Markov chains - Assignment 6

Exercise 1

Normally distributed random variables can be simulated using the so-called Box-Muller algorithms: a pair (U_1, U_2) of independent (0, 1]-uniformly distributed random variables is transformed into (X_1, X_2) by means of

$$X_1 = \sqrt{-2\log U_1}\cos(2\pi U_2)$$
 $X_2 = \sqrt{-2\log U_1}\sin(2\pi U_2).$

Prove that X_1 and X_2 are independent and identically N(0,1)-distributed. Use this result, to obtain a sample of N(0.5,9)-distributed random variables using a LCG with parameters m=2147483647, a=48271, c=0 and $z_0=1$. Determine the empirical mean and variance of the first n=100,1000 resp. 10000 pseudo random numbers.

Exercise 2

For each of the following densities, write down an algorithm based on the acceptance-rejection method to generate pseudo random numbers according to each of the given distributions – call it G (with density q). At this, assume that the only random number generator currently at hand produces U(0,1)-pseudo random numbers. With regard to parts (b) and (c): The auxiliary distribution F (with density p), from which candidates for the realizations from G are drawn, should be simple to generate, but not too far-off from the desired distribution.

(a)
$$q_j = \frac{a}{j}$$
, $j = 1, 2, ..., 100$, with $a = \left(\sum_{j=1}^{100} q_j\right)^{-1}$,

(b)
$$q(y) = \frac{1}{10}y^2 + \frac{7}{15}$$
 for $y \in (-1, 1)$,

(c)
$$q(y) = \frac{3}{4}(1+y^2)$$
 for $y \in (0,1)$.

Exercise 3

A random variable with density $q(y) = \sqrt{2\pi^{-1}}e^{-y^2/2}$, $y \ge 0$ is to be simulated by rejection sampling. The candidate values are realizations from a $Exp(\lambda)$ -distributed random variable, i.e., $p(x) = \lambda e^{-\lambda x}$, $x \ge 0$.

- (a) Determine the smallest value c (subject to $\lambda > 0$) such that $c \cdot p(y) \ge q(y)$.
- (b) For which value of λ , is the theoretically percentage of rejected samples minimal?
- (c) For $\lambda=1$, write a simulator to generate pseudo random numbers according to the stated setup. Determine the theoretical percentage of rejected values and compare it to the empirical result for n=1000 iterations.