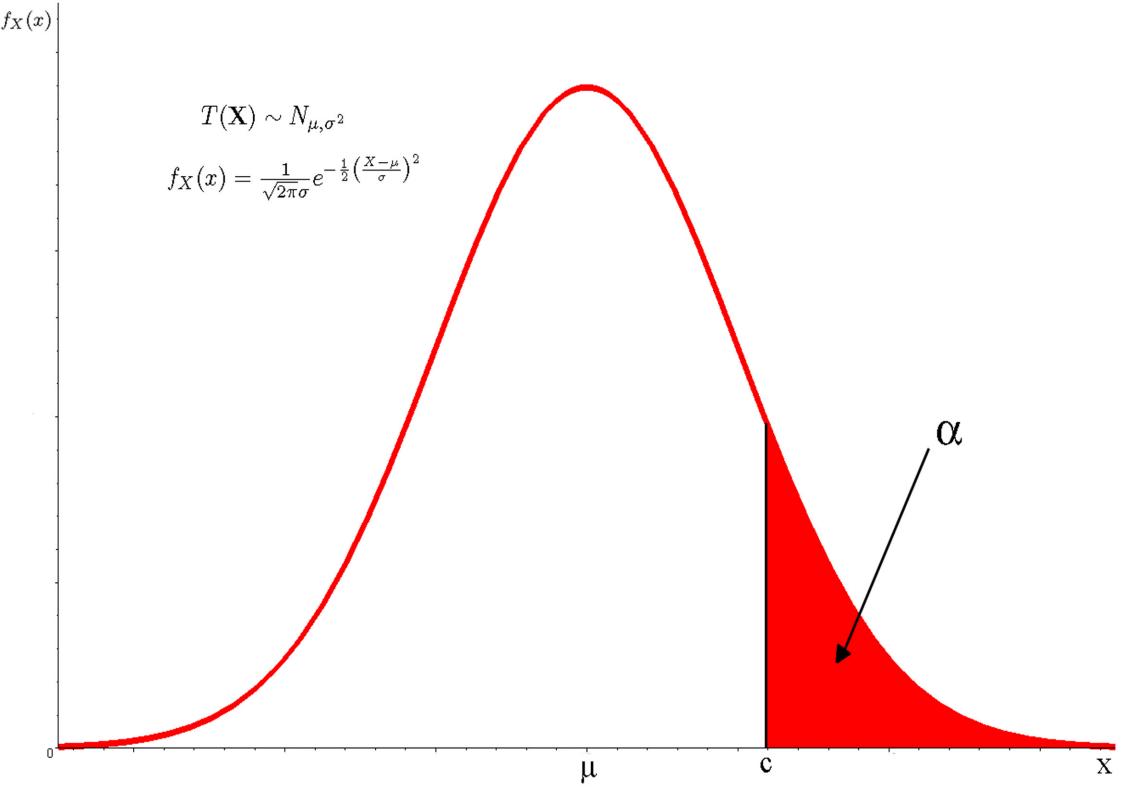
Durch geeignete Wahl von K sollen die Wahrscheinlichkeiten für Fehlentscheidungen minimiert werden:

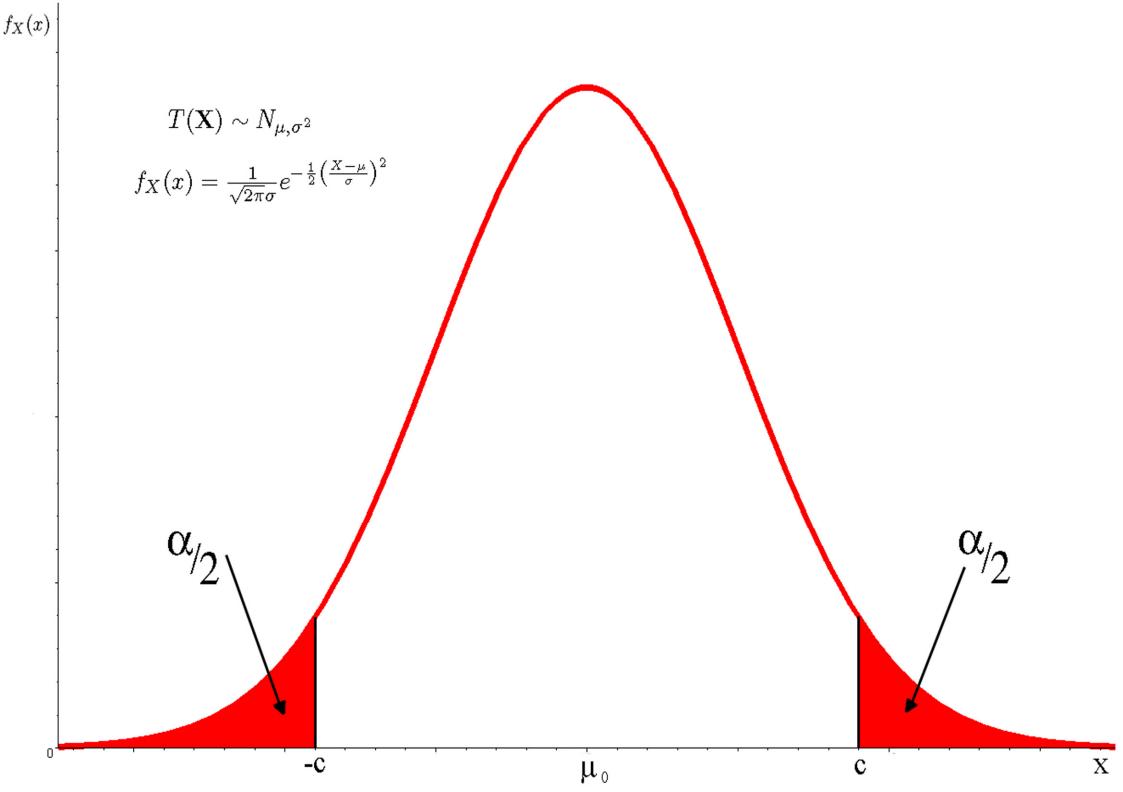
 $\alpha(\vartheta) = P_{\vartheta}(\mathbf{X} \in K), \vartheta \in \Theta_0$ Wahrscheinlichkeit für Fehler 1.Art

 $\beta(\vartheta) = P_{\vartheta}(\mathbf{X} \notin K), \vartheta \in \Theta_1$ Wahrscheinlichkeit für Fehler 2.Art

Stets soll gelten:

$$\alpha(\vartheta) \le \alpha \ \forall \vartheta \in \Theta_0$$





Vorgehen:

- 1. Gemäß einer Vermutung über den Wert von ϑ wird eine Nullhypothese H_0 und eine Alternativhypothese H_1 formuliert.
- 2. Ein Signifikanzniveau α wird festgelegt (übliche Werte sind: $\alpha=0,1;\ \alpha=0,05;\ \alpha=0,01$).
- 3. Eine Teststatistik T und ein Ablehnungsbereich K werden gewählt, so dass $\alpha(\vartheta) \leq \alpha \ \forall \vartheta \in \Theta_0$.
- 4. Daten werden erhoben und analysiert
- 5. H_0 wird zugunsten von H_1 verworfen, falls $T(\mathbf{x}) \in K$, sonst nicht.

Bemerkung:

Es besteht eine Asymmetrie in den Hypothesen H_0 , H_1 :

- Das Risiko einer Entscheidung d_1 wird kontrolliert.
- Das Risiko einer Entscheidung d_0 wird i.a. nicht kontrolliert, oft gilt:

$$\sup_{\vartheta \in \Theta_1} \beta(\vartheta) = 1 - \alpha$$

Definition (Test):

- 1. Ein (randomisierter) Test ist eine meßbare Abbildung $\varphi: \mathcal{X} \to [0,1]$, wobei $\varphi(x)$ die Wahrscheinlichkeit für die Entscheidung d_1 (Ablehnung von H_0) angibt.
- 2. Im Falle $\varphi(\mathcal{X}) = \{0, 1\}$ heißt der Test deterministisch und $K = \varphi^{-1}(1)$ Ablehnungsbereich oder kritischer Bereich.
- 3. φ heißt Test der Nullhypothese $H_0: \vartheta \in \Theta_0$ gegen $H_1: \vartheta \in \Theta_1$ zum Niveau $\alpha, \alpha \in (0,1)$, falls gilt

$$E_{\vartheta}\varphi(\mathbf{X}) \le \alpha \quad \forall \vartheta \in \Theta_0$$

Bezeichnung: $\varphi \in \Phi_{\alpha}$

Bemerkung:

• Für deterministische Tests gilt:

$$E_{\vartheta}\varphi(\mathbf{X}) = 1 \cdot P_{\vartheta}(\mathbf{X} \in K) + 0 \cdot P_{\vartheta}(\mathbf{X} \notin K)$$
$$= P_{\vartheta}(\mathbf{X} \in K) \le \alpha \quad \forall \vartheta \in \Theta_0$$

• Randomisierte Test haben häufig die Gestalt:

$$\varphi(\mathbf{x}) = \begin{cases} 1 & f\ddot{u}r & T(\mathbf{x}) > c \\ \gamma & f\ddot{u}r & T(\mathbf{x}) = c \\ 0 & f\ddot{u}r & T(\mathbf{x}) < c \end{cases}$$

2.3 Beispiel: Alternativtest

- Sei $\mathbf{X} = (X_1, ..., X_n)$ eine einfache Stichprobe zu $X \sim N(\mu, \sigma^2)$ (n = 1000 Tomaten als Stichprobe)
- Parameterbereich: $\Theta = \{\mu_0, \mu_1\}$

$$-\vartheta = \mu \quad \vartheta_0 = \mu_0 \quad \vartheta_1 = \mu_1$$

$$-\mu_0, \mu_1 \in \mathbb{R}, \quad \mu_0 < \mu_1$$

$$-0<\sigma_0^2,\sigma_1^2<\infty$$
 bekannt

•
$$\Theta_0 = \{\mu_0\}$$
 $\Theta_1 = \Theta \setminus \Theta_0 = \{\mu_1\}$

• Teststatistik:
$$T(\mathbf{X}) = T(X_1, ..., X_n) = \bar{X} = \frac{1}{n} \sum_{\nu=1}^n X_{\nu}$$

•
$$H_0: \mu = \mu_0$$
 vs. $H_1: \mu = \mu_1$

Entscheidungsvorschrift:

 H_0 ablehnen, falls $\bar{X} > c$ (c = gesuchter kritischer Wert)

Wahl von c:

- Der kritische Wert c wird nun so gewählt, dass die Wahrscheinlichkeit, die Nullhypothese H_0 fälschlicherweise zu verwerfen, maximal α sein kann.
- Man kann sich also mit $1-\alpha$ Wahrscheinlichkeit sicher sein, dass bei Verwerfung von H_0 die Entscheidung richtig ist

$$K = \{ \mathbf{x} = (x_1, ..., x_n) \in \mathbb{R}^n : \bar{x} > c \}$$

$$\varphi(\mathbf{x}) = \varphi(x_1, ..., x_n) = I_{\{\mathbf{x} \in K\}}$$

Berechnung von c:

$$P_{\vartheta_0}(\bar{X} > c) = P_{\vartheta_0}(\frac{\bar{X} - \mu_0}{\sigma_0} \sqrt{n}) > \frac{c - \mu_0}{\sigma_0} \sqrt{n})$$

$$\stackrel{N(0,1)}{=} 1 - \Phi(\frac{c - \mu_0}{\sigma_0} \sqrt{n}) \stackrel{!}{=} \alpha$$

$$\Longrightarrow z_{1-\alpha} = \frac{c - \mu_0}{\sigma_0} \sqrt{n}$$

$$\implies c = \mu_0 + z_{1-\alpha} \frac{\sigma_0}{\sqrt{n}}$$

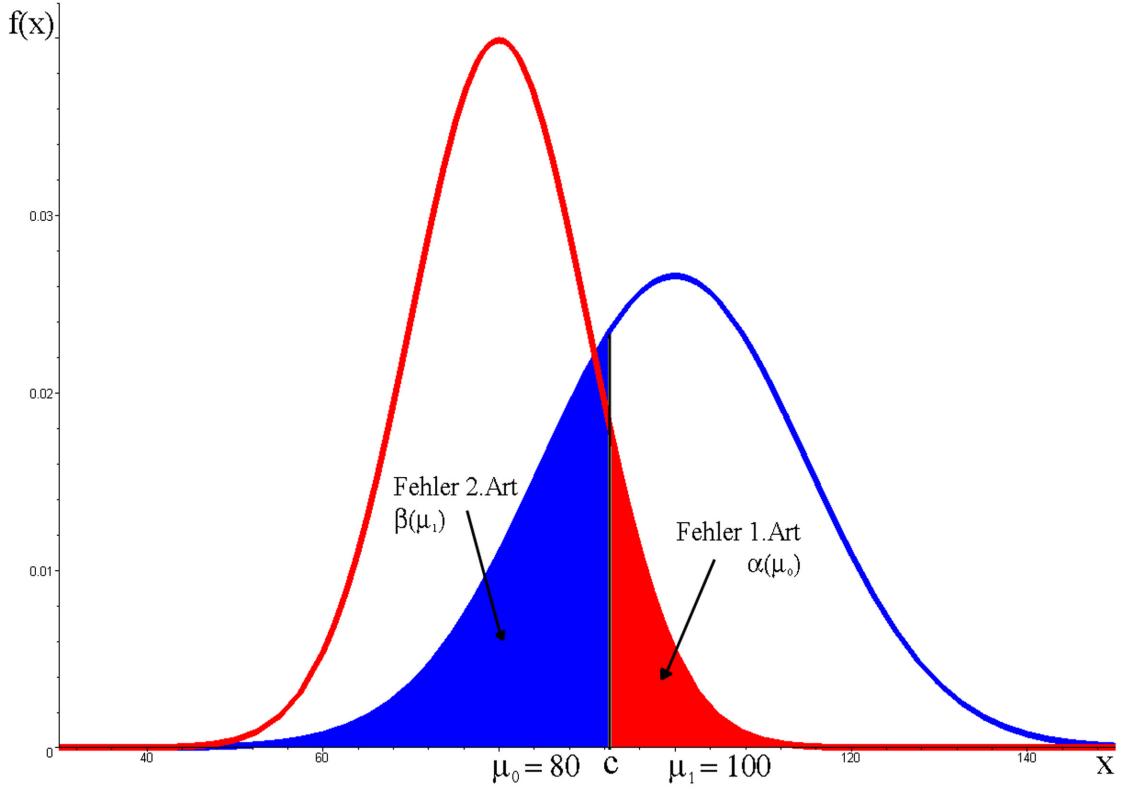
Wahrscheinlichkeit für den Fehler zweiter Art:

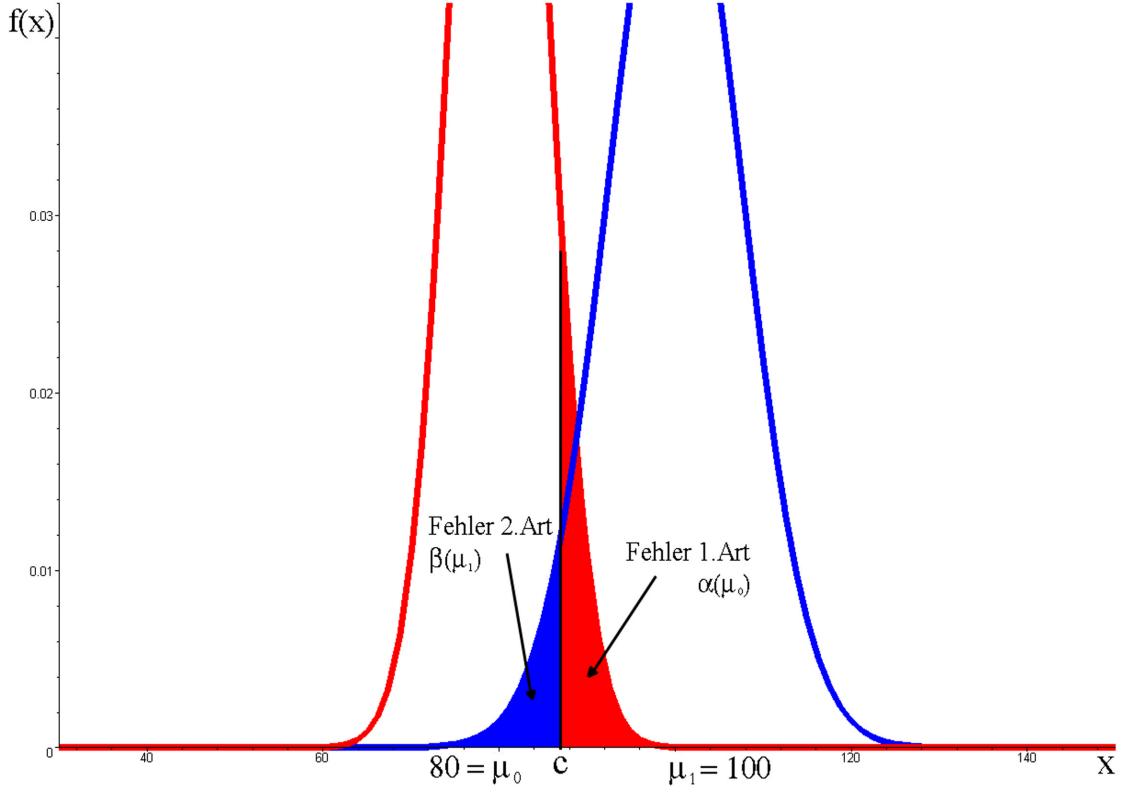
$$\beta(\vartheta_1) = P_{\vartheta_1}(\mathbf{X} \notin K) = P_{\vartheta_1}(\bar{X} \le c) = \Phi(\frac{c - \mu_1}{\sigma_1} \sqrt{n})$$

Verhalten der Fehlerwahrscheinlichkeiten:

- α klein $\rightarrow c$, $\beta(\vartheta_1)$ groß
- $n \operatorname{groß} \to \alpha(\vartheta_0), \ \beta(\vartheta_1)$ beide klein

Wie ändert sich die Dichte von \bar{X} bei wachsendem n ?





3 Die Gütefunktion

- 3 Die Gütefunktion
- 3.1 Definition
- 3.2 Beispiel: Gaußtest

3.1 Definition

Definition (Gütefunktion):

- 1. Die Funktion $G_{\varphi}: \Theta \to [0,1], \ \mathcal{G}_{\varphi}(\vartheta) = E_{\vartheta}\varphi(\mathbf{X})$ heißt Gütefunktion des Tests. Die Einschränkung auf Θ_1 heißt auch Macht (power) des Tests.
- 2. Ein Test $\varphi \in \Phi_{\alpha}$ heißt unverfälscht, falls

$$\inf_{\vartheta \in \Theta_1} \mathcal{G}_{\varphi}(\vartheta) \ge \alpha$$

3. Die Testfolge (φ_n) zum Niveau α heißt konsistent, falls

$$\lim_{n\to\infty} \mathcal{G}_{\varphi_n}(\vartheta) = 1 \quad \forall \vartheta \in \Theta_1.$$

Bemerkung:

- 1. $\mathcal{G}_{\varphi}(\vartheta)$ gibt die Wahrscheinlichkeit an, H_0 bei Vorliegen des Parameters $\vartheta \in \Theta$ abzulehnen.
- 2. Ein Test ist unverfälscht, wenn die Wahrscheinlichkeit für d_1 (Entscheidung gegen H_0) bei vorliegendem $\vartheta \in \Theta_1$ immer mindestens so groß ist wie bei vorliegendem $\vartheta \in \Theta_0$.
- 3. Die Eigenschaft der Konsistenz ist eine Minimalanforderung an eine Testfolge:
 - Die Wahrscheinlichkeit für den Fehler 2.Art konvergiert für jedes feste $\vartheta \in \Theta_1$ gegen 0.
 - ullet Mit wachsendem n soll die Entscheidung besser werden.

3.2 Beispiel Gauß-Test

- \bullet Test des Erwartungswertes ; $\sigma^2=\sigma_0^2$ bekannt
- Parameterbereich: $\Theta = \mathbb{R}$; $\vartheta = \mu \in \Theta$
- Teststatistik: $T(\mathbf{X}) = T(X_1, ..., X_n) = \bar{X}$

Verschiedene Fälle:

- $H_0: \mu = \mu_0$ vs. $H_1: \mu \neq \mu_0$
- $H_0: \mu \le \mu_0$ vs. $H_1: \mu > \mu_0$
- $H_0: \mu \ge \mu_0$ vs. $H_1: \mu < \mu_0$

Vorstellung zu:

$$H_0: \mu = \mu_0$$
 vs. $H_1: \mu \neq \mu_0$

Entscheidungsvorschrift:

$$H_0$$
 ablehnen, falls $|\bar{X} - \mu_0| > c$

$$\alpha = P_{\mu_0}(|\bar{X} - \mu_0| > c)$$

$$= 1 - P_{\mu_0}(-c \le \bar{X} - \mu_0 \le c)$$

$$= 1 - P_{\mu_0}(-\frac{c}{\sigma_0}\sqrt{n} \le \frac{\bar{X} - \mu_0}{\sigma_0}\sqrt{n} \le \frac{c}{\sigma_0}\sqrt{n})$$

$$\stackrel{N(0,1)}{=} 1 - \left[\Phi(\frac{c}{\sigma_0}\sqrt{n}) - \Phi(-\frac{c}{\sigma_0}\sqrt{n})\right]$$

$$= 1 - \left[\Phi(\frac{c}{\sigma_0}\sqrt{n}) - (1 - \Phi(\frac{c}{\sigma_0}\sqrt{n}))\right]$$

$$= 2(1 - \Phi(\frac{c}{\sigma_0}\sqrt{n}))$$

3 Die Gütefunktion

... und somit bekommt man den kritischen Wert c:

$$\Phi(\frac{c}{\sigma_0}\sqrt{n}) = 1 - \frac{\alpha}{2} \qquad \Longrightarrow \qquad c = z_{1-\frac{\alpha}{2}} \frac{\sigma_0}{\sqrt{n}}$$

Für den kritischen Bereich K gilt:

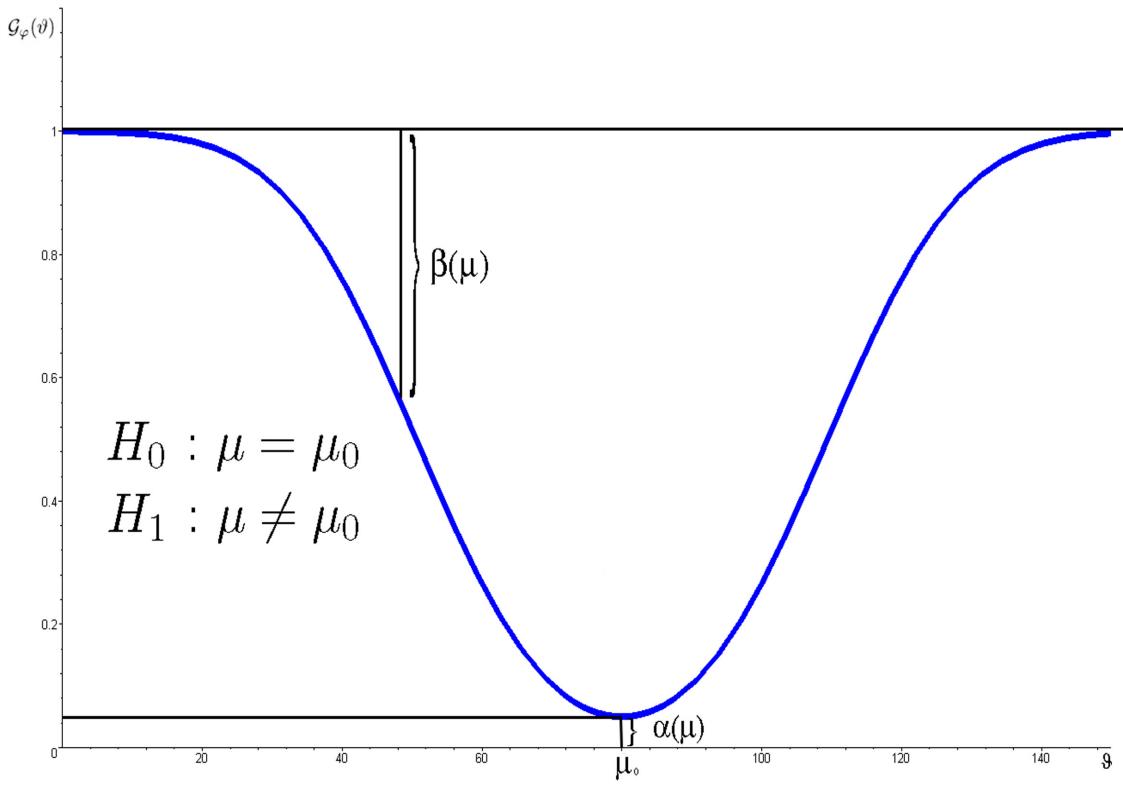
$$K = \{ \mathbf{x} \in \mathbb{R}^{\mathbf{n}} : |\bar{\mathbf{x}} - \mu_{\mathbf{0}}| > \mathbf{c} \}$$

Testfunktion:

$$\varphi(\mathbf{x}) = \varphi(x_1, ..., x_n) = I_{\{\mathbf{x} \in K\}}$$

Gütefunktion:

$$\mathcal{G}_{\varphi}(\mu) \stackrel{\text{Def}}{=} E_{\mu}\varphi(\mathbf{X}) = E_{\mu}\varphi(X_{1}, ..., X_{n})
\stackrel{\text{det.Test}}{=} 1 \cdot P_{\mu}(\varphi(\mathbf{X}) = 1) + 0 \cdot P_{\mu}(\varphi(\mathbf{X}) = 0)
= P_{\mu}(\mathbf{X} \in K) = 1 - P_{\mu}(-c \leq \bar{X} - \mu_{0} \leq c)
=
= 1 - \Phi(z_{1-\frac{\alpha}{2}} + \frac{\mu_{0} - \mu}{\sigma_{0}}\sqrt{n}) + \Phi(-z_{1-\frac{\alpha}{2}} + \frac{\mu_{0} - \mu}{\sigma_{0}}\sqrt{n})$$



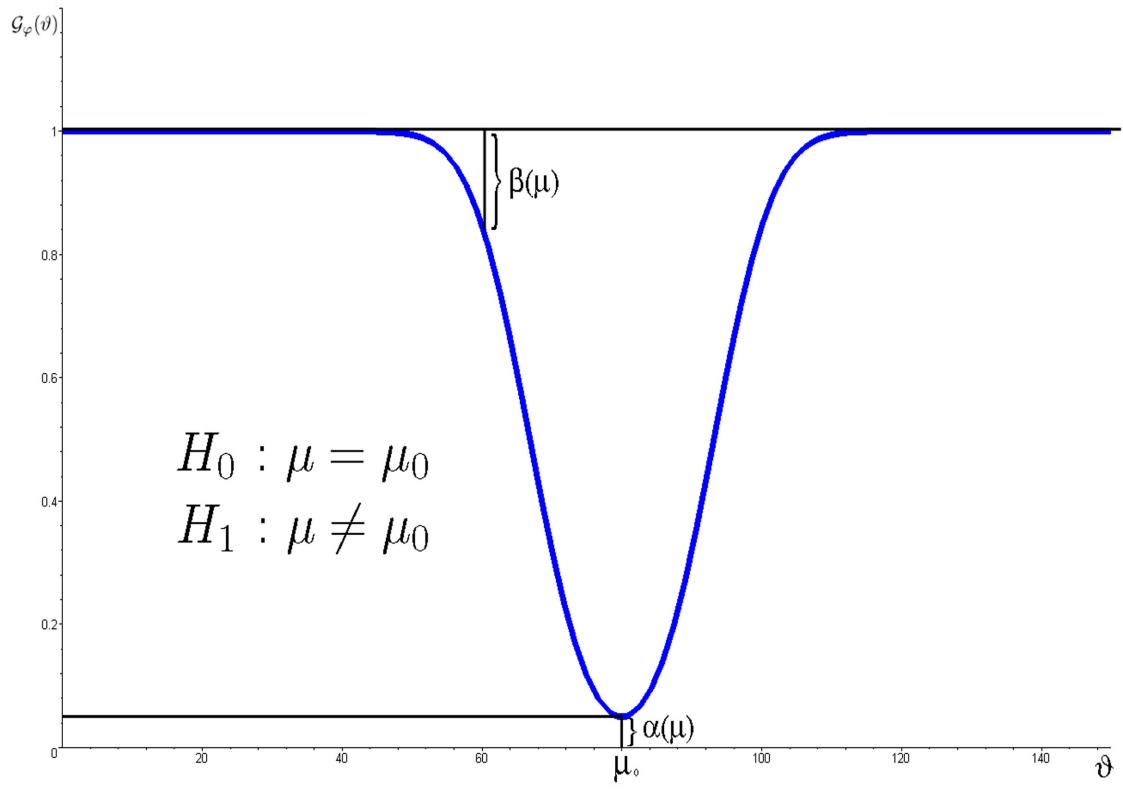
Der Test ist unverfälscht:

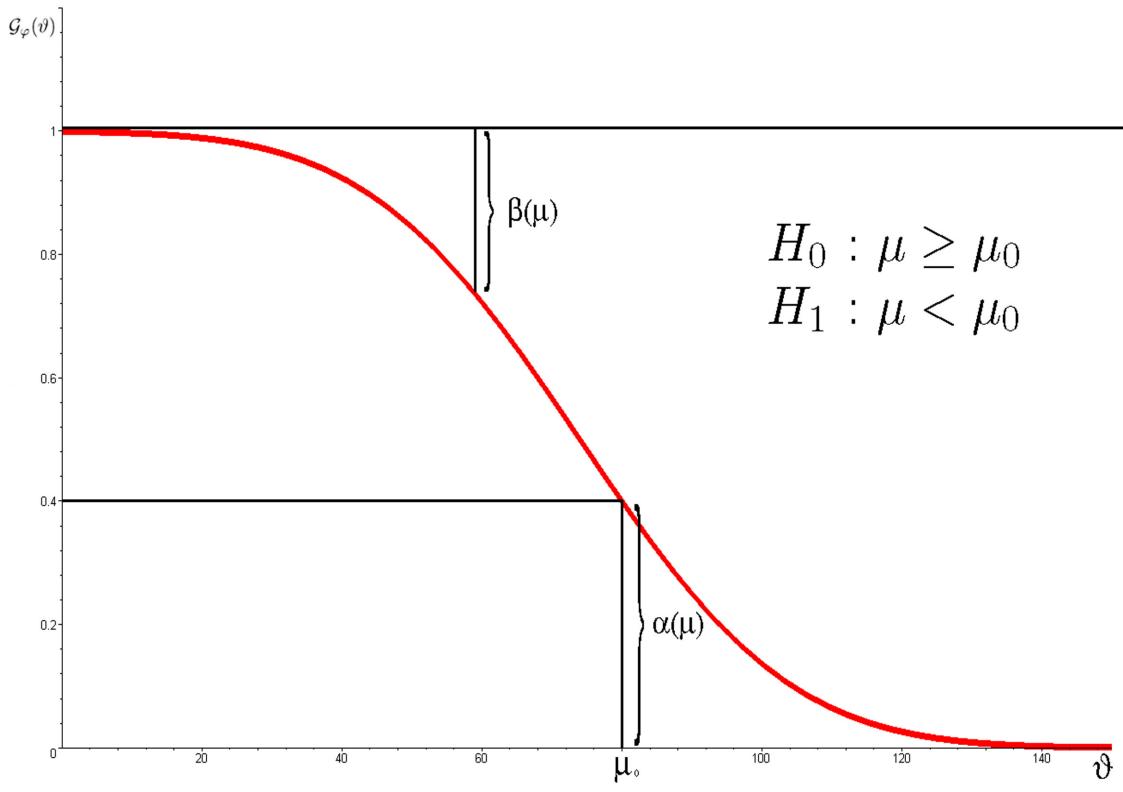
$$\mathcal{G}_{\varphi}(\mu) \ge \alpha \qquad \forall \mu \ne \mu_0$$

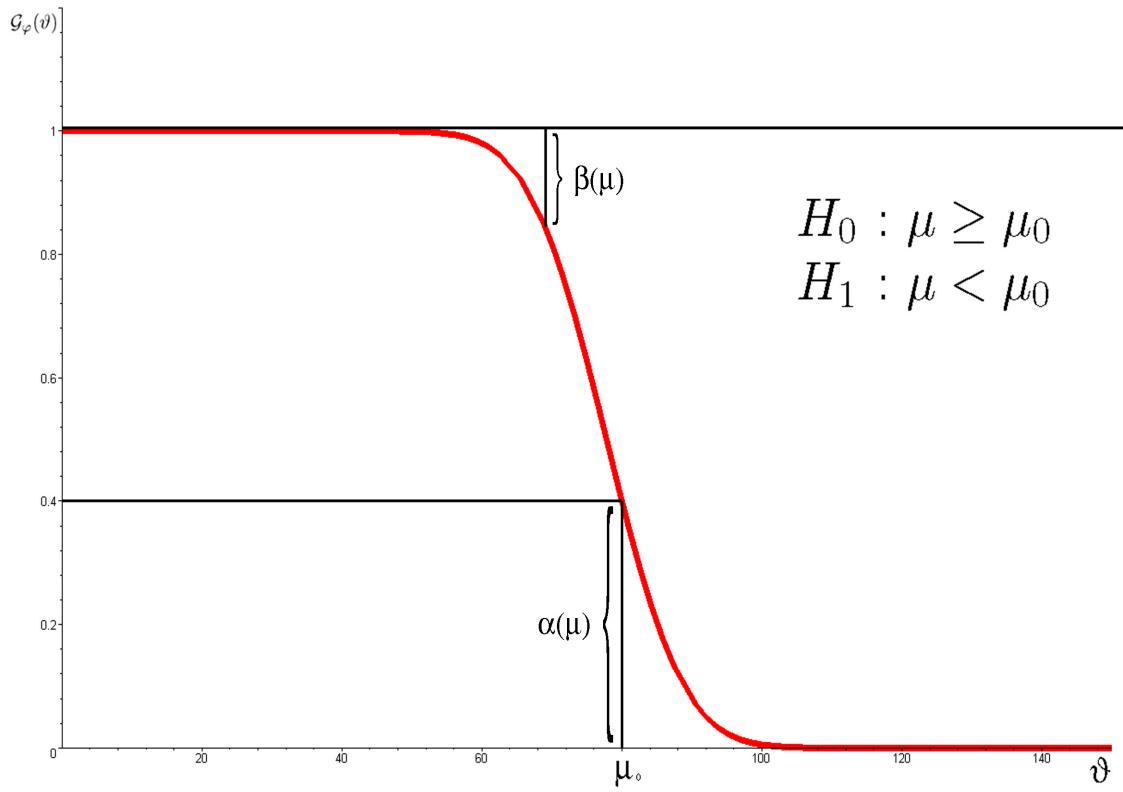
Der Test ist außerdem konsistent, da für $\mu \neq \mu_0$ gilt:

$$\mathcal{G}_{\varphi}(\mu) = 1 - \Phi(z_{1-\frac{\alpha}{2}} + \frac{\mu_0 - \mu}{\sigma_0} \sqrt{n}) + \Phi(-z_{1-\frac{\alpha}{2}} + \frac{\mu_0 - \mu}{\sigma_0} \sqrt{n})$$

$$\xrightarrow{n \to \infty} 1$$







4 Gleichmäßig beste Tests (UMP-Tests)

4.1 Motivation

4.2 Das Lemma von Neyman und Pearson

4.1 Motivation

Ziel:

Unter allen Niveau- α -Tests $\varphi \in \Phi_{\alpha}$ suchen wir den gleichmäßig Mächtigsten.

Definition (Gleichmäßig bester Test):

Ein Test $\varphi^* \in \Phi_{\alpha}$ heißt gleichmäßig bester Test zum Niveau α , falls

$$G_{\varphi^*}(\vartheta) \ge G_{\varphi}(\vartheta) \qquad \forall \vartheta \in \Theta_1, \, \forall \varphi \in \Phi_{\alpha}$$

Annahmen:

• Einfache Hypothesen:

$$\Theta = \{\vartheta_0, \vartheta_1\}, \qquad \Theta_0 = \{\vartheta_0\}, \qquad \Theta_1 = \{\vartheta_1\}$$

• Betrachtete Dichten:

$$-f_0(\mathbf{x}) = f_0(x_1, ..., x_n) = f_{\vartheta_0}(x_1, ..., x_n)$$
 Dichte unter H_0

$$-f_1(\mathbf{x}) = f_1(x_1, ..., x_n) = f_{\vartheta_1}(x_1, ..., x_n)$$
 Dichte unter H_1

• Ferner sei:

$$f_0(\mathbf{x}) + f_1(\mathbf{x}) > 0 \qquad \forall (x_1, ..., x_n) \in \mathcal{X}$$

Definition (Neyman-Pearson-Test):

Ein Test φ^* heißt Neyman-Pearson-Test (NP-Test), falls:

$$\varphi^*(\mathbf{x}) = \begin{cases} 1, & falls & \frac{f_1(\mathbf{x})}{f_0(\mathbf{x})} > c \\ \gamma, & falls & \frac{f_1(\mathbf{x})}{f_0(\mathbf{x})} = c & \mathbf{x} \in \mathcal{X} \\ 0, & falls & \frac{f_1(\mathbf{x})}{f_0(\mathbf{x})} < c \end{cases}$$

4.2 Das Lemma von Neyman und Pearson

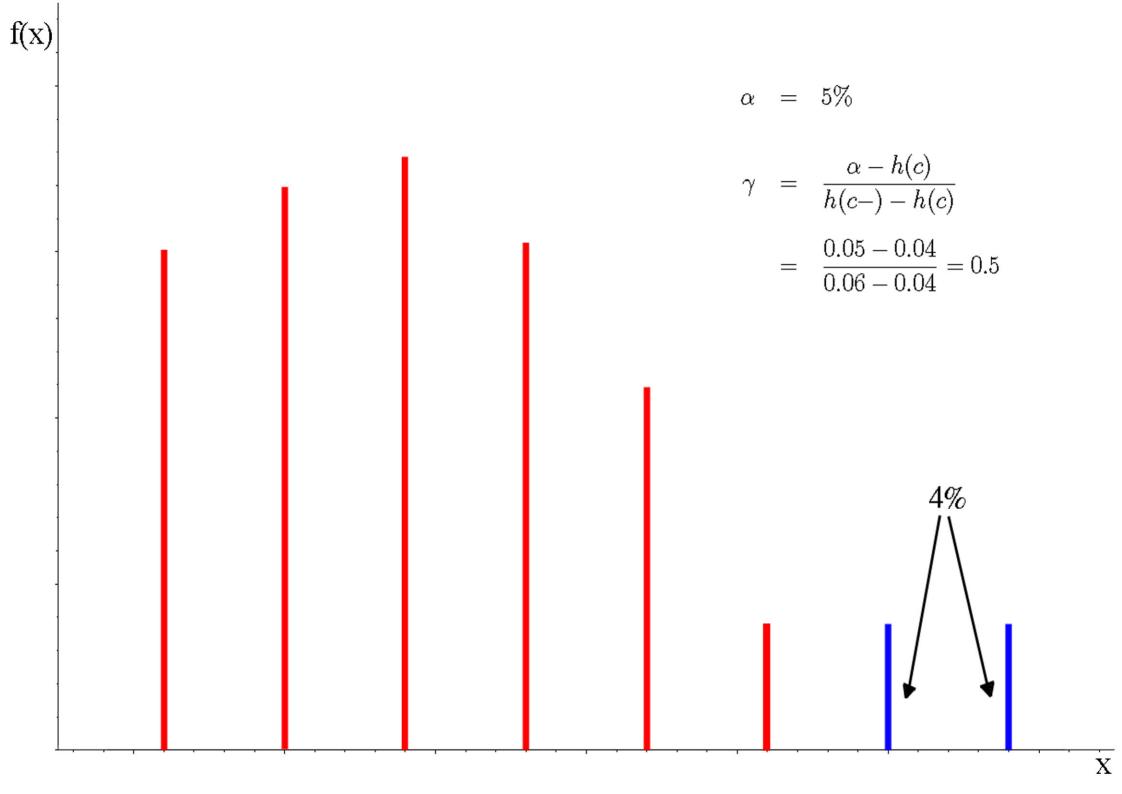
Satz (Das Lemma von Neyman und Pearson):

1. Zu jedem $\alpha \in (0,1)$ existiert ein NP-Test φ^* mit:

$$\alpha(\varphi^*) := E_{\vartheta_0} \varphi^*(\mathbf{X}) = \alpha$$

2. Jeder NP-Test φ^* ist (gleichmäßig) bester Test zum Niveau $\alpha(\varphi^*)$:

$$\mathcal{G}_{\varphi^*}(\vartheta_1) \ge \mathcal{G}_{\varphi}(\vartheta_1) \qquad \forall \varphi \in \Phi_{\alpha(\varphi^*)}$$



Beweis (Teil 1):

Bezeichnungen:

$$q(\mathbf{x}) = \frac{f_1(\mathbf{x})}{f_0(\mathbf{x})}$$
 Dichtequotient

 $A_t = \{q(\mathbf{X}) > \mathbf{t}\}$ Ablehnungsbereich in Abhängigkeit von t

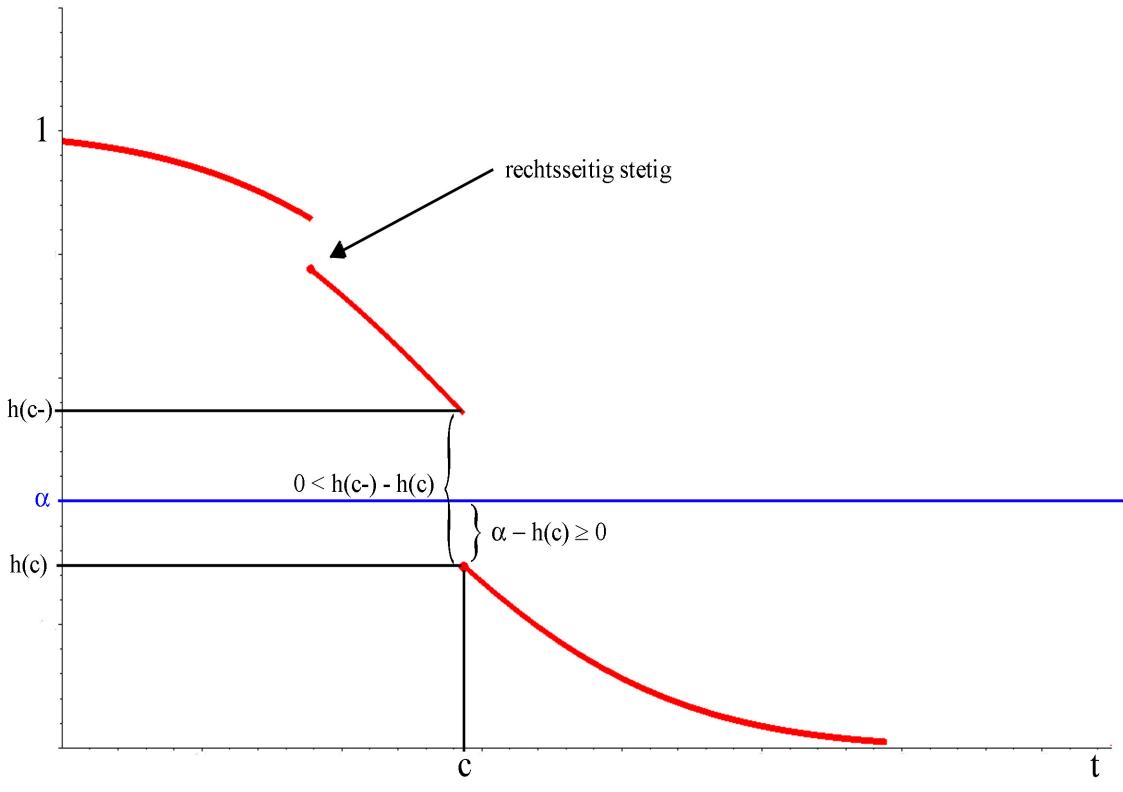
$$h(t) := P_{\vartheta_0}(A_t) = P_{\vartheta_0}(q(\mathbf{X}) > t)$$
 W. für Fehler 1.Art

Eigenschaften von h:

- h ist monoton nicht wachsend
- *h* ist rechtsseitig stetig

Setze:

$$c := \inf\{t \ge 0 : h(t) \le \alpha\}, \qquad 0 \le c < \infty$$



Zwei Fälle sind zu unterscheiden:

1.
$$h(c) = h(c-) \Longrightarrow \text{setze } \gamma = 0$$

2.
$$h(c) < h(c-) \Longrightarrow \text{setze } \gamma = \frac{\alpha - h(c)}{h(c-) - h(c)}$$

Dann gilt $0 \le \gamma \le 1$ und

$$\alpha(\gamma) \stackrel{\text{Def}}{=} E_{\vartheta_0} \varphi^*(\mathbf{X}) = E_{\vartheta} \varphi^*(X_1, ..., X_n)$$

$$\stackrel{\text{rand.Test}}{=} 1 \cdot P_{\vartheta_0}(q(\mathbf{X}) > c) + \gamma \cdot P_{\vartheta_0}(q(\mathbf{X}) = c)$$

$$= h(c) + \gamma(h(c-) - h(c)) = \alpha$$

Beweis (Teil 2):

Z.z.:
$$\mathcal{G}_{\varphi^*}(\vartheta_1) \geq \mathcal{G}_{\varphi}(\vartheta_1) \qquad \forall \varphi \in \Phi_{\alpha}(\varphi^*)$$

Sei dazu φ ein beliebiger Test zum Niveau α , d.h.: $\alpha(\varphi) \leq \alpha(\varphi^*)$

Wir bilden eine Partition des Stichprobenraumes \mathcal{X} :

$$M^{-} = \{(x_1, ..., x_n) \in \mathcal{X} : \varphi(x_1, ..., x_n) > \varphi^*(x_1, ..., x_n)\}$$

$$M^{+} = \{(x_1, ..., x_n) \in \mathcal{X} : \varphi(x_1, ..., x_n) < \varphi^*(x_1, ..., x_n)\}$$

$$M^{=} = \{(x_1, ..., x_n) \in \mathcal{X} : \varphi(x_1, ..., x_n) = \varphi^*(x_1, ..., x_n)\}$$

Dann gilt:

$$\mathbf{x} \in M^- \implies \varphi^*(\mathbf{x}) < 1$$

$$\varphi^*(\mathbf{x}) \neq 1 \qquad f_1(\mathbf{x}) \leq c f_0(\mathbf{x})$$

$$\mathbf{x} \in M^+ \implies \varphi^*(\mathbf{x}) > 0$$

$$\varphi^*(\mathbf{x}) \neq 0 \qquad f_1(\mathbf{x}) \ge cf_0(\mathbf{x})$$

Dann folgt:

$$\mathcal{G}_{\varphi^*}(\vartheta_1) - \mathcal{G}_{\varphi}(\vartheta_1) = E_{\vartheta_1}[\varphi^*(\mathbf{X}) - \varphi(\mathbf{X})]
= \int_{\mathcal{X}} [\varphi^*(\mathbf{x}) - \varphi(\mathbf{x})] f_1(\mathbf{x}) d\mu(\mathbf{x})
= \int_{M^-} \dots + \int_{M^+} \dots + \underbrace{\int_{M^=} \dots}_{= 0} \dots
\geq \int_{M^-} [\varphi^*(\mathbf{x}) - \varphi(\mathbf{x})] c f_0(\mathbf{x}) d\mu(\mathbf{x})
+ \int_{M^+} [\varphi^*(\mathbf{x}) - \varphi(\mathbf{x})] c f_0(\mathbf{x}) d\mu(\mathbf{x})
= c E_{\vartheta_0}[\varphi^*(\mathbf{X}) - \varphi(\mathbf{X})] = c[\alpha(\varphi^*) - \alpha(\varphi)] \geq 0$$

Literatur

- Bosch, K.: Grosses Lehrbuch der Statistik, Oldenbourg Verlag, 1996.
- Cassella G., Berger R.: Statistical Inference, Duxbury Press, 1990.
- Heiler: Statistische Schätz- und Testtheorie,
 Vorlesungsskript WS 2003/2004, Universität Konstanz.
 http://www.uni-konstanz.de/FuF/wiwi/heiler/Lehre.html
- Jensen, U.: Skript zur Vorlesung Statistik I, Vorlesungsskript SS 2003, Universität Ulm.
- Pruscha, H.: Vorlesung über Mathematische Statistik, Teubner Verlag, 2000.

