Markov chains - Assignment 7

Exercise 1

Suppose that $h(x) = \frac{1}{\sqrt{2\pi}} \exp(-x^2/2), x \in \mathbb{R}$ is our target density (i.e. the density of a N(0,1)-distribution), and let $g(x) = \frac{1}{2} \exp(-|x|), x \in \mathbb{R}$ be the auxiliary density for the rejection sampling.

- (a) Show that $h(x)/g(x) \le \sqrt{\frac{2}{\pi}e}$.
- (b) Verify that random variable X = WZ has density g given that Z and W are independent random variables with $Z \sim \text{Exp}(1)$ and P(W = -1) = 0.5, P(W = 1) = 0.5.
- (c) Write down an algorithm to generate samples from h using rejection sampling based on g. At this, assume that your random number generator can only produce U(0,1)-pseudo random numbers.

Exercise 2

- (a) Use Theorem 3.9 to generate samples from a Gamma distribution (with parameters $\lambda > 0$ and r > 1) by means of a quotient of uniform random variables.
- (b) Repeat part (a) for a t-distribution with $r \in \mathbb{N}$ degrees of freedom.

Exercise 3

Generate samples from a χ^2 -distribution with r=4 degrees of freedom

- (a) using exercise 2 (with $\chi^2(r) = \Gamma(\frac{1}{2}, \frac{r}{2})$),
- (b) using sums of independend exponentially distributed random variables and
- (c) using the respresentation as a sum over squared N(0, 1)-random variables.

Implement all three methods and compare the results my means of the sample mean and variance for sample sizes $n = 10^2, 10^3, 10^4$ and 10^5 .