Markov chains - Assignment 5

Exercise 1

Let $p, q \in [0, 1]$ be arbitrary fixed numbers. For each of the following matrices, check if it can be considered as the transition matrix of a reversible Markov chain with stationary initial distribution α , where $\alpha_i > 0$ for all $i \in E$.

(a)
$$P = \begin{pmatrix} p & 1-p \\ q & 1-q \end{pmatrix}$$
 (b) $P = \begin{pmatrix} 0 & p & 1-p \\ 1-p & 0 & p \\ p & 1-p & 0 \end{pmatrix}$

- (c) On $E = \{0, 1, 2, ...\}$ let $p_{01} = 1, p_{ii+1} = p, p_{ii-1} = q$ for $i \ge 1$, and $p_{ij} = 0$ else
- (d) $p_{ij} = p_{ji}, i, j \in \{1, ..., l\}$

Exercise 2

Let $\{X_n, n \geq 1\}$ be a Markov chain with transition matrix $\mathbf{P} = (p_{ij})$ and stationary initial distribution $\boldsymbol{\alpha}$, where $\alpha_i > 0 \ \forall i \in E$. Define matrix \mathbf{Q} by the property that $\alpha_i q_{ij} = \alpha_j p_{ji}$ for all $i, j \in E$. Next, consider the sequence $\{X_{-n}, n \geq 1\}$ satisfying:

$$\mathbb{P}(X_{-1} = i_1, X_{-2} = i_2, ..., X_{-k} = i_k \mid X_0 = i, X_2 = j_2, ..., X_n = j_n)
= \mathbb{P}(X_{-1} = i_1, X_{-2} = i_2, ..., X_{-k} = i_k \mid X_0 = i)
= q_{ii_1} \cdot q_{i_1 i_2} \cdot ... \cdot q_{i_{k-1} i_k}$$

 $\forall k \geq 1, n \geq 1, i, i_1, ..., i_k, j_1, ..., j_n \in E.$

- (a) Show that **Q** is again a stochastic matrix.
- (b) Prove that the sequence $\{X_n, n \in \mathbb{Z}\}$ is a homogeneous Markov chain with transition matrix **P** and one-dimensional marginal distribution $\boldsymbol{\alpha}$, i.e., show that for all $k \leq n \in \mathbb{Z}$ it holds that

$$\mathbb{P}(X_k = i) = \alpha_i$$
 and $\mathbb{P}(X_k = i_k, ..., X_n = i_n) = \alpha_{i_k} \cdot p_{i_k i_{k+1}} \cdot ... \cdot p_{i_{n-1} i_n}$.

Exercise 3

Consider the state space

$$E = \{(a, b, c) : a + b + c = 0 \text{ und } a, b, c \in \{-9, -8, ..., 8, 9\}\}.$$

Construct a reversible Markov chain on E such that the limit distribution π of this Markov chain is equal to the uniform distribution on E.

Exercise 4

Consider a linear congruential generator (LCG).

- (a) Determine the periodicity of the LCG having seed $z_0 = 1$ and the parameters
 - $m_1 = 512, \quad a_1 = 51, \quad c_1 = 0,$
 - $m_2 = 131, \quad a_2 = 5, \quad c_2 = 0,$ (ii)
 - (iii) $m_3 = 18$, $a_3 = 9$, $c_3 = 5$ or (iv) $m_4 = 12$, $a_4 = 2$, $c_4 = 1$.
- (b) Write an implementation of the LCGs given in (a)-(i) and (a)-(ii) and print out the first 10 pseudo-random numbers generated by your LCGs.