Seminar "Simulation und Bildanalyse mit Java" Vortragsthemen für das Sommersemester 2004

Themenschwerpunkt in diesem Semester: Tests in Informatik und Statistik

- 1. Einführung in den Softwaretest I (Prof. Dr. Franz Schweiggert)
 - Software-Qualität
 - Definition
 - Qualitätsziele und -kriterien
 - Was ist ein Software-Test?
 - Motivation für das Testen von Software
 - Softwarefehler und ihre Kosten
 - Philosophie des Testens
 - Testarten
 - Testplanung und Testmanagement

Literatur: [13], Kap. 13 und 14 in [15]

- 2. Einführung in den Softwaretest II
 - Was ist ein Testfall?
 - Methoden der Testfallfindung
 - Black-Box-Test
 - White-Box-Test
 - Testauswertung
 - Software-Metriken
 - Testende-Kriterien
 - Alternativen zum Software-Test: "Manuelles" Testen

Literatur: [13], Kap. 13 und 14 in [15], Kap. 8 in [11]

- 3. Konfigurationsmanagement
 - Grundlagen Konfigurationsmanagement
 - Versions-Management (Beispiel mit CVS)
 - Build-Management

- Release-Management
- Change-Management
- Haftung bei Softwareprojekten (Haftungsentlastung durch dokumentierte Qualitätssicherung)

Literatur: Kap. 12 in [15], Kap. 5 und 9 in [14], [5]

- 4. Modul-Tests mit JUnit
 - Regressionstests
 - Test-Automatisierung mit JUnit
 - Das JUnit-Framework: Innenleben
 - Testen mit JUnit
 - Der Test-First Ansatz

Literatur: [1], [2], [6], [8], Kap. 2, 3 und 5 in [11], Kap. 3 und 8 in [18], Kap. 1 bis 3 in [12]

- 5. Testen objektorientierter Software mit JUnit
 - Unabhängigkeit durch den Einsatz von Attrappen
 - Dummy-Objekte
 - Mock-Objekte
 - Vererbung
 - Polymorphismus

Literatur: Kap. 6 und 7 in [11], Kap. 9 und 10 in [18], Kap. 7 in [12]

- 6. Testen persistenter Objekte
 - Definition abstrakte Persistenzschnittstellen
 - Testen mit persistenten Attrappen
 - Interaktion von Persistenzschicht und Client

Literatur: Kap. 9 in [11]

- 7. Testen nebenläufige Objekte
 - Probleme bei der Verwendung von Threads
 - Testen der Synchronisation und testen asynchroner Dienste

Literatur: Kap. 10 in [11]

- 8. Testen verteilter Anwendungen
 - Definition RMI
 - Test-First-Entwicklung mit RMI Server-Client Modell
 - Test-First-Entwicklung mit Java Beans

Literatur: Kap. 11 in [11]

- 9. Testen von Web-Anwendungen
 - Besonderheiten beim Testen von Web-Anwendungen
 - Testmethoden und -techniken
 - Funktionale Tests
 - Testen auf dem Server
 - Testen mit Attrappen
 - Testen der Ausgabe-Erzeugung (z. B. HTML)
 - Linktest
 - Browsertest
 - Last-, Stress- und Dauertest
 - Testen der Sicherheit
 - Anforderungen an Design und Architektur (Trennund von Servlet-API und Servlet-Logik)
 - Werkzeuge zur Testautomatisierung

Literatur: Kap. 7 in [9], Kap. 12 in [11]

- 10. Testen von Grafischen Benutzeroberflächen
 - GUI-Testanforderungen
 - Testen von Oberflächenklassen
 - Vorstellung des JFCUnit-Frameworks
 - Die java.awt.Robot-Klasse

Literatur: Kap. 13 in [11]

- 11. Einführung in die Statistische Testtheorie I
 - Einführung in das Testen statistischer Hypothesen
 - Methoden zur Konstruktion von Tests
 - Likelihood-Quotienten-Tests
 - Invariante Tests

- Bayessche Tests
- Union-intersection and intersection-union Tests

Literatur: [3], [4], [7]

- 12. Einführung in die Statistische Testtheorie II
 - Methoden der Testevaluierung
 - Fehlerwahrscheinlichkeiten und Gütefunktion
 - UMP Tests
 - Erwartungstreue und invariante Tests
 - Simulationstests
 - Gemeinsamkeiten und Unterschiede mit dem Testen von Software

Literatur: [3], [4], [7]

- 13. Statistische Testtheorie am Beispiel der Untersuchung von Punktfeldern
 - Univariate Punktfelder
 - Einführung
 - Test auf Poissonfeld (Quadratzählmethode unter Verwendung des Fisher-Pearson-Tests, L-Test nach Ripley)
 - Monte-Carlo-Tests zur Modellüberprfung, Minimum-Kontrast-Methode
 - Multivariate Punktfelder
 - Einführung
 - Tests auf Unabhängigkeit der Marken (Vier-Felder-Test, Kendalls Tau, Toroid-Verschiebung)

Literatur: [10], [17]

Literatur

- [1] K. Beck, E. Gamma: *JUnit Cookbook*. http://junit.sourceforge.net/doc/cookbook/cookbook.htm
- [2] K. Beck, E. Gamma: Test Infected: Programmers Love Writing Tests. http://junit.sourceforge.net/doc/testinfected/testing.htm
- [3] K. Bosch: Großes Lehrbuch der Statistik, Oldenbourg Verlag, 1996.
- [4] G. Cassella, R. Berger: Statistical Inference, Duxbury Press, 1990.
- [5] CVS Homepage. http://www.cvshome.org/

- [6] E. Gamma, K. Beck: JUnit A Cooks Tour. http://junit.sourceforge.net/doc/cookstour/cookstour.htm
- [7] Heiler: Statistische Schätz- und Testtheorie, Vorlesungsskript WS 2003/2004, Universität Konstanz. http://www.uni-konstanz.de/FuF/wiwi/heiler/Lehre.html
- [8] JUnit Homepage. http://www.junit.org/
- [9] G. Kappel, B. Pröll, S. Reich, W. Retschitzegger (Herausgeber): Web Engineering: Systematische Entwicklung von Web-Anwendungen, dpunkt.verlag, 2004.
- [10] V. Idt: Geostatistische Analyse der Wurzelverteilung eines Mischbestandes von Buche und Fichte, Wissenschaftliche Arbeit, Universität Ulm, 2004.
- [11] J. Link: Unit Tests mit Java, dpunkt.verlag, 2002.
- [12] V. Massol, T. Husted: JUnit in Action, Manning Verlag, November 2003.
- [13] G. J. Myers: *Methodisches Testen von Programmen*, 3. Auflage, R. Oldenbourg Verlag, 1989.
- [14] F. Schweiggert: Software Engeneering Praxis, Skript, Universität Ulm, 2003.
- [15] J. Siedersleben (Herausgeber): Softwaretechnik: Praxiswissen für Softwareingenieure, 2. Auflage, Carl Hanser Verlag, 2003.
- [16] H. M. Sneed, M. Winter: Testen objektorientierter Software, 1. Auflage, Hanser Verlag, 2002.
- [17] D. Stoyan, H. Stoyan: Fraktale Formen Punktfelder, J. Wiley & Sons, Chichester, 1994.
- [18] F. Westphal: Testgetriebene Entwicklung mit JUnit und FIT. http://www.frankwestphal.de/TestgetriebeneEntwicklungmitJUnitundFIT.html