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1 Introduction

e Markov chains
— are a fundamental class of stochastic models for sequences of non-independent random variables, i.e.
of random variables possessing a specific dependency structure.
— have numerous applications e.g. in insurance and finance.
— play also an important role in mathematical modelling and analysis in a variety of other fields such as

life sciences.

e Questions of scientific interest often exhibit a degree of complexity resulting in great difficulties if the
attempt is made to find an adequate mathematical model that is solely based on analytical formulae.

e In these cases Markov chains can serve as an alternative analytical tool as they are crucial for the construction
of computer algorithms for the Markov Chain Monte Carlo simulation (MCMC) of the mathematical models
under consideration.

This course on Markov chains and Monte Carlo simulation will be based on the methods and models introduced
in the course “Wahrscheinlichkeitsrechnung”. Knowledge from “Statistik I” and “Statistik II” can be useful but is
not required.

e The main focus of this course will be on the following topics:

— discrete—time Markov chains with finite state space

stationarity and ergodicity
— Markov Chain Monte Carlo (MCMC)
— reversibility and coupling algorithms

e Notions and results introduced in “Wahrscheinlichkeitsrechnung” will be used frequently. Hence, the lecture
notes “Wahrscheinlichkeitsrechnung”, WS 2003/2004, will be an important reference; see

http://www.mathematik.uni-ulm.de/stochastik/lehre /ws03_04/wr /skript/skript.html

e References to these lecture notes will be labelled by the prefix “WR” in front of the number specifying the
corresponding section, theorem, lemma, etc.

e The following list contains only a small collection of introductory texts that can be recommended for in—
depth studies of the subject complementing the lecture notes.
— D. Aldous, J.A. Fill (2002) Reversible Markov Chains and Random Walks on Graphs. manuscript
— E. Behrends (2000) Introduction to Markov Chains. Vieweg, Braunschweig

P. Bremaud (1999) Markov Chains, Gibbs Fields, Monte Carlo Simulation, and Queues. Springer,
New York

B. Chalmond (2003) Modeling and Inverse Problems in Image Analysis. Springer, New York

O. Higgstrom (2002) Finite Markov Chains and Algorithmic Applications. Cambridge University
Press, Cambridge

— U. Krengel (2002) Einfihrung in die Wahrscheinlichkeitstheorie und Statistik. Vieweg, Braunschweig
— S.I. Resnick (1992) Adventures in Stochastic Processes. Birkhauser, Boston

— T. Rolski, H. Schmidli, V. Schmidt, J. Teugels (2002) Stochastic Processes for Insurance and Finance.
Wiley, Chichester

— H. Thorisson (2002) Coupling, Stationarity, and Regeneration. Springer, New York

— G. Winkler (2003) Image Analysis, Random Fields and Markov Chain Monte Carlo Methods. Springer,
Berlin
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2 Markov Chains

e Markov chains can describe the (temporal) dynamics of objects, systems, etc.

— that can possess one of finitely or countably many possible configurations at a given time,

— where these configurations will be called the states of the considered object or system, respectively.
e Examples for this class of objects and systems are

— the current prices of products like insurance policies, stocks or bonds, if they are observed on a discrete
(e.g. integer) time scale,

the monthly profit of a business,

the current length of the checkout lines (so—called “queues”) in a grocery store,

— the vector of temperature, air pressure, precipitation and wind velocity recorded on an hourly basis at
the meteorological office Ulm—Kuhberg,

— digital maps, for example describing the momentary spatial dispersion of a disease.

— microscopical 2D or 3D images describing the current state (i.e. structural geometrical properties) of
biological tissues or technical materials such as metals or ceramics.

Remarks
e In this course we will focus on discrete—time Markov chains, i.e., the temporal dynamics of the consid-
ered objects, systems etc. will be observed stepwise, e.g. at integer points in time.

e The algorithms for Markov Chain Monte Carlo simulation we will discuss in part II of the course are
based on exactly these discrete—time Markov chains.

e The number of potential states can be very high.

e For mathematical reasons it is therefore convenient to consider the case of infinitely many states as
well. As long as the infinite case is restricted to countably many states, only slight methodological
changes will be necessary.

2.1 Specification of the Model and Examples
2.1.1 State Space, Initial Distribution and Transition Probabilities

e The stochastic model of a discrete—time Markov chain with finitely many states consists of three components:
state space, initial distribution and transition matrix.

— The model is based on the (finite) set of all possible states called the state space of the Markov chain.
W.l.o.g. the state space can be identified with the set E = {1,2,...,£} where f € N={1,2,...} is an
arbitrary but fixed natural number.

— For each i € E, let a; be the probability of the system or object to be in state ¢ at time n = 0, where
it is assumed that

‘
a; € [0,1], Zai=1. (1)
i=1
The vector & = (ay,...,a¢)" of the probabilities a,...,a, defines the initial distribution of the

Markov chain.

— Furthermore, for each pair i,j € E we consider the (conditional) probability p;; € [0,1] for the
transition of the object or system from state ¢ to j within one time step.
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— The £ x £ matrix P = (p;j); j—1,...,¢ of the transition probabilities p;; where
¢
pij 2 0, Zp’ij:]-a (2)
i=1

is called one—step transition matriz of the Markov chain.

e For each set E = {1,2,...,¢}, for any vector @ = (ay,...,a;)' and matrix P = (p;;) satisfying the
conditions (1) and (2) the notion of the corresponding Markov chain can now be introduced.

Definition
o Let Xo,Xi,...: Q — E be a sequence of random variables defined on the probability space (2, F, P)
and mapping into the set E = {1,2,...,£}.
e Then Xo, X1,... is called a (homogeneous) Markov chain with initial distribution & = (a1,..., )"
and transition matrix P = (p;;), if
P(XO = Z.O;Xl =01, 7Xn = Zn) = Q4 Pigiy + - - Pi_1in (3)
for arbitrary n = 0,1, ... and 4g,41,...,%, € E.
Remarks

e A quadratic matrix P = (p;;) satisfying (2) is called a stochastic matriz.

e The following Theorem 2.1 reveals the intuitive meaning of condition (3). In particular the motivation
for the choice of the words “initial distribution” and “transition matrix” will become evident.

e Furthermore, Theorem 2.1 states another (equivalent) definition of a Markov chain that is frequently
found in literature.

Theorem 2.1 The sequence {X,} of E—valued random variables is a Markov chain if and only if there is a
stochastic matriz P = (p;;) such that

P(Xn = 7/n | anl = Z.nfla .- '7X0 = ZO) = Dip_1in (4)

foranyn=1,2,... and ig,t1,...,in € E such that P(X,,—1 = ip-1,-..,X0 =tg) > 0.

Proof
e Clearly condition (4) is necessary for {X,} to be a Markov chain as (4) follows immediately from (3)
and the definition of the conditional probability; see section WR-2.6.1.

e Let us now assume {X,} to be a sequence of E-valued random variables such that a stochastic matrix
P = (pi;) exists that satisfies condition (4).

e For all i € E we define a; = P(X, = ¢) and realize that condition (3) obviously holds for n = 0.
e Furthermore,
— P(XO = 20) =0 1mp11es P(XO = io,Xl = Zl) = 0,
— and in case P(Xo =ig) > 0 from (4) we can conclude that
. . . . . 4
P(XO = Zo,Xl = Zl) = P(XO = Zo)P(X1 =11 | XO = Zo) (Z) aiopioh .
o Therefore
0, if ay, =0,
P(Xo =ig, X1 =i1) = o
Qi Pigiq » if a4, >0,

i.e., we showed that (3) also holds for the case n = 1.
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e Now assume that (3) holds for some n =k —1 > 1.
— By the monotonicity of probability measures (see statement 2 in Theorem WR-2.1)
P(XO = 2.07X1 = 2.17 ... ,Xk,]_ = ik,]_) =0 immediately 1mp11es
P(XO Z’io,Xl Z’il,...,Xk :’lk) =0.
— On the other hand if P(X¢ = 49, X1 = 41,--.,Xp—1 = ig—1) > 0, then
P(Xo =i, X1 =%1,--., X = ig)
= P(X() = i(),Xl = il, .. -;Xk—l = ik_l)P(Xk =i | Xk—l = ik—l; e ,X() = io)
= @yPigiy -+ - Pip_oi;_1Pir_1ix -

e Thus, (3) also holds for n = k and hence for all n € N. O

Corollary 2.1 Let {X,,} be a Markov chain. Then,
P(Xn =in | Xn-1=tln-1,..., X0 = iO) = P(Xn =in | Xn-1= 7:n—l) (5)

holds whenever P(X,,_1 =in_1,...,Xo =i9) > 0.

Proof

o Let P(X,,—1 =ip—1,...,X0 =1g) and hence also P(X,,—1 = i,—1) be strictly positive.
e In this case (3) yields

P(Xn = 7:"7an1 = infl)
P(Xn—l = in—l)
Z P(Xn:ina---;XOZiO)

104ee0yin—2€EE
Z P(Xn—1=in—1;---7X0:i0)
205e.0sin—2€EE
> igPigiy - Pinsin-1Pinrin
(3) io,...,in_geE

= = pi'n—lin *
E QioPigiy ++ + Pin_2in_1

iOy---’in—QeE

P(Xn =i | Xno1 = 'in—l) =

e This result and (4) imply (5). O

Remarks

e Corollary 2.1 can be interpreted as follows:

— The conditional distribution of the (random) state X,, of the Markov chain {X,} at “time” n is
completely determined by the state X,,_1 = ¢,_1 at the preceding time n — 1.

— It is independent from the states X,, 2 =i, 2,..., X1 = i1, Xg = 79 observed in the earlier history
of the Markov chain.

e The definition of the conditional probability immediately implies

— the equivalence of (5) and

P(Xn = in;Xn—Q = in—2 e :XO = iO | Xn—l = 2.n—l)
= P(Xn =in | Xn1= infl) P(Xn72 =ip-2...,X0 = 1o | Xpo1= 7:nfl) . (6)

— The conditional independence (6) is called the Markov property of {X,,}.
e The definitions and results of Section 2.1.1 are still valid,
— if instead of a finite state space E = {1,2,...,¢} a countably infinite state space such as the set
of all integers or all natural numbers is considered.

— It merely has to be taken into account that in this case & and P possess an infinite number of
components and entries, respectively.
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2.1.2 Examples

1. Weather Forecast
(see. O. Haggstrom (2002) Finite Markov Chains and Algorithmic Applications. CU Press, Cambridge)

e We assume to observe the weather in an area whose typical weather is characterized by longer periods
of rainy or dry days (denoted by rain and sunshine), where rain and sunshine exhibit approximately
the same relative frequency over the entire year.

— It is sometimes claimed that the best way to predict tomorrow’s weather is simply to guess that
it will be the same tomorrow as it is today.

— If we assume that this way of predicting the weather will be correct in 75% of the cases (regardless
whether today’s weather is rain or sunshine), then the weather can be easily modelled by a Markov
chain.

— The state space consists of the two states 1 =rain and 2 = sunshine.

— The transition matrix is given as follows:

0.75 0.25
P-— . (7)
0.25 0.75

e Note that a crucial assumption for this model is the perfect symmetry between rain and sunshine in
the sense that the probability that today’s weather will persist tomorrow is the same regardless of
today’s weather.

e In areas where sunshine is much more common than rain a more realistic transition matrix would be
the following;:

0.5 0.5
P = 8)
0.1 0.9

2. Random Walks; Risk Processes

e Classic examples for Markov chains are so—called random walks. The (unbounded) basic model is
defined in the following way:

— Let Z,Z1,25,...: Q — Z be a sequence of independent and identically distributed random vari-
ables mapping to Z = {...,-1,0,1,...}.
— Let Xo : Q@ — Z be an arbitrary random variable, which is independent from the increments
Z1,2Z, ..., and define
Xpn=Xn1+2Z,, VYn>1. 9)

— Then the random variables Xy, X1, ... form a Markov chain on the countably infinite state space
E = 7 with initial distribution & = (ay,az,...)", where a; = P(Xp = i). The transition
probabilities are given by p;; = P(Z = j —i).

e Remarks

— The Markov chain given in (9) can be used as a model for the temporal dynamics of the solvability
reserve of insurance companies. Xy will then be interpreted as the (random) initial reserve and
the increments Z,, as the difference Z,, = a — Z], between the risk—free premium income a > 0 and
random expenses for the liabilities Z], in time period n — 1.

— Another example for a random walk are the total winnings in n roulette games already discussed

in Section WR~1.3. In this case we have Xy = 0. The distribution of the random increment Z is
given by P(Z =4)=1/2fori=-1,1and P(Z =4)=0forie Z\ {-1,1}.
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3. Queues

e The number of customers waiting in front of an arbitrary but fixed checkout desk in a grocery store
can be modelled by a Markov chain in the following way:
— Let Xy = 0 be the number of customers waiting in the line, when the store opens.
— By Z,, we denote the random number of new customers arriving while the cashier is serving the
nth customer (n =1,2,...).
— We assume the random variables Z, Z1, Zs,...: @ — {0,1,...} to be independent and identically
distributed.

e The recursive definition
Xp =max{0,X,1+ Z, — 1}, Vn>1, (10)

yields a sequence of random variables Xg, X1,...Q — {0,1,...} that is a Markov chain whose transition
matrix P = (p;;) has the entries

P(Z=j+1-1), ifj+1>i>00rj>i=0,
pij = P(Z=0)+P(Z=1), ifj=i=0,
0, else

e X, denotes the random number of customers waiting in the line right after the cashier has finished
serving the nth customer, i.e., the customer who has just started checking out and hence already left
the line is not counted any more.

4. Branching Processes

e We consider the reproduction process of a certain population, where X,, denotes the total number of
descendants in the nth generation; Xo = 1.

e We assume that
Xn_1
Xn = Z Zn,'i: (11)
i=1

where {Z,;, n,i € N} is a set of independent and identically distributed random variables mapping
into the set E = {0,1,...}.
o The random variable Z, ; is the random number of descendants of individual 7 in generation (n — 1).

e The sequence X, X1,...: Q2 — {0,1,...} of random variables given by Xy = 1 and the recursion (11)
is called a branching process.

e One can show (see Section 2.1.3) that Xo, X1, ... is a Markov chain with transition probabilities

i
P(E Zl,kzj), ifi>0,
k=1
Pij =9 1, ifi=j=0,
0, else.

5. Cyclic random walks

e Further examples of Markov chains can be constructed as follows (see E. Behrends (2000) Introduction
to Markov Chains. Vieweg, Braunschweig, p.4).

— We consider the finite state space E = {0,1,...,999}, the initial distribution

o =(1/16,4/16,6/16,4/16,1/16,0,...,0) " (12)
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and the transition probabilities

1
g if (G+1000—4) mod (1000) € {1,....6},
Dij =
0, else.
— Let Xo,Z1,Z2,...:Q — {0,1,...,999} be independent random variables, where the distribution
of X is given by (12) and
P(Zi=i)=P(Zy=i)=...=1/6, Vi=1,...,6.

— The sequence X, X1,...22 = {0,1,...,999} of random variables defined by the recursion formula
X, = (Xn-1+ Z,) mod (1000) (13)

for n > 1 is a Markov chain called cyclic random walk.

e Remarks

— An experiment corresponding to the Markov chain defined above can be designed in the following
way. First of all we toss a coin four times and record the frequency of the event “versus”. The
number xg of these events is regarded as realization of the random initial state Xo; see the Bernoulli
scheme in Section WR-3.2.1.

— Afterwards a dice is tossed n times. Die outcome z; of the ith experiment, is interpreted as a
realization of the random “increment” Z;; i =1,...,n.

— The new state z,, of the system results from the update of the old state z,_1 according to (13)
taking z,_; as increment.

— If the experiment is not realized by tossing a coin and a dice, respectively, but by a computer—based
generation of pseudo—random numbers xg, 21, 22, . .. the procedure is referred to as Monte—Carlo
simulation.

— Methods allowing the construction of dynamic simulation algorithms based on Markov chains will
be discussed in the second part of this course in detail; see Chapter 3 below.

2.1.3 Recursive Representation

e In this section we will show
— how Markov chains can be constructed from sequences of independent and identically distributed
random variables,

— that the recursive formulag (9), (10), (11) and (13) are special cases of a general principle for the
construction of Markov chains,

— that vice versa every Markov chain can be considered as solution of a recursive stochastic equation.
e Asusual let £ = {1,2,...,£} be a finite (or countably infinite) set.

— Furthermore, let (D, D) be a measurable space, e.g. D = R? could be the d—dimensional Euclidian
space and D = B(R?) the Borel o—algebra on R¢, or D = [0,1] could be defined as the unit interval
and D = B([0,1]) as the Borel o—algebra on [0, 1].

— Let now Z1,Zs,...: 2 = D be a sequence of independent and identically distributed random variables
mapping into D, and let Xy : Q@ — E be independent of Z;, Z, . . ..
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— Let the random variables X1, Xs,...: £ — E be given by the stochastic recursion equation
X = (p(Xn—la Zn) ) (14)

where ¢ : E x D — E is an arbitrary measurable function.

Theorem 2.2

o Let the random variables Xo, X1,...: Q — E be given by (14).

e Then
P(Xn :Zn | Xn—l = in—l;---aXO = lO) = P(Xn = ln | Xn—l = in—l)

holds for anyn > 1 and ig,i1,...,in € E such that P(X,—1 = ip_1,...,X0 = 40) > 0.

Proof
e Formula (14) implies that

PXp=tin| Xn1=tn1,---,X0=1t0) = Plp(Xn-1,2Zn) =tin|Xn-1=t%n-1,--.,X0=r10)
= P(‘P(zn—lazn) =in | Xn—l = in—l; s ;XO = 7/0)
= P(‘;O(infla Zn) = ’Ln) )

— where the last equality follows from the transformation theorem for independent and identically
distributed random variables (see Theorem WR-3.18),

— as the random variables Xy,...,X,,_1 are functions of Z,...,Z,_1 and hence independent of
@(in—la Zn)
e In the same way one concludes that
P(So(in—lazn) = Zn) = P(‘p(in—lazn) = in | Xn—l = in—l)
= P(‘;D(Xn—lazn) =ip | Xpo1= in—l)
= P(Xn =ip | Xno1= in—l) . 0
Remarks
e The proof of Theorem 2.2 yields that the conditional probability
Dij :P(Xn :.7 | anl :l)
is given by pi; = P(p(i, Zn) = j)-
e p;; does not dependent on n, as the “innovations” Z,, are identically distributed.
e Moreover, the joint probability P(Xq = ig, X1 = i1,--.,Xn = in) is given by
P(XO = iO)Xl = 7:1) .. ';Xn = ln) = Qg Pigiy + + * Pin_1in » (15)

where Qi = P(XO = io).

e Consequently, the sequence Xy, X1, ... of random variables given by the recursive definition (14) is a
Markov chain following the definition given in (3).

Our next step will be to show that vice versa, every Markov chain can be regarded as the solution of a recursive
stochastic equation.
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o Let Xo,X1,...: Q = E be a Markov chain with state space E = {1,2,...,/¢}, initial distribution & =
(a1,...,a¢) " and transition matrix P = (p;;).
e Based on a recursive equation of the form (14) we will construct a Markov chain X{, X, ... with initial

distribution a and transition matrix P such that
P(X()=i0,...,Xn:in):P(X(l):io,...,X;L=in), Vio,...,ineE (16)
for all n > 0:

1. We start with a sequence Zgy, Z1, ... of independent random variables that are uniformly distributed
on the interval (0, 1].

2. First of all the E—valued random variable X| is defined as follows:

k—1 k
Xp=k ifandonlyif Zoe (Y ai) ai,
=1 =1

forall k=1,...,¢, i.e.
¢ k—1 k
X(') = Zk][(z a; < Zo S Zaz) . (17)
k=1 i=1 i=1
3. The random variables X, X}, ... are defined by the recursive equation

X;L = (P( ;717 Zn) ’ (18)

where the function ¢ : E x (0,1] — E is given by

¢ k—1 k
p(i,2z) = Z k][(Zp,-j <z< sz’j) . (19)
k=1  j=1 j=1

o It is easy to see that the probabilities P(X{ = 49, X = i1,...,X,, = ip) for the sequence {X] } defined by
(17)—(18) are given by (3), i.e., {X]} is a Markov chain with initial distribution e and transition matrix P.

Remarks
o If (16) holds for two sequences {X;} and {X/} of random variables, these sequences are called stochas-
tically equivalent.

e The construction principle (17)—(19) can be exploited for the Monte—Carlo simulation of Markov chains
with given initial distribution and transition matrix.

e Markov chains on a countably infinite state space can be constructed and simulated in the same way.
However, in this case (17)—(19) need to be modified by considering vectors @ and matrices P of infinite
dimensions.

2.1.4 The Matrix of the n—Step Transition Probabilities

o Let Xo,X1,...: Q > E be a Markov chain on the state space E = {1,2,...,£} with initial distribution
a = (ai,...,a;)" and transition matrix P = (p;;).

e For arbitrary but fixed n > 1 and 4, j € E the product p;;, pi,i, - - - Pi,,_,;j can be interpreted as the probability
of the pathi — i1 — ... 2> i, 1 — j.
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e Consequently, the probability of the transition from state i to state j within n steps is given by the sum

Pg;) = Z Diiy Diyio - - - Dip_175> (20)
i1yeerin_1€E
where
B =P(X,=j|Xo=4) if P(Xo=1)>0. (21)
Remarks

e The matrix P(™ = (pg;l))i,j:lw,g is called the n—step transition matriz of the Markov chain {X,}.
e If we introduce the convention P(®) = I, where I denotes the £ x {—dimensional identity matrix, then
P(™ has the following representation formulae.

Lemma 2.1 The equation
P — pn (22)

holds for arbitrary n = 0,1,... and thus for arbitrary n,m =0,1,...

prtm) — p(p(m), (23)
Proof Equation (22) is an immediate consequence of (20) and the definition of matrix multiplication. O
Example (Weather Forecast)
e Consider E = {1,2}, and let
1—
P = p p
po1-p

be an arbitrarily chosen transition matrix, i.e. 0 < p,p' < 1.

e One can show that the n-step transition matrix P(") = P" is given by the formula

1 P p +(1—p—p')" p P

P" =
/ /
p+p pop p+p -p P

Remarks

e The matrix identity (23) is called the Chapman-Kolmogorov equation in literature.

e Formula (23) yields the following useful inequalities.

Corollary 2.2 For arbitrary n,m,r =0,1,... and i,j,k € E,

pe ™ > pl i (24)
and
P > D p) i (25)

Furthermore, Lemma 2.1 allows the following representation of the distribution of X,,. Recall that X, denotes
the state of the Markov chain at step n.
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Theorem 2.3

o Let Xo,X1,... be a Markov chain with state space E = {1,...,L}, initial distribution o and one—step
transition matriz P.

o Then the vector o, = (n1,...,0ne) | of the probabilities a,; = P(X, = 1) is given by the equation

a) =a'P". (26)

Proof
e From the formula of total probability (see Theorem WR~2.6) and (21) we conclude that
P(Xa=§)=Y aiP(Xn=j|Xo=0)= aipl,
i€E i€cE
where we define P(X,, =j| Xo=14)=0if a; = P(Xo =14) =0.

e Now statement (26) follows from Lemma 2.1. O

Remarks
e Due to Theorem 2.3 the probabilities a,; = P(X,, =) can be calculated via the nth power P" of the
transition matrix P.

e In this context it is often useful to find a so—called spectral representation of P™. It can be constructed
by using the eigenvalues and a basis of eigenvectors of the transition matrix as follows. Note that there
are matrices having no spectral representation.

e A short recapitulation

— Let A be a (not necessarily stochastic) £ x £ matrix, let ¢,9 # 0 be two f—dimensional (column-)
vectors such that for each of them at least one of their components is different from 0, and let 8 be an
arbitrary (real or complex) number.

—If
Ap=60¢p and ' A=6y, respectively, (27)

then 6 is an eigenvalue of A and ¢ and v are left and right eigenvectors (for 6).
— As (27) is equivalent to

(A-6MHep=0 and W (A —6I)=0", respectively,

0 is an eigenvalue of A if and only if 8 is a solution of the so-called characteristic equation

det(A —6I) =0. (28)
— Note that the determinant in (28) is a polynomial of order £. Thus, the algebraic equation (28) has ¢
possibly complex solutions 61, ...,60,. These solutions might not be all different from each other.
— W.l.o.g. we may assume the eigenvalues 64, .. .,68; to be ordered such that

|01] > [62] > ... > [6e]-

— For every eigenvalue 6; left and right eigenvectors ¢; and 1);, respectively, can be found.
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— Let @ = (¢, --,¢,) be the £ x £ matrix consisting of the right eigenvectors ¢y, ..., ¢, and let

be the £ x £ matrix formed by the left eigenvectors 4, ...,,.

— By definition of the eigenvectors

A® = & diag(0), (29)
where 8 = (61,...,0,)" and diag(@) denotes the diagonal matrix with diagonal elements 6y,...,8;.
o If the eigenvectors are ¢y, ..., ¢, linearly independent,

— the inverse ® ! exists and we can set ¥ = &1,

— Moreover, in this case (29) implies
A = & diag(0)® ! = ® diag(0)¥

and hence
A" = &(diag(0))"® " = ®(diag(0))"¥.

— This yields the spectral representation of A:
‘
A" =Y R (30)
i=1

Remarks
e An application of (30) for the transition matrix A = P results in a simple algorithm calculating the
nth power P” of (26).

e For the necessary calculation of the eigenvalues and eigenvectors of P standard software like MAPLE,
MATLAB or MATHEMATICA can be used.

e A striking advantage of the spectral representation (30) can be seen in the fact that the complexity of
the numerical calculation for P™ stays constant if n is increased.

e However, the derivation of (30) requires the eigenvectors ¢, ..., ¢, to be linearly independent. The
next lemma gives a sufficient condition for the linear independence of eigenvectors.

Lemma 2.2

o If all eigenvalues 01,...,0; of A are pairwise distinct, every family of corresponding right eigenvectors
&1y, 0, 15 linearly independent.
o Furthermore, if the left eigenvectors ¥, ...,1, are given by ¥ = ¢~ ' it holds that
1 ifi=y,
1/)2— ¢j = L (31)
0 ifi#j.

Proof

e The first statement will be proved by complete induction.

— As every eigenvector ¢; has at least one non-zero component, a;¢; = 0 implies a; = 0.
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— Let now all eigenvalues 61, ...,0; of A be pairwise different and let the eigenvectors ¢,,...,¢;_;
be linearly independent for a certain k& < £ .
— In order to show the independence of ¢y, ..., ¢, it suffices to show that
k
Z“J‘ $;=0 (32)
j=1
implies a; = ... =ay = 0.

— Let ay,...,a be such that (32) holds. This also implies

k k
0=A0=) ajAd; =) a;f;;.
j=1 j=1

— The same argument yields

k k
0= Gk 0= ek Zajqu = ZGkadej
Jj=1

7j=1
and thus
k—1
0="> (6 —6;)a;0;.
j=1
— As the eigenvectors ¢, ..., ¢, _; are linearly independent
(ak — 01)a1 = (9k — (92)@2 =...= ((9k — Gk_l)ak_l =0
and hencea; =as =...=ap_1 =0as O, #0; for 1 <j<k—-1.
— Now (32) immediately implies a = 0.
e If the eigenvalues 61, ...,6; of A are pairwise distinct,

— the ¢ x £ matrix ® consists of £ linearly independent column vectors,
— and thus & is invertible.

— Consequently, the matrix ¥ of the left eigenvectors is simply the inverse ¥ = &', This immedi-
ately implies (31). O

2.2 Ergodicity and Stationarity
2.2.1 Basic Definitions and Quasi-positive Transition Matrices

e If the Markov chain Xg, X1, ... has a very large number £ of possible states, the spectral representation (30)
of the n-step transition matrix P(") = P" discussed in Section 2.1.4 turns out to be inappropriate in order
to calculate

— the conditional probabilities pgl) = P(X, =j | Xo =) of the random state X,
— as well as the (unconditional) probabilities P(X,, = j) = Ele aipgf) of X,
after n > 1 (time-) steps.

e However, there are certain conditions

)

— ensuring the existence of the limits lim,,_, pz(]" and lim,,_,, P(X,, = j), respectively, as well as their

equality and independence of 7,
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(M) — lim P(X,, = j) as approzimation of pg-b) and

— thus justifying to consider the limit m; = lim p;;
n— 00 n—0o0

P(X,=j)ifn>1.
This serves as a motivation to formally introduce the notion of the ergodicity of Markov chains.

Definition  The Markov chain Xy, X;,... with transition matrix P = (p;;) and the corresponding n-step
transition matrices P(") = (pz(;l)) (= P™) is called ergodic if the limits

;= lim p{}) (33)
1. exist for all j € E
2. are positive and independent of 7 € E
3. form a probability function w = (m1,...,m) ", i.e. Yiep™ =1

Example (Weather Forecast)

e In order to illustrate the notion of an ergodic Markov chain we return to the simple example of weather
forecast already discussed in Sections 2.1.2 and 2.1.4.

e Let E={1,2} and

an arbitrary transition matrix such that 0 < p,p’ < 1.

e The n-step transition matrix P(® = P™ is given by

1 1_ _ \n —
pr — N La-p Ip) p P
p+p p p p+p —-p P

e If p+p' <2, this and (26) imply

1 !
lim P" = PP
n—oo p+p PP
and , T
7= lim an:(p_’ L) : (34)
n—oo p+p  p+p

respectively. Note that the limit distribution 7 in (34) does not depend on the choice of the initial
distribution a (= ay).

e However, if p + p' = 2, then

pn— P if nis odd,
I ifniseven.

The ergodicity of Markov chains on an arbitrary finite state space can be characterized by the following notion
from the theory of positive matrices.
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Definition

e The ¢ x £ matrix A = (a;;) is called non-negative if all entries a;; of A are non-negative.

e The non-negative matrix A is called quasi-positive if there is a natural number ng > 1 such that all
entries of A™ are positive.

Remark If A is a stochastic matrix and we can find a natural number ng > 1 such that all entries of A™° are
positive, then it is easy to see that for all natural numbers n > ng all entries of A™ are positive.

Theorem 2.4 The Markov chain Xo, X1, ... with state space E = {1,...,£} and transition matriz P is ergodic
if and only if P is quasi-positive.

Proof

e First of all we show that the condition

(no)
0 35
min s > @

for some ng € N is sufficient for the ergodicity of {X,}.
(n) (n

ij

Y =S punl?)
keE

— Let m(") = minepp;; and M; (") — max;ep pi™. The Chapman-Kolmogorov equation (23) yields

and thus
(n+1) = mlnp(n+ ) = mln szkpk n) > manp,k mmpl(J) = mgn),

ie., mgn) < m§"+1) for all n > 0, where we define P(® = I. A similar argument shows that
M™ > M"Y for all n > 0.
— Consequently, in order to show the existence of the limits 7; in (33) it suffices to show that for all
jeE
lim (M{" —m{™) =0. (36)

n—oo

— For this purpose we consider the sets E' = {k € E : psno) > pgng)} and E" = E\ E' for arbitrary
but fixed states ig, jo € E.

~ Let a = min; jep p{7® > 0. Then

2l =) = 1= 30wl = 3 o <1

keE’ keE" keE’

> Wiy —piid) = = 30 Wiy —pd))

keE" keE’

and
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— By another application of the Chapman—Kolmogorov equation (23) this yields for arbitrary n > 0

and j € FE
+ +
Pt = plretm = 3 () - pl)pl)

keE

= D - e+ D ) - B )ely
kEE' k€E"

< YO )M+ 3 () -
keE' kc€E"

_ (n0) (no) ()

— Z(pz(:lg) pxbg))M(n) Z(pz:;c) pjonlg) n
ke E' kEE'

= 2 (o - P (4" - my)
keE'

< (1=ta) (M —m{v).

— As a consequence, M ;"O’Ln) - m§"°+") < (M ](n) - mg-n))(l — fa) and by induction one shows that

forany k > 1
(kno+n) (kno+n) (n) (n) k
M; 0 —m; 0 S(Mj —m; )(1 —£a)". (37)
— This ensures the existence of an (unbounded) sequence n1,ns,... such that for all j € E
lim (M{™ —m{™)) = 0. (38)
k—o0 '7

— By the monotonicity of the differences M ™ — m{™ in n, (38) holds for every sequence n1,no, ...

of natural numbers.
— This proves (36).

e The limits 7; are positive because

m; = lim p(n) > lim m(") > m("O) >a>0.

n—oo ~ n—oo

) (n)

o Furthermore, ) jeB T = > jer iMnoo pz(]" =limp, 400 ) s jepPi; = 1 as the sum consists of finitely

many summands

e It follows immediately from minjcg 7; > 0 and (33) that the condition (35) is necessary for ergodicity
if one takes into account that the state space E is finite. O

Remarks

e As the limits 7; = limp_o0o pg”) of ergodic Markov chains do not depend on 7 and the state space
E ={1,...,¢} is finite, clearly

lim aT =a' lim P™W =xT.
n—o0 n—o0

e The proof of Theorem 2.4 does not only show the existence of the limits 7; = lim, p(J) but also
yields the following estimate for the rate of convergence: The inequality (37) implies

sup |p§;-b) — ;| < sup (M](") - mg-")) < (1 — ta)l/mol (39)
ijeE jEE
and hence
sup |an; — i < (1 — La) Ln/nol | (40)
JEE

where [n/ng]| denotes the integer part of n/no.



2 MARKOV CHAINS 20

e Estimates like (39) and (40) are referred to as geometric bounds for the rate of convergence in literature.

Now we will show that the limits 7; = lim, pg”) can be regarded as solution of a system of linear equations.
Theorem 2.5

o Let Xo,X1,... be an ergodic Markov chain with state space E = {1,...,£} and transition matriz P = (p;;).

e In this case the vector m = (m1,...,m) " of the limits m; = lim,,_, pg‘) is the uniquely determined (positive)
solution of the linear equation system

m =Y mpij, JEE, (41)
i€E

when additionally the condition ), pm; =1 is imposed.

Proof
e The definition (33) of the limits 7; and the Chapman-Kolmogorov equation (23) imply by changing
the order of limit and sum that
(33) . (n) (23) .. (n—-1)  _ . (n—1)  (33) .
mp = lim p) = lim Y py Vp =) lim opiy Up = ) -
= iCE iCE
e Suppose now that there is another solution #' = (m,...,m;)" of (41) such that 7§ = Y, mips; for
allje Eand ) ;pm; = 1.
e By induction one easily shows
m=Y mpy, JEE, (42)
i€E
foralln=1,2,....
e In particular (42) implies
(42) .. . (33)
my = Jim 3w = lim p = o
i€E iCE
Remarks

e In matrix notation the linear equation system (41) is of the form 7" = 7 P.

e If the number £ of elements in the state space is reasonably small this equation system can be used for
the numerical calculation of the probability function 7; see Section 2.2.5.

e In case £ > 1, Monte—Carlo simulation turns out to be a more efficient method to determine 7; see
Section 3.3.

2.2.2 Estimates for the Rate of Convergence; Perron—Frobenius—Theorem

e Recall:

— If {X,} is a Markov chain whose 1-step transition matrix P has only strictly positive entries p;;,
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— then the geometric bound for the rate of convergence to the limit distribution @ = (7, ..., m) " derived
in (40) is given as follows:
max |an; — ;| = O((1 — £a)"), (43)
J

where a = min; jeg pi; > 0.

e Whenever the minimum a of the entries p;; of the transition matrix P is close to 0 the bound in (43) is not
very useful.

e However, in some cases the basis 1 — £a of the convergence estimate (43) can be improved.

Example (Weather Forecast)
e Let E = {1,2} and

, where 0 < p,p’' < 1.

e In Section 2.2.1 we showed that

— the n-step transition matrix P(®) = P” is given by

1 P p 1—p—p)" P -p
Pn=p+p’ ! +( pzjrp’p) oy
pop -p' P
— and thus
1 /
(pe=) dmer=— 7
n—oo p+p p/ P
— Consequently
1—p—2p )" _
propo= L2220 (2T (Lo po ), (a4)
p+p _p/ p'

where p +p' > 2a = 2min; jep p;; and hence |1 —p—p'| <1—-2aif p#p'.
e Remarks

— The basis |62 = |1 —p — p'| of the rate of convergence in (44) is the absolute value of the second
largest eigenvalue 0> of the transition matrix P,

— as the characteristic equation

(det(P — 1) :) 1—p—8)1—p —0)—pp' =0

of P has the two solutions ¢y =1 and . =1—p—p'.

In general geometric estimates of the form (44) for the rate of convergence can be derived by means of the following
so—called Perron—Frobenius theorem for quasi-positive matrices.

Theorem 2.6

o Let A be a quasi-positive £ x £ matriz with eigenvalues 0y, ...,60, such that [61] > ... > |0,].
e Then the following holds:
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(a) The eigenvalue 6 is real and positive.
(b) 61 > |0;]| for alli=2,...,¢,

(¢) The right and left eigenvectors ¢, and ¥, of 01 are uniquely determined up to a constant factor and
can be chosen such that all components of ¢, and 1, are positive.

A proof of Theorem 2.6 can be found in Chapter 1 of E. Seneta (1981) Non-Negative Matrices and Markov Chains,
Springer, New York.

Corollary 2.3 Let P be a quasi-positive transition matriz. Then

o0 =1,¢,=e andp, =7, wheree=(1,...,1)" and ™ = (7y,...,m)"

o |0;| <1foralli=2,...,¢.

Proof

e As P is a stochastic matrix
— obviously Pe = e and (41) implies 7P =7 .
— Thus 1 is an eigenvalue of P and e and 7w are right and left eigenvectors of this eigenvalue,
respectively.

e Let now be

— 0 an arbitrary eigenvalue of P and let ¢ = (¢1,...,¢¢) " an eigenvector corresponding to 6.
— By definition (27) of § and ¢

¢
4 |¢i|§2pz’j|¢j|ﬁfjn€a]§|¢j|, VieE.
i=1

— Consequently |6] < 1 and therefore 8; = 1 is the largest eigenvalue of P.
e Theorem 2.6 now implies |0;] < 1fori=2,..., L. O

Corollary 2.3 yields the following geometric convergence estimate.

Corollary 2.4 Let P be a quasi-positive transition matriz such that all eigenvalues 61, ...,0; of P are pairwise
distinct. Then
sup | — mj| = O(|62]") . (45)
JEE
Proof
e Corollary 2.3 implies
¢
Jim Z;ewmi =0, (46)
=

as [6;| <lforalli=2,... ¢

e Furthermore, Corollary 2.3 implies §; = 1 as well as ¢; = (1,...,1)T and 4, = 7 being the right and
left eigenvectors of 6, respectively.
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e Taking into account the spectral representation (30) of P i.e.,

¢
=D 0o
=1
it is easy to see that
' ,
Pr—| 1 | =P 0oy =) 6o .
i=2
a7
e As @ = a"P" (see Theorem 2.3) this together with (46) shows (45). a

Example (Reaching a Consensus)
see C. Hesse (2003) Angewandte Wahrscheinlichkeitstheorie. Vieweg, Braunschweig, p. 349

e A committee consisting of £ members has the mandate to project a certain (economical) parameter
# € R, one could think of the German Council of Economic Experts projecting economic growth for
the next year.

— In a first step each of the £ experts gives a personal projection for u, where the single projection

results are denoted by p(o) 7/7%0)_

— What could be a method for the experts to settle on a common projection, i.e. reach a consensus?

— A simple approach would be to calculate the arithmetic mean (ﬁ§0) +...+ ;’IEO))

the different levels of expertise within the group.

/¢, thus ignoring

e Alternatively, every committee member could modify his own projection based on the projections by
his £ — 1 colleagues and his personal assessment of their authors expertise.

— For arbitrary 4,5 € {1,...,£} the expert i attributes the ,trust probability” p;; to the expert j
such that

pi; >0 and Y p;=1, Vije{l,...0

~(0)

— and expert ¢ modifies his original projection p; ’ replacing it by

(1) sz] N(O)

— In most cases the modified projections ,u( ... , ZE,(Z ) will still be different from each other. Therefore
the procedure is repeated until the dlfferences are sufficiently small.
e Theorem 2.4 ensures
— that this can be achieved if the modification procedure is repeated often enough,

— as according to Theorem 2.4 the limits

¢
s ~(n) _ ~(0)
Jim 5 =) il (47)
=1
exist and do not depend on ¢,
— where the vector w = (m1,...,m) " of the limits 7; = lim, 00 pgb) is the (uniquely determined)

solution of the linear equation system (41), i.e. 7" = 7w "P with P = (p;;).
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e The equality (47) can be seen as follows:

L
. ~(n) _ A(n 1) 4 (n) ~
B = S A0 = i 30

lim
— anggop M(O) ZW N(O)

e The consensus, i.e. the common projection of the unknown parameter p, reached by the committee is
given by

4
p=>mi. (48)

Remarks

e For large £ the algebraic solution of the linear equation system (41) can be difficult.

e In this case the estimates for the rate of convergence in (47) become relevant for the practical imple-
mentation of the method to reach a consensus described in (47).

e We consider the following numerical example.
— Let £ =3 and

(49)

OIN &= DN
= = O
Ut N O W

— The entries of this stochastic matrix imply that the third expert has a particularly high reputation
among his colleagues.

— The solution 7 = (w1, 72, 73) " of the corresponding linear equation system (41) is given by

21 12 44

leﬁ, 71'2:%, 71'3:%,

9 of the third expert with the outstanding reputation is most influential.

i.e. the projection i,
e The eigenvalues of the transition matrix given in (49) are 6; =1, 6, = 1/8 and 03 = 1/12.

e The ,basis” in the rate of convergence given by (43) is

3 5
1—-3a= 1—3Jmir§ pij =1-— 3= 3’

whereas Corollary 2.4 yields the following substantially improved geometric rate of convergence

ze{1 vy B ’u" | O(162[")

where 6 = 1/8 denotes the second largest eigenvalue of the stochastic matrix P given by (49).
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2.2.3 Irreducible and Aperiodic Markov Chains

e Recall

— In Theorem 2.4 we characterized the ergodicity of the Markov chain Xy, X1, ... by the quasi-positivity
of its transition matrix P.

— However, it can be difficult to show this property of P directly, especially if £>> 1.

e Therefore, we will derive another (probabilistic) way to characterize the ergodicity of a Markov chain with
finite state space. For this purpose we will need the following notion.

— For arbitrary but fixed states i,j € E we say that the state j is accessible from state i if pgb) > 0 for
some n > 0 where P(®) = I. (notation: i — j)

— Another (equivalent) definition for accessibility of states is the following:

— Let 7; = min{n > 0 : X,, = j} the number of steps until the Markov chain {X,} reaches the state
J € E for the first time. We define 7; = oo if X, # j for all n > 0.

Theorem 2.7 Let i € E be such that P(Xo = i) > 0. In this case j is accessible from i € E if and only if
P(Tj<OO|X0=i)>0.

Proof
e The condition is obviously necessary because
{Xn=j} C{r; <n} C{r < oo} and thus 0< pg-b) < P(15 < oo | Xo = 1)

for some n > 0 if j is accessible from i.

e On the other hand if 7 # j and pg-l) = 0 for all n > 0, then

P(T]’<OO|X0:i):nli_>rréoP(Tj<n|X0:i)

- hm.P(Ij{szj}‘szi)

n—00
3 SR
. o T k) _
< Jm ) P =i Xo=0) = lim ) py =0. 0

Remarks

e The property of accessibility is
— transitive, i.e., i = k and k — j imply that i — j.

— This is an immediate consequence of the inequality p§;+m) > pE;)pch) (see Corollary 2.2) and of
the definition of accessibility.

— Moreover, in case i — j and j — i we say that the states i and j communicate. (notation: i<»j5)
e The property of communicating is an equivalence relation as
(a) i (reflexivity),
(b) i<»j if and only if j<»i (symmetry),
(¢c) i+>k and k<»j implies i<»j (transitivity).
e As a consequence,

— the state space E can be completely divided into disjoint equivalence classes with respect to the
equivalence relation <.



2 MARKOV CHAINS 26

— The Markov chain {X,} with transition matrix P = (p;;) is called irreducible if the state space E
consists of only one equivalence class, i.e. i<+j for all i,j € E.

Examples

e The definition of irreducibility immediately implies that the 2 x 2 matrices

P _ 1/2 1/2 d Py 1/2 1/2
1/2 1/2 1/4 3/4

are irreducible.
e On the other hand the 4 x 4 block matrix P consisting of P; and P,

P, 0
0 P,

P=

is not irreducible.

Besides irreducibility we need a second property of the transition probabilities, namely the so-called aperiodicity,
in order to characterize the ergodicity of a Markov chain in a simple way.

Definition

o The period d; of the state i € E is given by d; = ged{n > 1: pgz" ) S 0} where ,,gcd” denotes the greatest
common divisor. We define d; = oo if pgf) =0foralln>1.

e A state i € E is said to be aperiodic if d; = 1.

e The Markov chain {X,} and its transition matrix P = (p;;) are called aperiodic if all states of {X,}
are aperiodic.

We will now show that the periods d; and d; coincide if the states 4,j belong to the same equivalence class of
communicating states. For this purpose we introduce the notation i — j[n] if pg-b) > 0.
Theorem 2.8 If the states i,j € E communicate, then d; = d;.

Proof

If j — j[n], ¢ —» j[k] and j — i[m] for certain k,m,n > 1, then the inequalities from Corollary 2.2
imply that i — i[k + m] and i — i[k + m + n].
Thus, k£ +m and k + m + n are divisible by d;.

e As a consequence the difference n = (k + m + n) — (k + m) is also divisible by d;.
(n)

e This shows that d; is a common divisor for all natural numbers n having the property that p;;” > 0,
i.e. dz S dj.
e For reasons of symmetry the same argument also proves that d; < d;. O

Corollary 2.5 Let the Markov chain {X,} be irreducible. Then all states of {X,} have the same period.
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In order to show

o that the characterization of an ergodic Markov chain (see Theorem 2.4) considered in Section 2.2.1 is
equivalent to the Markov chain being irreducible and aperiodic,

e we need the following elementary lemma from number theory.

Lemma 2.3 Let k =1,2,... an arbitrary but fized natural number. Then there is a natural number ng > 1 such
that

{ng,no +1,n9 + 2,...} C {n1k + na(k+1); ny,ny > 0}.

Proof

e If n > k? there are integers m,d > 0 such that n — k> = mk +d and d < k.
e Therefore n = (k — d +m)k + d(k + 1) and hence

n e {n1k+n2(k‘+ 1); ni,ng > 0},

i.e., ng = k? is the desired number. O

Theorem 2.9 The transition matrix P is quasi-positive if and only if P is irreducible and aperiodic.

Proof

e Let us first assume the transition matrix P to be irreducible and aperiodic.

— For every i € E we consider the set J(i) = {n >1 :p(m

i > 0} whose greatest common divisor is 1
as P is aperiodic.

— The inequalities from Corollary 2.2 yield

Pt > pl

and hence
n+m € J(i) if n,m € J(i). (50)
e We show that J(7) contains two successive numbers.

— If J(4) did not contain two successive numbers, the elements of J(i) would have a minimal distance
k> 2.

— The consequence would be that mk + d € J(i) for some m = 0,1,...and d = 1,...,k — 1 as
otherwise n = mk for all n € J(i).

— But this is a contradiction to our hypothesis ged(J(i)) = 1.

e Let now ny,ny + k € J(i). Statement (50) then implies also a(ny + k) € J(i) and n + bny € J (i) for
arbitrary a,b € N, where
n=mk+de J(i). (51)

e We will show

— that there are natural numbers a,b € {1,2,...} such that the difference between a(ny + k) € J(i)
and n + bny € J(3) is less than k.
— From (51) we obtain

a(ni+k)—n—>btny =(a-bn +(a—m)k—d
and hencefora=b=m+1

a(ni+k)—n—bni=k—d<k.
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e Therefore, the set J(i) contains two successive numbers.

e Statement (50) and Lemma 2.3 yield that for every i € E there is an n(i) > 1 such that
J(@) D {n(),n(@) +1,...}. (52)
e This result, the irreducibility of P and the inequality (25) in Corollary 2.2, i.e.

P > D p el

imply that for each pair i,j € E of states there is a natural number n(ij) > 1 such that

J(ij) = {n > 0:p{’ > 0} > {n(ij),n(ij) + 1,...},

i.e., P is quasi-positive.

e Conversely, the irreducibility and aperiodicity of quasi-positive transition matrices are immediate con-
sequences of the definitions. O

Remarks

e A simple example for a non—irreducible Markov chain

— can be given by our well-known model for the weather forecast where E = {1,2} and

— If p=0or p’ =0, then the corresponding Markov chain is clearly not irreducible and therefore by
Theorem 2.9 not ergodic.

e It is nevertheless possible that the linear equation system

a'=a'P (53)

has one (or infinitely many) probability solutions ' = (a, as).

— If for example p = 0 and p' > 0, then i = 1 is a so-called absorbing state and o' = (1,0) is the

(uniquely determined) solution of the linear equation system (53).

— If p= 0 and p' = 0, every probability solution &' = (a1, as) solves the linear equation system

(53).
e Now we give some examples for non-aperiodic Markov chains Xg, X;,...: Q = E.

— In this context the random variables Xg, X1,... : @ — FE are not given by a stochastic recur-
sion formula X,, = ¢(X,—1,Z,) of the type (14) where the increments Z;,Zs,... : Q@ — D are
independent and identically distributed random variables.

— We merely assume that the random variables Z;, Zs, ... : 2 — D are conditionally independent in
the following sense.

— Note: As was shown in Section 2.1.3 it is nevertheless possible to construct a Markov chain that
is stochastically equivalent to Xg, Xi,... having independent increments, see the construction
principle considered in (17)—(19).

e Let E and D be arbitrary finite (or countably finite) sets, let ¢ : E x D — E be an arbitrary function
and let Xo,X1,...:Q — E and Z1,Z5,...: Q — D be random variables

— such that
Xn = 0(Xn_1,Zn) (54)
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— and such that for every n € N the random variable Z,, is conditionally independent of the random
variables Z1,...,Zp—1,X0,...,Xpn—2 given X,,_1,
— i.e., for arbitrary n € N, 49,41 ...,ip,_1 € E and ky,...,k, € D

P(Zy =kn, Zn1 =kn-1,...,Z1 = k1, Xp_1 =lin_1,...,X0 = o)
= P(Zn=kn | Xnot = in-1) P(Znor = knotyrs 71 = k1, Xnot = ints -, Xo = i0)

where we define P(Z,, =k, | X1 =ip1) =0if P(X,, 1 =4ip_1) =0.
— Moreover, we assume that for arbitrary ¢ € E and k € D the probabilities P(Z, = k | X,,_1 = 1)
do not depend on n € N.

e One can show that the sequence Xo, X1,...: @ — E recursively defined by (54) is a Markov chain
whose transition matrix P = (p;;) is given by

pij = P(p(i, Z1) = j | Xo =1),

if P(Xo=14)>0forallic E.

Example (Diffusion Model)
see P. Brémaud (1999) Markov Chains, Gibbs Fields, Monte Carlo Simulation, and Queues. Springer, New
York, p.76

e The following simple model describing a diffusion process through a membrane was suggested in 1907
by the physicists Tatiana and Paul Ehrenfest. It is designed to model the heat exchange between two
systems at different temperatures.

— We consider /£ particles, which are distributed between two containers A and B that are permeably
connected but insulated with respect to their environment.

— Assume there are X,,_; = i particles in A at time n — 1. Then one of the ¢ particles in the two
containers is selected at random and transferred into the other container.

— The state X, of the system at time n is hence either X,, = ¢ —1 with probability /¢ (if the selected
particle was in container A) or X,, =i + 1 with probability (£ —3)/£ (if the selected particle was
in container B).

o The random variables Xo,X,...: Q — {0,1,...,£} can thus be defined recursively

— by the stochastic recursion formula
Xn = Xn—l + Zn ) (55)

— where given X,, 1 the random variable Z,, is conditionally independent of the random variables
Zl;---;Zn—I;XO;---;Xn—l with P(Zn = —1) +P(Zn = ].) =1 and

P(Zp=—1|Xpn_1=1i) = % if P(Xp_1=14)>0.

— The entries p;; of the transition matrix P = (p;;) are therefore given by

i
TZ ifi<fandj=i+1,

pij = % ifi>0andj=i-—1,
0 else

— In particular this implies d; = ged{n > 1: p{™ > 0} = 2 for all i € {0,1,...,£}, i.e. the Markov
chain given by (55) is not aperiodic (and thus by Theorem 2.9 not ergodic).
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e In spite of this, the linear equation system

a'=a'P (56)
has a (uniquely determined) probability solution &' = (ay, ..., a,) where
1 L )
@ =57 s Vie {0,1,...,¢}. (57)

Remarks

e The diffusion model of Ehrenfest is a special case of the following class of Markov chains called birth
and death processes with two reflecting barriers in literature.

e The state space considered is E = {0,1,..., ¢} whereas the transition matrix P = (p;;) is given by
0 1
a1 ™1 P
G2 T2 P2
P= ; (58)
qi Ti Di
de—1 Te-1 Pe-1

1 0

where p; >0,¢; >0and p;+¢; +r;=1forallie {1,...,£—1}.

e The linear equation system o' = o' P is of the form

Pi—10i—1 + 1 + gipraipr, 0 <@ <Y,
a; = qioq, ifi =0,

De—10¢—1, ifi = £.

— One can show that
0 pip2-----Pi—1

q192 - --- - q;

a; = ;

— where ag > 0 is defined by the condition Ef:() a; =1, ie.

1 o pe
a0<1+—+—p1 TR 4 1):1
Q1 4142 q1q2 - ----qe

and, consequently,

-1
1 Do
ap=[1+—+ 2L 4 pBP2r-- Pl )
G Qg2 Qg2 ... qQ

e As we assume p; > 0 and ¢; >0 for all i € {1,...,£—1}, birth and death processes with two reflecting
barriers are obviously irreducible.

e If the additional condition r; > 0 is satisfied for some i € {1,...,£—1}, then birth and death processes
with two reflecting barriers are also aperiodic (and hence ergodic by Theorem 2.9).
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2.2.4 Stationary Initial Distributions

e Recall

— If {X,} is an irreducible and aperiodic Markov chain with (finite) state space E = {1,...,£} and
(quasi-positive) transition matrix P = (p;;),

— then the limit distribution w = lim,_, o, o, is the uniquely determined probability solution of the
following matrix equation (see Theorem 2.5):

a'=a'P. (59)
e If the Markov chain {X,} is not assumed to be irreducible there can be more than one solution for (59).
— Moreover, if the initial distribution e von {X,} is a solution of (59), then Theorem 2.3 and (59) imply
ol =ajP=qf

and thus a,, = g for all n > 0.

— Due to this invariance property every probability solution a of (59) is called a stationary initial
distribution of {X,}.

e Conversely, it is possible to show that

— there is a unique probability solution a for the matrix equation (59) if P is irreducible.

— However, this solution a of (59) is not necessarily the limit distribution 7 = lim,,_, o, o, as w does not
exist if P is not aperiodic.

Theorem 2.10

o Let P = (pij)ijer be an irreducible transition matriz, where E = {1,...,£}.
e For arbitrary but fized i,j € E the entries ql(jn) of the stochastic (£ x £)—dimensional matrices Q, = (qZ(J"))
where 1
Q"=E(P+P2+...+P”) (60)
converge to a limit
= lim ¢\
aj = lim ¢;;” >0, (61)
which does not depend on i. The vector a = (ay,...,a4)" is a solution of the matriz equation (59) and

satisfies E§:1 a; =1.
e The distribution o given by (60)—(61) is the only probability solution of (59).

A proof of Theorem 2.10 can be found in Chapter 7 of E. Behrends (2000) Introduction to Markov Chains, Vieweg,
Braunschweig.

Remarks

e Besides the invariance property ap = a3 = ..., the Markov chain {X,} with stationary initial dis-
tribution g exhibits still another invariance property for all finite dimensional distributions that is
considerably stronger.

e In this context we consider the following notion of a (strongly) stationary sequence of random variables.
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Definition
o Let Xo,X1,...: Q = E be an arbitrary sequence of random variables mapping into E = {1,...,¢}
(which is not necessarily a Markov chain).
e The sequence {X,} of E-valued random variables is called stationary if for arbitrary k,n € {0,1,...}

and ig,...,t, € E

P(Xy =0, Xpg1 =1, -, Xign = in) = P(Xo =0, X1 = i1,...,Xn = in). (62)

Theorem 2.11

o Let Xo,X1,...:Q — E be a Markov chain with state space E = {1,...,£}.

o Then {X,} is a stationary sequence of random variables if and only if the Markov chain {X,} has a
stationary initial distribution.

Proof

e The necessity of the condition follows immediately

— from Theorem 2.3 and from the definitions for a stationary initial distribution and a stationary
sequence of random variables, respectively,
— as (62) in particular implies that P(X; =14) = P(Xo =) foralli € E

— and from Theorem 2.3 we thus obtain @] = a{ = a] P, i.e., ay is a stationary initial distribution.

o Conversely, suppose now that ay is a stationary initial distribution of the Markov chain {X,}.
— Then, by the definition (3) of a Markov chain {X,}, we have

P(Xk = i(],Xk+1 = il,.. .,Xk+n = Zn)
-/ - . . .
= Z P(XOZZOr")Xk—l:lkflan:7/07Xk+1:zla---,Xk-i-n:?fn)

51 ;!
i0yeennlp_1 EE

= E Qi Pigiy - -« Pif 4, Pi_io Pioin -+ Pin—1in
il yeensif_ €EE
_ Tpk
= (aoP ) Pigiy -+ Pin_1in
20
=  Q0,ig Pigir - -+ Pin_1in

= P(Xo=i0,X1=1i1,...,Xn=1in),

— where the last but one equality is due to the stationarity of the initial distribution g and the last
equality uses again the definition (3) of the Markov chain {X,}. O

Remarks

e For some Markov chains, whose transition matrices exhibit a specific structure, we already calculated
their stationary initial distributions in Sections 2.2.2 and 2.2.3.

e Now we will discuss two additional examples of this type.

— In these examples the state space is infinite requiring an additional condition apart from quasi—
positivity (or irreducibility and aperiodicity) in order to ensure the ergodicity of the Markov chains.

— Namely, a so—called contraction condition is imposed that prevents the probability mass to ,migrate
towards infinity”.
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Examples

1. Queues

see. T. Rolski, H. Schmidli, V. Schmidt, J. Teugels (2002) Stochastic Processes for Insurance and
Finance. J. Wiley & Sons, Chichester, S. 147 ff.

e We consider the example already discussed in Section 2.1.2
— of the recursively defined Markov chain X, X1,...Q2 — {0,1,...} with X¢ = 0 and

X, =max{0,Xp_1 + Zn— 1}, Vn>1, (63)

— where the random variables Z,Z;,Z,,... : Q@ — {0,1,...} are independent and identically
distributed and the transition matrix P = (p;;) is given by

PZ=j+1-1) ifj+1>i>00rj>i=0,
pii=4 P(Z=0)+P(Z=1) ifj=i=0, (64)
0 otherwise.

e It is not difficult to show that

— the Markov chain {X,} defined by the recursion formula (63) with its corresponding transition
matrix (64) is irreducible and aperiodic if

P(Z=0)>0, P(Z=1)>0 and P(Z=2)>0, (65)

— for all n > 1 the solution of the recursion equation (63) can be written as

X, = max{O, max i(ZT - 1)} 4 max{O, max i(ZT - 1)} , (66)

ke{l,...,n} ke{1,...,n}

r=k r=1
— the limit probabilities m; exist for all ¢ € {0,1,...} where
k
m; = lim P(max{O, max (Z, — 1)} = z)
n—00 ke{l,...,n} p—

k
P( sup Z(Zr—l):i) for i > 0,
ke{1,2,...} r=1

k
P( sup S (Zr—1) < 0) for i = 0.
ke{1,2,...} r=1

o Furthermore

7 =0 forallie{0,1,...} fEZ > 1,
m; >0 forallie{0,1,...} and >, m =1 if (65) holdsand EZ < 1.

e Thus, for Markov chains with (countably) infinite state space,
— irreducibility and aperiodicity do not always imply ergodicity,
— but, additionally, a certain contraction condition needs to be satisfied,
— where in the present example this condition is the requirement of a negative drift , i.e.,
E(Z-1)<0.

e If the conditions (65) are satisfied and E Z < 1, then

T T:(

Q, A1, .- .),
— which coincides with T = (w9, m1,...) (= lim,_ @, ) but which in general cannot be deter-
mined explicitly.

— the equation o’ = o P has a uniquely determined probability solution o
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— However, there is a simple formula for the generating function g : (=1,1) = [0,1] of w =

(mg,m1,...) T, where
oo
= sim (— IEsX‘”)
= E i =
i=0

and
Xoo = max sup (Zr —1) 67
{ ke{1,2,... Z } ( )
— Namely, we have
(1-p@A—s)
() = ————, Vse(—1,1), 68
9rls) = 05 (-1.1) (68)

where p = E Z and gz(s) = EsZ is the generating function of Z.

e Proof of (68)
— By the defibition (67) of Xoo, we have X < max{0, Xo + (Z — 1)}.
— Furthermore, using the notation z; = max{0,z}, we obtain
gu(s) = Es¥= =EsXetZ s+
- E (S(Xoo+Z71)+ I(Xoo+Z 1> 0)) 1 E (S(Xoo+zfl)+ I(Xoo+2Z 1= _1))
o=
= EZS P(Xeo + Z=k)+ P(Xoo + Z = 0)

k=1
= 5 'ga(8)92(s) + (s —~)P(Xoo + Z =0),

ie.
(s —1)P(Xoo + Z =0)
=(s) = . 69
gr(s) P (69)
— As d
limg,(s) =1 lim — =EZ,
51%1119 (s) and 1%111 759 9z(8)
by L’Hospital’s rule we can conclude that
1= P(Xe+Z=0)
==,

— Hence (68) is a consequence of (69).

2. Birth and death processes with one reflecting barrier

o We modify the example of the death and birth process discussed in Section 2.2.3 now considering
the infinite state space £ = {0,1,...} and the transition matrix

0 1
Q1 ™ D1
g2 T2 P2
P = (70)
qi Ty DPi

where p; > 0, ¢; > 0 and p; + g; +7; = 1 is assumed for all 4 € {1,2,...}.
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e The linear equation system ' = a " P is of the form

a; = Pi—10i—1 +1iq; + @iy if 1> 0, (71)
qian ifi =0.

e Similarly to the birth and death processes with two reflecting barriers one can show that
— the equation system (71) has a uniquely determined probability solution o if

o0 . . .
p1p2 e p] < 00 , (72)

o N2 g
— the solution a” = (g, aq,...) of (71) is given by

0 pip2 ... Pi-1
q1q2 - ... q;

a; = , Vi>0,

— where ag > 0 is defined by the condition Y ;o a; =1, i.e.

1 i e Dy
a0<1+_+zu> .

n I Nz it

and, consequently,

e As we assume p; > 0 and ¢; > 0 for all ¢ € {1,2,...} birth and death processes with one reflecting
barrier are obviously irreducible.

e Furthermore, if 7; > 0 for some i € {1,2...,} then birth and death processes with one reflecting
barrier are also aperiodic (as well as ergodic if the contraction condition (72) is satisfied).

2.2.5 Direct and Iterative Computation Methods
First we show how the stationary initial distribution g (= 7 = lim,_, @) of the Markov chain {X,,} can be

computed based on methods from linear algebra in case the transition matrix P does not exhibit a particularly
nice structure (but is quasi—positive) and if the number £ of states is reasonably small.

Theorem 2.12

o Let the transition matriz P of the Markov chain {X,} be quasi-positive.

e Then the matriz I — P + E is invertible and the uniquely determined probability solution w = lim,, . a,

of the matriz equation ®' =7 P is given by
m' =e' I-P+E)™!, (73)
where e = (1,...,1) T and all entries of the £ x £ matriz E are eugal to 1.

Proof

e In order to prove that the matrix I — P + E is invertible we show that the only solution of the equation
I-P+E)x=0 (74)

is given by x = 0.
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T

— As 7 satisfies the equation w' = 7' P we obtain

m (I-P)=0. (75)

— Thus (74) implies
0=7n'"I-P+E)x=0+7Ex,

i.e.
m Ex=0. (76)

On the other hand, clearly 7 "E = e and hence as a consequence of (76)
e'x=0 and Ex=0. (77)

— Taking into account (74) this implies (I — P)x = 0 and, equivalently, P x = x.
— Thus, we also have x = P"x for all n > 1.

e Furthermore, Theorem 2.4 implies P™ — II,

Remarks

— where IT denotes the £ x £ matrix consisting of the £ identical (row) vectors 7 .

— In other words: For n — oo we have
x=P"x > IIx,

ie my =Y muz;foralli=1,. L

— As the right hand sides of these equations do not depend on ¢ we can conclude x = ce for some
constant ¢ € R.

— Moreover, as a consequence of (77),

T

D=e'x=ce'e=cf

and hence ¢ =0, ie. x = 0.
Thus, the matrix I — P + E is invertible.

Finally, (75) implies
7 (I-P+E)=7n"E=e'

and, equivalently,
7 =e'I-P+E)!. O

Given a larger number £ of states the numerical computation of the inverse matrix (I— P + E)~! in
(73) can cause difficulties.

T

In this case it is often more convenient to solve the matrix equation 7" = & " P iteratively.

If the transition matrix P is quasi-—positive and hence 7, > 0 one can start by setting 7, = 1 and
solving the modified equation

7 I-P)=b" (78)
where f’ = (pz’j)i,jzl,___’g_l and ?I'T = (7?1, caey 7?4_1), bT = (pgl, . ,Pe,e—1)-
The probability function 7" = (7q,...,7,) desired originally is given by

71'1'2%1'/0 withec=m1 +...+ 7 Vi=1,...,¢.

When solving the modified matrix equation (78) we use the facts of I — P being invertible and that
there is an expansion of (I — P)~! as a power series, which is a consequence of the following two
lemmata.
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Lemma 2.4

o Let A be an £ x £ matriz such that A™ — 0 for n — oco.

e Then the matriz I — A is invertible and for alln =1,2,. ..

I+A+.. . +A" ' =1I-A)'I-A"). (79)

Proof

Obviously for all n =1,2,...

I+A+...+A" 1 A - .. —A"
I-A". (80)

I-A)I+A+...+A" )

Furthermore, the matrix I — A" is invertible for sufficiently large n as by hypothesis A" — 0.
e Consequently, for sufficiently large n we have
0 # det(I-A")

= det((I —A)I+A+...+ A"*l))

= det(I—A)det(I+A+...+A" ).

This implies det(I — A) # 0 and hence I — A is invertible.
The assertion (79) now follows from (80). O

Lemma 2.5

o Let the stochastic matriz P be quasi-positive and let P be the (£ — 1) x (£ — 1) matriz introduced in (78).

e Then, Pr— 0 for n — oo, the matrix T — P is invertible, and
~ > ~
I-P)' =) "p". (81)
n=0

Proof

e Because of Lemma 2.4 it suffices to show that P™ — 0.

e As P is quasi—positive by hypothesis there is a natural number ng > 1 such that

6:maAXZp§;L°)<1, where £ = {1,...,0—1}.
il {

e Furthermore,

P")ij = D> PiPirio - -Pinrj S D DitrPirin -+ -Pin_rj = (P")ij

i1y nyin—1EE i1, in—1E€EE

and thus 0 < (f’”)” < (PM);; = pg;?) <1lforalln>mng;i,j€ E.
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e Writing n as n = kng + m for some k > 1 and m € {0,...,n9 — 1} we obtain
Py = ) PPy - (P P
’il,...,ikEE‘
no), (no) (no)

S Z pn10 p11102 ) plkolik
’i1,...,ikEE

— (no), (no) ) (no)

- Z pzZO pz:biOQ ) pifozlk 1(2 pll?oﬂk)
’il,...,ik_leE ’LkEE

<6 > e,

il,...,ik_leE

L
o This yields lim,,_, (f’")z] < limg 00 6% = 0. O

Remarks

~

e As a consequence of Lemma 2.5 the solution 7 ' of the equation (78), i.e. # (I—P) =b", is given by
0 ~
' =b' Y P, (82)
n=0

thus allowing an iterative solution of 7= (T, -, Te—1)-
e Notice that we start the iteration with bj = b as initial value later setting b, ; = bl P for all n > 0.

e Thus, (82) can thus be rewritten as
o0

71 =Y"b,, (83)

n=0

and Zn—O » can be used as an approximation for 7 ifng > 1is sufficiently large.

2.3 Reversibility; Estimates for the Rate of Convergence
2.3.1 Definition and Examples

e A stationary Markov chain Xy, X1,...:  — E and its corresponding pair (P, &) consisting of the transition
matrix P and the stationary initial distribution « is called reversible if its finite—dimensional distributions
do not depend on the orientation of the time axis, i.e., if

P(XO = iO;Xl = i]_,.. -7Xn71 = inflan = Zn) = P(Xn = 2'0,an1 = 7:1,. .. ;Xl = Z'nfl,XO = Zn) (84)
for arbitrary n > 0 and i, ...,i, € E.

e The reversibility of Markov chains is a particularly useful property for the construction of dynamic simulation
algorithms, see Sections 3.3-3.5.

First of all we will derive a simple characterization for the reversibility of stationary (but not necessarily ergodic)
Markov chains.
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Theorem 2.13

o Let Xo,X1,...:Q — E be a Markov chain with state space E, transition matriz P = (p;;) and stationary
initial distribution o = (o, as,...) "

e The Markov chain is reversible if and only if

Q; Pij = 4 Dji for arbitrary i,j € E. (85)
Proof
e By definition (84) the condition (85) is clearly necessary as (84) implies in particular
P(Xo=14,X1=j)=P(X1 =1i,X0 =) for arbitrary i,j € E.
e Therefore
aipij = P(Xo=1,X1=})
= P(Xy=1i,Xo=
= Qj;DPji
e Conversely, if (85) holds then the definition (3) of Markov chains yields
P(X() = io,Xl = il, .. .,Xn,1 = infl,Xn = Zn)
)
= QyPigiy Piyis + - - Pin_1in
(85)
=" DPirio®iyPiris - -+ Pin_1in
(8‘5)
= DirigPigis -+ - Pinin_1%i,
Qi Pinin_1 - - - Pizi1 Pirio
Q' P(Xo = in, X1 = in -1, Xn_1 = i1, Xp = o)
= P(Xn:io,Xn_lzil,...,Xl:in_l,XOZ’in).
e ie., (84) holds. O
Remarks

e The proof of Theorem 2.13 does not require the stationary Markov chain Xy, Xi, ... to be ergodic.
e In other words

— If the transition matrix P is not irreducible or not aperiodic and hence the limit distribution 7
does not exist or is not uniquely determined, respectively,

— then Theorem 2.13 still holds if « is an arbitrary stationary initial distribution.

e As P = (p;;) is a stochastic matrix, (85) implies for arbitrary i € E

(85)
aizainijZ Qipij = Zajpji-

JEE JjEE JjEE

e In other words: Every initial distribution « satisfying the so-called detailed balance condition (85) is
necessarily a stationary initial distribution, i.e. it satisfies the global balance condition o’ = o P.
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Examples

1. Diffusion Model

e We return to the diffusion model already discussed in Section 2.2.3 with the finite state space
E ={0,1,...,¢}, the irreducible (but aperiodic) transition matrix P = (p;;) where

i
YT fi<fandj=i41,

0
pij = % ifi>0and j=i—1, (86)
0 else,
and the (according to Theorem 2.10 uniquely determined but not ergodic) stationary initial dis-
tribution
T 1 ¢ .
a' = (ag,...,qp), where @ = o , Vie{0,1,...,¢}. (87)

e One can easily see that
Qi Pij = Oj Pji

for arbitrary i,j € E, i.e., the pair (P, ) given by (86) and (87) is reversible.

2. Birth and Death Processes

e For the birth and death processes with two reflecting barriers considered in Section 2.2.3 let the
transition matrix P = (p;;) be of such a form that the equation @’ = a'P has a uniquely
determined probability solution & = (a1, aa,...).

e For this situation one can show that

Qi Pij = O Pji Vi,jeFE.

3. Random Walks on Graphs
e We consider a connected graph G = (V, K)

— with the set V' = {v1,...,v¢} of £ vertices and the set K of edges, each of them connecting
two vertices

— such that for every pair v;,v; € V' of vertices there is a path of edges in K connecting v; and
Vj.
e We say that two vertices v; and v; are neighbors if there is an edge connecting them, i.e., an edge
having both of them as endpoints, where d; denotes the number of neighbors of v;.

e A random walk on the graph G = (V, K) is a Markov chain Xg, X1,...: Q@ — E with state space
E ={1,...,£} and transition matrix P = (p;;), where

1
— if the vertices v; and v; are neighbors,

pij =4 " (88)
0 else.

e Figure 1 shows such a graph G = (V, K) where the set V = {vy,...,vs} contains 8 vertices and
the set K consists of 12 edges. More precisely

K = {(U17U2)7 (U15U3)5 (’112,1)3), (U27U8)7 (U33U4)5 (’113,1)7), (U37U8)7 (U43U5)5 (U471)6)3 (U57U6)7

(ve, v7), (v7,08) } -
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V|
Vi V; V)
Vs
Ve vV, Ve

Figure 1: Connected Graph

e One can show that
— the transition matrix given by (88) is irreducible,
— the (according to Theorem 2.10 uniquely determined) stationary initial distribution « is given
by
_(d ds
(L
— the pair (P, ) given by (88)—(89) is reversible as for arbitrary i,j € {1,...,¢}

T £
) ,  where d= Y d;, (89)
=1

il 1 d;1
—’—. === —J—‘ = a;pj; if the vertices v; and v; are neighbors,
_ dd; d dd;
Qi pij =
0=a;pji else.

e The transition matrix P given by (88) for the numerical example defined in Figure 1 is not only
irreducible but also aperiodic and the stationary initial distribution a (= & = lim, e Q) is

given by 2 3 5 3 2 3 3 3\T
= ( )

24°24°24°24°24°24° 247 24

4. Cyclic Random Walks

e The following example of a cyclic random walk is not reversible.
— Let E={1,2,3,4} and
0 07 0 025
025 0 075 0

0 025 0 0.7

0.7 0 025 0

— i.e., the transition graph is given by Figure 2.
e The transition matrix (90) is obviously irreducible, but not aperiodic, and the initial distribution
a (which is uniquely determined by Theorem 2.10) is given by a = (1/4,1/4,1/4,1/4)T.
e However,

aipi2 = = 0221 -
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0.75 0.25 0.25 0.75

0.25
OO
\/

0.75

Figure 2: Transition Graph

e It is intuitively plausible that this cyclic random work is not reversible as clockwise steps are much
more likely than counterclockwise movements.

5. Doubly—Stochastic Transition Matriz

e Finally we consider the following example of a transition matrix P = (p;;) and a stationary initial
distribution & = (e, ..., ay) " which are not reversible: For a,b > 0 such that b < a and 2a+b =1
let

P=| a+b b a-b |- (91)

0 a+b a

e This transition matrix P is doublystochastic, i.e., the transposed matrix P T is also a stochastic
matrix and P is obviously quasi—positive.
e The (uniquely determined) stationary initial distribution 7w = lim,,_, @, is given by

m=(1/3,1/3,1/3)".
e As the transition matrix P in (91) is not symmetric the pair (P, ) is not reversible.
2.3.2 Recursive Construction of the ,,Past”

e Recall that

— in Section 2.1.3 we showed that a stationary Markov chain Xo, X1,... with transition matrix P = (p;;)
and stationary initial distribution & = (a,...,a¢)" can be constructed as follows, where
— we started with a sequence Zg, Z1, ... of independent and on [0, 1] uniformly distributed random vari-
ables and defined
k-1 k
Xo=k ifandonlyif Zoe (Z ai,Zai] 7
i=1 =1

forall k=1,...,¢, ie.

4 k—1 k
X0:Zk11(2ai<Z0§Zai). (92)
k=1 i=1 =1
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— The random variables X7, X5, ... were defined by the recursion formula
Xn = o(Xn-1,2Zy) forn=1,2,..., (93)

where the function ¢ : E x [0,1] — E was given by
¢ k—1 k
p(i, 2) = ZkI(ZPz’j <z< sz'j) . (94)
k=1 =1 j=1

e If the pair (P, ) is reversible, then the stationary Markov chain Xg, X1, ... constructed in (92)—(94) can
be tracked back into the past in the following way.

— First of all we extend the sequence Zy, Z1, .. . of independent and on [0, 1] uniformly distributed random
variables to a sequence ...,Z 1,72y, Z1,... of independent and identically random variables that is
unbounded in both directions.

— Note that due to the assumed independence of ..., 7 1, Zy, Z1,... this expansion does not pose any
problems as the underlying probability space can be constructed via an appropriate product space,
product—o—algebra, and product measure.

— The random variables X 1, X »,... are now constructed recursively setting
Xno1=0(Xn,Zp_1) forn=0,-1,..., (95)

where the function ¢ : E x [0,1] — E is defined in (94).

Theorem 2.14

o Let Xo,X1,...: Q — E be a reversible Markov chain with state space E, transition matriz P = (p;;) and
stationary initial distribution a = (aq,...,04)".

e Then the sequence ..., X_1,Xo,X1,...: Q — E defined by (92)—(95) is
— a stationary Markov chain with transition matriz P and the one—dimensional marginal distribution o,
— e, for arbitrary k€ Z={...,-1,0,1,...}, ix,ipt1,---,in € E and m >1

P(Xk = ikka+1 = ik+1; v 7Xn71 = inflaXn = Zn)
= P(Xktm = ik Xktmt1 = tht1s- s Xntm—1 = Gn—1, Xntm = in)

= Qi Piripgr - - - Pin_vin -

The proof of Theorem 2.14 is quite similar to the ones given for Theorems 2.11 and 2.13 and is therefore omitted.

2.3.3 Determining the Rate of Convergence under Reversibility

o Let E={1,...,¢} and P be a quasi-positive (i.e. an irreducible and aperiodic) transition matrix.

— In case the eigenvalues 61,...,6; of P are pairwise distinct we showed by the Perron—Frobenius—
Theorem (see Corollary 2.4) that

max |an; — ;| = O(|62]") , (96)
jEE
where 7 = (my,...,m) " is the (uniquely determined) solution of the equation 77 = 7 " P.

— If (P, ) is also reversible one can show that the basis |f2| considered in (96) cannot be improved.
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e Let (P, ) be reversible, where P is an irreducible and aperiodic transition matrix.

— In this case the detailed balance condition (85) implies the symmetry of the matrix DPD ! where
D = diag(y/m)-

— As the eigenvalues 01, ...,0; of P coincide with the eigenvalues of DPD~! we obtain §; € R for all

teE,

— and the right eigenvectors ¢7,...,¢; of DPD™! can be chosen such that all of their components are
real,

— that furthermore ¢7, ..., ¢; are also left eigenvectors of DPD ™! and that the rows as well as the lines
of the £ x £ matrix (@], ..., ¢;) are orthonormal vectors.

e The spectral representation (30) of A = DPD! yields for every n > 1
¢
P" = (D7'AD)" =D'A™D =) " 6;D"'¢;(¢;) "D
k=1

— By plugging in 6; = 1 and ¢} = (\/71,...,/T¢) | we obtain for arbitrary i,j € E
Py =+ [ Zom% , where ¢ = (¢f1,- - 67T (97)
— If n is even or all eigenvalues 6, ..., 0, are nonnegative, then
sup max |ay; — ;| > max| pim — ;| = max‘ NAC .)2‘ > 05 max(%;)? .
oo j€B TN = ep ek P V=2 e

e This shows that |f3| is the smallest positive number such that the estimate for the rate of convergence
considered in (96) holds uniformly for all initial distributions .

Remarks

e Notice that (97) yields the following more precise specification of the convergence estimate (96). We

have
(n) E |¢kz||¢k]|
n
Py —mj| < ——=— Z 10k 1" Bhil | 945 | < EEmee—— [62]" < ——=— 16",
min 7; / ‘/ 7Tz
icE k=2
as the column vectors @7, . .., ¢; and hence also the row vectors (qbl,j, ooy ¢pj) where j =1,..., ¢ form
an orthonormal basis in R¢ and thus by the Chauchy-Schwarz inequality
¢ ¢ 12,0 1/2
> loiillensl < (@i?) T (@i)?) =1
k=2 k=1 =
e Consequently,
1
max |Oinj — 71'j| < |02|n . (98)

JjEE

min 7;
i€EE

e However, the practical benefit of the estimate (98) can be limited for several reasons:

— The factor in front of |62|™ in (98) does not depend on the choice of the initial distribution ay.
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— The derivation of the estimate (98) requires the Markov chain to be reversible.
— It can be difficult to determine the eigenvalue 85 if the number of states is large.

e Therefore in Section 2.3.5 we consider an alternative convergence estimate,
— which depends on the initial distribution
— and does not require the reversibility of the Markov chain.

— Furthermore, in Section 2.3.7 we will derive an upper bound for the second largest absolute value
|#2| among the eigenvalues of a reversible transition matrix.

2.3.4 Multiplicative Reversible Version of the Transition Matrix; Spectral Representation

At first we will discuss a method enabling us to transform (ergodic) transition matrices such that the resulting
matrix is reversible.

e Let P = (p;;) be an irreducible and aperiodic (but not necessarily reversible) transition matrix and let
m = (m1,...,m) " be the corresponding stationary initial distribution such that m; > 0 for all i € E.

e Moreover, we consider the stochastic matrix P = (p;;) where

_ il
pij:ﬂ, (gg)

U

ie., P =D 2PTD? where D = diag(,/7;) is also an irreducible and aperiodic transition matrix having the
same stationary initial distribution 7 = (m,...,7)"

e The pair (M, 7), where the stochastic matrix M = (m;;) is given by M = Pf’, is reversible as we observe

4 £
_ TiPik _ TiPik _
TiMij = T E Pik == =T E Dik — = = TjMyji -
k k

k=1 k=1

Definition The matrix M = PP is called the multiplicative reversible version of the transition matrix P.

Remarks

o All eigenvalues Om,1,. .. ,0m, of M are real and in [0, 1] because M has the same eigenvalues as the
symmetric and nonnegative definite matrix M* = DMD !, where

s _ VT VT é oo aPik =i(\/ﬁpm)(\/ﬁ_jpjk)

mi; = = Dik —
Yoovm T k=1 Tk k=1 VTk vV Tk

and hence T
M*=DMD ! = (DPD’l) (DPD’I) .

e As a consequence, the symmetric matrix M* is diagonalizable and the right and left eigenvectors ¢;
and 9} can be chosen such that
—¢; =i forallie E
— the vectors @},...,¢; are an orthonormal basis in Rf.
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e Then ¢,,...,¢, and ¥,,...,1,, where
¢, =D7'¢; and o, =Dy, VicE, (100)

are right and left eigenvectors of M, respectively, as for every i € £

Mo, = MD_1¢;" = D_lDMD_l(ﬁ;-k = D_IGM,N&? = Om,i;
and -
Y/ M= (Dy}) M= (¢}) ' DMD'D = 6pm,;(¥}) "D = b9, -

This yields the following spectral representation of the multiplicative reversible version M obtained from the
transition matrix P; see also the spectral representation given by formula (30).

Theorem 2.15 For arbitrary n € N and x € R

¢
M"x = Z%,MM?X- (101)

i=1

where ¢,; and 1p; are the right and left eigenvectors of M defined in (100).

Proof

e As the (right) eigenvectors ¢, ..., ¢, of M defined in (100) are also a basis in R, for every x € R
there is a (uniquely determined) vector (xgr), ... ,x§r))T € R such that

¢
X= z xgr)‘ﬁi .
i=1

e Furthermore, we have M¢; = 0m,i¢; and hence M"¢; = 0y, ,¢; for arbitrary ¢ € E and n € N.
e Thus we obtain , ,
M"x = sz(r)anbz’ = Z 37?)91?/[,1'% .
i=1 i=1
e On the other hand, (100) implies for arbitrary i € E and x € R¢

£ £

4
Plx=(Dy;) x= () Y 2'De; = (v7) Y a1 =32V () 1 =1,  (102)

Jj=1 Jj=1 Jj=1

where the last equality takes into account that @] = ¢; for all i € E and that the eigenvectors
@7,...,¢; von M* are an orthonormal basis of R.

e This proves the spectral representation (101). d

2.3.5 Alternative Estimate for the Rate of Convergence; x> Contrast
Based on the multiplicative reversible version M = PP of the ergodic (but not necessarily reversible) transition

matrix P we will now deduce an alternative estimate for the rate of convergence a'P™ — 7' for n — oco; see
Theorem 2.16.

The following abbreviations and lemmata will turn out to be useful in the proof of Theorem 2.16.
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e Let L(E) denote the family of all functions

— defined on E and mapping into the real line R
— and let w = (m,...,m)" be an arbitrary positive probability function from L£(E), i.e. m; > 0 for all
i€ FE and Ele m = 1.

e For arbitrary vectors x = (x1,...,2¢)' € L(E) and 'y = (y1,...,%)' € L(E) we denote by (x,y)r the
inner product

¢
% ¥)r = Zmiyiﬂ'i (103)
i=1
and by ||x||x the induced norm, i.e.,

[l =

£
E 2
TiTg -
i=1

e The terms (w—weighted) mean (x). and variance Var (x) of x € L(E) will be used to denote the quantities

¢
=Y wm (= (xe)x) (104)
i=1
and
Var - (x) = [Ix|5 — (x)7, (105)
respectively.

Lemma 2.6 For all x € L(E), it holds that

Var (x) = Var »(Px) + (I - M)x,x) _. (106)

Proof
e Introducing the notation X = x — (x),e we obtain that (X), = 0 and

14

¢ ¢ ¢
(PR)r = Z(Zﬁzj (z; — (X)w))m’ = Z DijT;mi — (X)m = Z mipjiTj — (X)= =0,

i=1 j=1 ,j=1 ,j=1

where the last but one equality follows from the definition (99) of the matrix P.

e This implies
X2 = Var (%) = Var,(x) and  ||PX|]2 = Var.(PX) = Var . (Px). (107)

e On the other hand

P

Il
o
B

T
ol
)

I

-~
~—
-~
3
ol

)

B
N—"
3
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and thus B
%% — IPX|% = [X]% — (MX,%) = (I-M)x,%)_=(I-M)x,x)_,

as M is a stochastic matrix such that #TM = T and therefore (I — M)e = 0 and

4

((I — M)x, e)7r = Z (5j(z) sz zjm; = Zxﬂrz — ij me” =0.

3,j=1 j=1 i=1

=m;

e Taking into account (107) this shows the validity of (106). O

We introduce the following notions.

o Let E={1,...,0},let @« = (a1,...,a¢)" and B = (B1,---,B¢)" be arbitrary probability distributions on
E, and let

drv (o, B) = Z|az Bil, (108)

i€eE

i.e., the distance drv(a, 8) between o and 3 is expressed via the total variation

lo—Bl=>_ |ai - Bil (109)

icE
of the ,signed measure” o — 3.

e If B; > 0 for all i € E we also consider the term

Vg =Y @B (110)

icE
which is called the x2—contrast of o with respect to 3.

The distance drv(a,3) between a and B can be estimated via the xy2—contrast x2(a;3) of a with respect to 3
as follows.

Lemma 2.7 If3; >0 for all i € E, then
1
diy (e, ) < 7 x*(es B). (111)

Proof

e Taking into account that ) .. B; = 1, an application of the Cauchy-Schwarz inequality yields

(Tloi=pil) = (Xl =8l VE) <3 5 (=5

i€l i€EE i€EE

e This implies the assertion of the lemma. O

The rate of convergence o' P™ — 7" for n — oo can now be estimated based on
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o the second largest eigenvalue 6,2 of the multiplicative reversible version M = PP of the (ergodic) transition

matrix P

e and the x? contrast x2(a;m) of the initial distribution a with respect to the stationary limit distribution

.
Theorem 2.16 For any initial distribution o and for all n € N,

2 .
By((aP) m) < X g

Proof

o Let p, = (Pn1s---,pne) | where pp; = (" P?);/m;.
— Then for alli € E

£
Z TkPki (aTPn)k (aTPn+1)i
5 Tk T4

k=1
and thus _
Ppn = pn+1 .

(112)

— Moreover, by definition (110) of the x2 contrast x2 = x? ((aTP")T; m) of (ozTP")T with respect

to 7 we obtain
(P m)” - (e,

UE

=
i=1 v

£
2
; 2
Z(pni - (pn)ﬂ') T = Varﬂ'(pn) )

ie.,
X2 = Var(p,,) -
— Now the identity (106) derived in Lemma 2.6 yields

Xa = Xor + (T-Mpy, p,)

e On the other hand the spectral representation (101) of M derived in Theorem 2.15 implies

(T-M)p,, ;%)7r = (Pps Pp)x — Mp,, pp)x

L
(pn3 pn)ﬂ' - ZeMﬂ(qbz’l/;;rpn) pn)ﬂ'
i=1
14
(pn5 pn)ﬂ' -1- ZGM,l((I)z'lp:pni pn)ﬂ' )

=2

as Om,1 =1, ¢; = e and 1/;1T =" and therefore

(d)lll/)lTpna pn)ﬂ' = (Hpn7 pn)ﬂ- = (e7 pn)ﬂ' = (pn)ﬂ' =1 (: (pn)fr) -

(113)

(114)

— As the eigenvectors ¢;,...,¢, von M defined in (100) are a basis of R there is a (uniquely

determined) vector (pgfl), - p(nrg )T € RY, such that p, = 3¢, P ;.

— Moreover, in (102) we have shown that ’l/);rpn = pf;-). As 111;'— =" we can conclude ¢Ipn =1.
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— Furthermore, as ¢; = D™'¢; and 9, = D¢ for all i € E we obtain

00 0 (i, )

M-

J2

1=2

j=1

Il
-~ M-
M-

I
-

ba.iph) oy} (D767, D7'¢7)

=d:(4)

N

=2 j

¢
= Z Ona,i (pifz-))Q
i=2

J4

4
< Om2 Y (1) = O (Z )= ( A )2)
i=2 i=1 ~
=] p,=1
£ 4
= b (ZZpS?pSf}(@, $;)m 1) = sz (P Po)w = 1) -
i=1 j=1 - °

=Var = (p,)

e Summarizing our results we have seen that

(T=M)p,, p,) > (1= Omaz) Varn(p,)-
— Because of (113) and (114) this implies
Xo > Xogr+ (1—6m2)x2 and Xoy1 <Oz Xa-

— Thus, we have shown that x;, < 63y , X3 for all n > 1 and, consequently, the assertion follows from
Lemma 2.7. O

2.3.6 Dirichlet—Forms and Rayleigh—Theorem

e Let £ = {1,...,¢} be an arbitrary finite set and let P be an (¢ x £)-dimensional transition matrix, which
is irreducible and aperiodic (i.e. quasi—positive) as well as reversible.

e Recall that

— all eigenvalues of P are real (see Section 2.3.3), and

— by the Perron—Frobenius theorem (see Theorem 2.6 and Corollary 2.3) the eigenvalues of P are in the
interval (—1,1], where

— the largest eigenvalue is 1 and the absolute values of the other eigenvalues are (strictly) less than 1.
Remarks

e Instead of ordering the eigenvalues according to their absolute values (like above) we will now order
them with respect to their own size and denote them by Ai,...,A; such that

I1=XM>X>...2X>-1.

e Moreover, for the multiplicative reversible version M = PP of the transition matrix P that was
introduced in Section 2.3.4 we have

12)\1>/\22...2)\g>0,

i.e., for the eigenvalues of the matrix M the notations 64, ...,60; and Aq,..., A coincide.
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e For large ¢,

— the calculation of the second largest absolute value |62| = max{Az, |A\¢|} among the eigenvalues can
cause difficulties.

— Therefore, in Section 2.3.7 we will derive bounds for A2 and A¢, whose calculation is very simple.
e These bounds are particularly useful if

— the stationary (limit) distribution is at least in principle known,

— but in spite of this the corresponding Markov chain is started with an instationary initial distri-
bution a; for example it could be started in a predetermined state ¢ € E, i.e. a; =1 and aj =0

for j # .
In order to derive an upper bound for A2, we need a representation formula for A,

e that is usually called the Rayleigh—theorem in literature

e and that is expressed based on the so—called Dirichlet—form
D(pm(x,%x) = (I-P)x,x) (115)

of the reversible pair (P, ) , where (y,x)» denotes the inner product of y and x with respect to 7r; see
(103).

First of all we will show the following lemma.
Lemma 2.8 For allx = (z1,...,2¢)" € R,

D(P 71') X, X Z szzj z) . (116)
i,jEE

Proof From the definition (103) of the inner product and the reversibility of the pair (P, 7) we obtain

2((I—P)X,X)ﬂ_ = 2 Z TFipij.’Ei(SL'i —.’L'j)
ij€E
= Z TipijTi(Ti — T5) + Z TipjiT; (T — i)
i, jEE ,JEE
85
= > mipiwi(zi — x5) + Y mipiw (e — )
ijer i,jEE
= ) mipiy(e —m)’
i,jeE o

We will now prove the Rayleigh—theorem that yields a representation formula for the second largest eigenvalue
Az of the reversible pair (P, ).

Theorem 2.17

o Let ]R;,,é {x = (T1,..,20)" € R ¢ z; # xj for some pair i,j € E} denote the set of all vectors in R
whose components are not all equal.
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e For the eigenvalue A2 of the reversible pair (P, ) the following holds

D ™ )
Xy =1— inf Dp.m (x,x) : (117)

xeRL  Varg(x)

where Var (x) denotes the variance of the components of x with respect to w defined in (105).
Proof
e Lemma 2.8 implies for arbitrary ¢ € R and x € R
Dp ) (x,%x) = Dp n)(x —ce,x —ce).
— Thus, the assertion (117) is equivalent to
D ™ 7

1— X = inf Dp,m (x,x) (118)

xerf Varp(x) ’

where Rf = {x = (z1,...,7)" € R : (x)»= =0, x # 0}.

— Let now the left eigenvectors ¢, ..., @, of P be chosen such that they are an orthonormal basis of
R’ with respect to the inner product (-, -), i.e. (@i @j)n =1if i =j and (@;, ;) =0if i #
where ¢; = e.

— First of all, the eigenvectors @7, ..., @, of the symmetric vectors DPD~! are chosen such that

they are orthonormal with respect to the ordinary euclidian inner product. Then we can define
¢; = D71¢; for all i € E (see also Section 2.3.3).
(r) (r)

. . . T
— For every x € R there is now a uniquely determined vector (z;”,...,z,”) € R’ such that

)
X= Z mgr)d’i -
i=1

— As A\; = 1 we obtain

¢ ¢
I-P)x= 2(1 - )\i)g;z(r)qﬁi and hence Dp ) (x,x) = Z(l -X) (mz(r))2 ‘
=2 i=2
e On the other hand as ¢; = e and the eigenvectors ¢,,..., ¢, are orthonormal with respect to the

inner product (-, -)» we can conclude that
(X)r = (%, €)r =2  and  Var(x) = Z(xgr)f, if (x)= =0.

— Thus for every x € R§

D(pv,,)(x,x) _ i=2
Var (X) Zz::z (mgr))Z
4 £ 5
S (1=2) (@)’ = (1= 2) ¥ ()
— (1_)\2)+ =2 - =2
3 (2)?
1=2
£
(s — Ao (28)?
= (1-h)+ = > 1=X
Y (27)
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— This shows that (118) holds as the last expression for the quotient D(p ,)(x,x)/Var (x) implies

D ™ )
(P, )(X x) —1— ),
Var . (x)
for x = ¢, where ¢, € R§ as ¢; = e and ¢, are linearly independent. O

2.3.7 Bounds for the Eigenvalues \; and A,

In order to derive bounds for the eigenvalues A2 and A, the following notions and notations are necessary.

e For each pair 4,j € E such that i # j and p;; > 0 we denote

— by e = e;; the corresponding directed edge of the transition graph
— by e~ =i and et = j the starting and target vertices of e, respectively.
— Let £ be the set of all directed edges e = e;; such that i # j and p;; > 0.

e Furthermore, for each 4,j € E such that ¢ # j we consider exactly one path ;; from ¢ to j,

— which is given by a vector v;; = (40,41, - -,%m—1,%m) Of states such that i =149, j = i, and
DiiiPivio -+ - Pim_1j > 07

such that none of the edges e;, _,;, is contained more than once (and m is the smallest possible number).
— Let I' be the set of all these paths and for each path v;; € I' define

le=ZQie)= e, (119)

e TiPiiy iy Pivio Tim—1Pim_1j

where Q(eik—n'k) = Tip_1Pir_1ip-
— The so—called Poincaré—coefficient k of the set of paths I is then defined as
k = k([') = max Z |ysj|mims . (120)

ecé
Yijoe

e Finally we consider

— the extended set of edges £' D £ also containing the edges of the type 1 — ¢ in case p;; > 0.

— for all 7 € E exactly one path 4; from 7 to 7 which contains an odd number of edges in £’ such that no
edge occurs more than once.

Let TV be the set of all these paths and for every path

~v; € T let
1
=3 (121)
e€y; Q(e)
— The coefficient ¢ of the path set I is then defined as
¢ =) = max 3 bl (122)
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Theorem 2.18 For the eigenvalues A2 and Ay of P the following inequalities hold

1 2
1— > XM>A>-1+ 2
K ¢

and hence 1 9
max{As, |Ae|} < 1— min{ i } .
Proof
o First we will show that Ao <1 — k1.
— Because of Theorem 2.17 it suffices to show that
Var z(x) < & D(p ) (X,X), Vx € R.

— Using the notation introduced in (119) we obtain

1
Vara(x) = 3 (2% —2(0%)
1
= 5 (Z.’E?ﬂ'i-}-zmiﬂj—Q Z .CL','IEjT(,'T(j)
i€E JEE i,jEE
1
= 5 Z (1‘,~—$]-)27r,~7rj
i,j€E
1
2

S (Y o= VA - - o)) mins.

igen eeny V@()

— An application of the Cauchy—Schwarz inequality yields

Var . (x) < % Z (|’Yij| Z Qe)(x,- —xe+)2)m7rj

i, JEE ecyij
1
= 3 Z(Q(e)(me— —$e+)2( > il 7Ti7fj)>
e€E Yijoe

< K D(P,ﬂ') (Xa X) ’

54

(123)

(124)

(125)

where the last inequality follows from Lemma 2.8 and by definition of the Poincaré—coefficient; see

(120). This shows (125).
e In order to finish the proof it is left to show that A\, > —1 +2¢ 1.

— For this purpose we exploit the following equation: For all x = (z1,...,7,)" € R

1
3 Z (@i + 25)*mipi; = (PX, %) + [l2]|% ,
ijEE

as the reversibility of (P, ) implies

1 2 1 2 1 2
B} E (i + z;) mips; = 5 E xiﬁipij+i TiTjMiPij + 5 E Tj TiPij
i,jeE i,jeE i,jelE i,jeE (5)
= TP
i€E 2
:Z$j7rj
JjEE

o[l + (Px,%)x .

(126)
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— Let now v; = (40,41, - - -, %2m, t2m+1) Where & = ig = iam41 i a path from i to i, containing an odd
number of edges such that every edge does not occur more than once.

— Then
1
T; = 5 ((:L', +.’L'z'1) - (Ill'il + .’L‘i2) + ...+ (IL'iZm + SL‘,))
1
-2 z(_l)n(e)($e+ + Te-) 5
ecy;

where n(e) = k if e = (ix,tk+1) € Vi-

— Similarly to the first part of the proof, the Cauchy—Schwarz inequality implies that for all x =
(x1,...,2) " €RE

i = 3§ (X g VRO e o)

i€lE ecy;
< Y (B Y e +ro00)
i€eFE ecy;
1
= 1 2 (@er +2)Q@) Y ilm)
eck’ YyiDe
S % Z(xe+ +$e—)2Q(e)'
ecg’

— From (126) we can now conclude that

Ca

2 < 2 (Px,x)x + Ix]12) -

(V]

— For x = ¢, we obtain in particular that

2
C(/\g—{—l) and A > -1+ -

1<2 .

Example Random Walk on a Graph

e We return to the example of a random walk on a graph that has been already discussed in Section 2.3.1.

— Let G = (V, K) be a connected graph with vertices V = {vy,...,v,} and edges K where each edge
connects two vertices,

— such that for each pair v;,v; € V' of vertices there is a ,path” of edges in K connecting v; and v;.
e A random walk on the graph G = (V, K) is a Markov chain Xy, Xy,...: Q =2 E

— with state space E = {1,..., £} and transition matrix P = (p;;) where

1
— if the vertices v; and v; are neighbors,

&

Pij = (127)

0 else.

— Recall that two vertices v; and v; are called neighbors if they are endpoints of the same edge
where, for each vertex v;, d; denotes its number of neighbors.

o We already showed that

— the transition matrix P given in (127) is always irreducible (where we now additionally assume P
to be aperiodic),
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— the uniquely determined initial distribution 7 is given by

_ d\T X
T = (F yeens E) , where d—i;d,, (128)

— the pair (P, ) given by (127)—(128) is reversible.
e For the Poincaré—coefficient  introduced in (120) we obtain
k=k(T)= max Z |ysj|mims
Yijoe
where 1
= — —dA(vs
351 ; 0@ (i5)
ij
and A(v;;) = #{e: e € ;;} denotes the number of edges (i.e. the length) of the path v;;.
e Taking into account (127)—(128), this implies
A
wr) < 722 (120)
where d/2 denotes the total number of edges,
— 0 = max;cp d; is the maximum number of edges originating at a vertex,
— A =max,er A(y) denotes the maximal path length and

— B = maxeeg #{y € T : v 3 e} is the so—called Bottleneck—coefficient, i.e. the maximal number of
paths containing a single edge.

e From (123) and (129) we obtain the following estimate

1 d
A“’“‘Efl‘m (130)
for the second largest eigenvalue A of P.
e In a similar way one obtains the upper bound
¢=((") =max y |ylm <A F,
vide
where 1
| = = : ! = ! = FI :
il ; o — 900, A=maxA(y),  F=max#{yel':y3e}
and hence 5 5
,\gz—1+zz—1+(m—,5,. (131)
e Remarks.
— For the numerical example from Section 2.3.1
vl
v, V, v,
VS
Vi vV, VS
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the following holds:

d=24,6=5,A=3,8="7 und

— The inequalities (130) and (131) thus imply

24 24
< 1= —== ==
A2 S 1= op 9 < 35

and hence
max{As, |Ag|} <

24

25 °

A =3, 8 =3.

2

and s > —1+ =

5-3-3

43
45

57
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3 Monte—Carlo Simulation

e Besides the traditional ways of data acquisition in laboratory experiments and field tests the generation of
so-called synthetic data via computer simulation has gained increasing importance.

e There is a variety of reasons for the increased benefit drawn from computer simulation used to investigate
a wide range of issues, objects and processes:

— The most prominent reason is the rapidly growing performance of modern computer systems which has
extended our computational capabilities in a way that would not have been imaginable even a short
time ago.

— Consequently, computer-based data generation is often considerably cheaper and less time-consuming
than traditional data acquisition in laboratory experiments and field tests.

— Moreover, computer experiments can be repeated under constant conditions as frequently as necessary
whereas in traditional scientific experiments the investigated object is often damaged or even destroyed.

e A further reason for the value of computer simulations is the fact

— that volume and structure of the analyzed data is often very complex

— and that in this case data processing and evaluation is typically based on mathematical models whose
characteristics cannot be (completely) described by analytical formulae.

— Thus, computer simulations of the considered models present a valuable alternative tool for analysis.

e Computer experiments for the investigation of the issues, objects and processes of scientific interest are
based on stochastic simulation algorithms. In this context one also uses the term Monte—Carlo simulation
summarizing a huge variety of simulation algorithms.

1. Random number generators are the basis for Monte—Carlo simulation of single features, quantities and
variables.

— By these algorithms realizations of random variables can be generated via the computer. Those
are called pseudo—random numbers.

— The simulation of random variables is based on so—called standard random number generators
providing realizations of random variables that are uniformly distributed on the unit interval
(0,1].

— Certain transformation and rejection methods can be applied to these standard pseudo-random
numbers in order to generate pseudo-random numbers for other (more complex) random variables
having e.g. binomial, Poisson or normal distributions.

2. Computer experiments designed to investigate high—dimensional random vectors or the evolution of
certain objects in time are based on more sophisticated algorithms from so—called dynamic Monte—
Carlo simulation.

— In this context Markov—Chain—Monte—Carlo—Simulation (MCMC simulation) is a construction
principle for algorithms that are particularly appropriate to simulate time stationary equilibria of
objects or processes.

— Another example for the application of MCMC simulation is statistical image analysis.

— An active field of research that resulted in numerous publications during the last years are so-called
coupling algorithms for perfect MCMC' simulation.

— These coupling algorithms enable us to simulate time—stationary equilibria of objects and processes

in a way that does not only allow approximations but simulations that are ,perfect” in a certain
sense.
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3.1 Generation of Pseudo-Random Numbers
3.1.1 Simple Applications; Monte—Carlo Estimators

First we recall two simple problems that can be solved by means of Monte—Carlo simulation and have already
been discussed in the course ,Wahrscheinlichkeitsrechnung”.

1. Algorithm to determine the number ©
e A simple computer algorithm for the Monte—Carlo simulation of 7 is the following improved version of
Buffon’s needle experiment; see Sections 2.5 and 5.2.3 of the course ,,Wahrscheinlichkeitsrechnung”.
e This algorithm is based on the following geometrical facts.
— We consider the square
B=(-1,1] x (-1,1] C R?,
— the circle C' inscribed into B, where

C={(z,y): (z,y) € B,z* +y* < 1},

— and arbitrarily toss a point into the set B.
e Translated into the language of stochastics this means:

— We consider two independent random variables S and T that are uniformly distributed on the
interval (—1,1] and
— determine the probability of the event

A={(S,T)eC}={S*+T? < 1},

i.e. that the ,random point” (S,T') is in C' C B.

— Then C|
PA)=P(S*+T*<1)=2="C
W=PE +T* <D= 7=,
where |B| and |C| denote the area of B and C, respectively.
e Similarly to Buffon’s needle experiment the equation P(A) = 7/4 yields a

— method for the statistical estimation of ,
— which is based on the strong law of large numbers (SLLN) and can be easily implemented.

e Let (S1,T1),...,(Sn,Ty) be independent and identically distributed random vectors,
— whose distribution coincides with the one of (S,T)
— and which are regarded as a stochastic model for n (independent) experiments.
— Then X4, Xo, ..., X, where
1 #S?+T? <1,

0 else

are independent and identically distributed random variables with expectation E X; = 7 /4.
e Furthermore, the SLLN (see Theorem WR-5.15) implies

— that the arithmetic mean .
Y, =n"" Z X;
i=1

converges to 7/4 almost surely.
— Thus, Y, is an unbiased and (strongly) consistent estimator for m /4,
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— i.e., the probability of 4Y;, to be a good approximation for 7 is very high if n is large.

e For the implementation of this simulation algorithm one can proceed as follows
— Use a random number generator to generate 2n pseudo-random numbers wuq,...,us, that are
realizations of random variables being uniformly distributed on (0, 1].
— Put s; =2u; — 1 and t; =2uy,qy —1fori=1,...,n.
— Define

1 ifsf+t7<1,
;=
0 else

— Compute 4(z1 + ...+ z,)/n.

2. Monte Carlo Integration

e Let ¢ :[0,1] = [0,1] be a continuous function.

— Our goal is to find an estimator for the value of the integral fol (z) dz that can be determined by
Monte—Carlo simulation.

— We consider the following stochastic model.

e Let the random variables Xy, Xs,...: 8 = R be independent and uniformly distributed on (0, 1], with
probability density fx given by
1 ifzel0,1],
fx(z) =
0 else.

— Let Z), = o(Xy) for all k =1,2,....
— By the transformation theorem for independent and identically distributed random variables (see
Theorem WR-3.18) the random variables Z;, Z, ... are independent and identically distributed

— with
]Ele/O go(m)fx(a:)dw:/o p(z) dx .

e Furthermore the SSLN (see Theorem WR-5.15) implies that for n — oo
1~ as, [°
= Z Zry == | p(z)dz.
"= 0

— Hence 1 Y"1 | Zj is an unbiased and (strongly) consistent estimator for fol o(z) dz,

— i.e., the probability for L " | Z to be a good approximation of the integral fol o(z) dz is high

n
for sufficiently large n.

e For the implementation of this simulation algorithm one can proceed similarly to Example 1:
— Use a random number generator to generate n pseudo-random numbers 24, ..., 2z, that are real-
izations of random variables being uniformly distributed in (0, 1].
— Define 2z, = p(xg) for k=1,...,n.
— Compute = >0, 2.
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3.1.2 Linear Congruential Generators

e Most simulation algorithms are based on standard random number generators,
— whose goal is to generate sequences uq,...,u, of numbers in the unit interval (0,1]. These are the
so-called standard pseudo—random numbers,
— which can be regarded as realizations of independent and on (0,1] uniformly distributed random
variables Uy, ..., U,.

e A commonly established procedure to generate standard pseudo-random numbers is the following linear
congruential method,

— where first of all the numbers 2, ..., 2, are generated according to a recursion formula
zr = (azg—1 +¢) mod (m), Vk=1,...,n (1)
— The initial value 29 € {0,1,...,m — 1} the algorithm is starting from is called germ of the linear

congruential generator.

meéeN a€{0,1,...,m—1} and ¢ € {0,1,...,m — 1} are further parameters called modulus, factor
and increment of the congruential generator.

The scaling
Rk
= — 2
L @)

yields the standard pseudo-random numbers uq, ..., uy.

As a next step we will solve the recursion equation (1), i.e., we will show how the number z; that has been
recursively defined in (1) can be expressed directly by the initial value z¢ and the parameters m, a and c.

Theorem 3.1 Forallk e {l,...,n}

Zp = (akzo +c (:1 — 1) mod (m) . (3)

Proof

We show the assertion by mathematical induction. For k = 1 the claim (3) coincides with the recursion
equation (1).

Let (3) be true for a certain k£ > 1, i.e., there is an integer j > 0 such that

® ab -1
Zr=a"20+c¢C
a—1

We show that this implies that (3) also holds for k + 1.
By the recursion equation (1) and by induction hypothesis (4) we get that

—Jm. (4)

zk+1 = (azg +¢) mod (m)

ko1
= (a(akzo +c (;_ 1 —jm) +c> mod (m)

F_1)4a—1
= (ak+1z0 +c ala ) 1—& - ajm) mod (m)
a—
g+l _
= (ak+120 +c 1 ) mod (m),
o _

i.e., (3) also holds for &k + 1. O
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Remarks
e Obviously, the linear congruential generator defined in (1) can generate no more than m different
numbers z1,...,2n.

— As soon as a number z; is repeated for the first time, i.e., there is some mg > 0 such that
zk - zk—m07
— the same period of length mg, which has already been completely generated, is started again, i.e.

k4§ = Zk—motj for all j > 1.
e An unfavorable choice of the parameters m, a, ¢ and zg, respectively, may result in a very short length

mg of the period.

— For example we have
mo = 2 fora =c= 2z =5 and m = 10,

where the sequence 5,0, 5,0,... is generated.

— A desirable feature for the period length mg of linear congruence generators is to be as close as
possible to the maximum length m.

We will now mention some (sufficient and necessary) conditions for the parameters m, a, ¢ and 2q, respectively,
ensuring that the maximal possible period m is obtained.

Theorem 3.2

1. If ¢ > 0, then for every initial value zo € {0,1,...,m — 1} the linear congruential generator defined in
(1) generates a sequence 21, ..., z, of numbers with maximal possible period m if and only if the following
conditions are satisfied:

(a1) The parameters ¢ and m are relatively prime.
(az) For every prime number r dividing m, a — 1 is a multiple of r.

(ag) If m is a multiple of 4 then also a — 1 is multiple of 4.
2. Ifc=0 thenmog=m —1 for all z9 € {1,...,m — 1} if and only if
(b1) m is prime and
(bz) for any prime r dividing m — 1 the number a™=/" — 1 is not divisible by m.
3. If c =0 and if there is k € N such that m = 2% > 16 then mo = m/4 if and only if zo is an odd number and
a mod (8) =5 or =3 gilt.

A proof of Theorem 3.2 using results from number theory (one of them being Fermat’s little theorem) can be
found e.g.

e in Section 2.7 of B.D. Ripley Stochastic Simulation, J. Wiley & Sons, New York (1987) or

e in Section 3.2 of D.E. Knuth (1997) The Art of Computer Programming, Vol. 11, Addison-Wesley, Reading
MA.

e We also refer to these two texts for the discussion
— of other generators for standard pseudo-random numbers like nonlinear congruential generators, shift—
register generators and lagged Fibonacci generators as well as their combinations,

— alternative conditions for the parameters m, a, ¢ and zg of the linear congruential generator defined in

(1),
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— ensuring the generation of sequences z1, ..., 2, whose period my is as large as possible and also ex-
hibiting other desirable properties.

e One of those properties is

— that the points (u1,u2), ..., (Un—1,u,) formed by pairs of consecutive pseudo-random numbers u;_1,
u; are uniformly spread over the unit square [0, 1]°.

— The following numerical examples illustrate that relatively small changes of the parameters a and ¢
can result in completely different point patterns (ui,u2),. .. (Up—1,Up)-

e Further details can be found in the text by Ripley (1987) that has been already mentioned and in the lecture
notes by H. Kiinsch (ftp://stat.ethz.ch/U/Kuensch/skript-sim.ps) that also contains the following figures.
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Figure 3: Point patterns for pairs (u; 1,u;) of consecutive pseudo-random numbers for m = 256

3.1.3 Statistical Tests

e In literature numerous statistical significance tests are discussed in order to investigate characteristics of ran-
dom number generators; see e.g. G.S. Fishman (1996) Monte Carlo: Concepts, Algorithms and Applications,

Springer, New York.

e We only recall two such tests

— which are important for investigating characteristics of linear congruential generators (and other ran-
dom number generators)
— and have already been mentioned in the courses ,Statistik I” and ,Statistik IT”, respectively.

e Pearson’s x2—goodness of fit test (see Section 5.2 of the lecture notes for ,Statistik II”) is used to check
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Figure 4: Point patterns for pairs (u;_1,u;) of consecutive pseudo—random numbers for m = 256

— if the generated pseudo-random numbers can be regarded as realizations of uniformly distributed

random variables
— and if we may assume the independence of these random variables.

e Another method for the generation of sequences uy, us, . .. of numbers having desirable characteristics

— is based on minimizing the Kolmogorov distance (see Section 1.5 of ,Statistik I’ and Section 5.1 of

Statistics II”, respectively)
1 . .
Dp(u1,...,up) = sup |— #{i: 1<i<n,0<u; <z} —m‘
ze(0,1]' T
between the empirical distribution function of the ,sample” uq,...,u, and the distribution function of

the uniform distribution on (0, 1] for every natural number n.
— In literature this procedure is referred to as Quasi-Monte-Carlo- Method; see e.g. H. Niederreiter (1992)

Random Number Generation and Quasi-Monte-Carlo Methods, STAM, Philadelphia.

1. x?—goodness of fit test of uniform distribution
The following test is considered in order to check if the pseudo-random numbers uy, ..., uy,

e can be regarded as realizations of independent sampling variables Uy, ..., U, that are uniformly dis-

tributed on the interval (0,1].
e The interval (0,1] is divided in r subintervals of equal length (0,1/7],...,((r —1)/r,1] and

— we consider the (r — 1)-dimensional (hypothetical) vector of parameters po = (1/r,...,1/r) and
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Figure 5: Point patterns for pairs (u;—1,u;) of consecutive pseudo—-random numbers for m = 2048

— the test statistic T}, : R — [0, 00) where

<

(Zj(u, ..., up) —njr)?
n/r

Tn(ul)"'aun) = Z

j=1

Y

and Z;j(u1,...,up) = #{i: 1 <i<n,j—1<ru; <j} denotes the number of pseudo-random
numbers uq,. .., u, in the interval (( — 1)/r, j/r]

o If the sampling variables Uy, ..., U, are independent and uniformly distributed on the interval (0, 1],
by Theorem 5.5 from ,Statistik 1T’

e the test statistic T}, is asymptotically x2_, distributed.
e Thus, for sufficiently large n the hypothesis Hy : p = po is rejected if

Tn(ula LR aun) > Xa—l,l—a )

where x?_; ;_, denotes the (1 — a)-quantile of the x* distribution with r — 1 degrees of freedom.

e We will illustrate this test by the following numerical example. For a = 0.05, n = 100000 and r = 10
we want to check if
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— the hypothesis that the sampling variables are uniformly distributed is conformable with a sample
(u1,---,u100000) Of pseudo—random numbers. The sample has the following vector (z1,. .., 219) of
class frequencies:

21‘22‘23‘24‘25‘26‘27‘28‘29‘210

9995 ‘ 10045 ‘ 10127 ‘ 9816 ‘ 10130 ‘ 10040 ‘ 9890 ‘ 9858 ‘ 10083 ‘ 10016

— In this case we obtain T100000(¢1, - - -,%100000) = 10.99 and hence
TlOOOOO(u].) R UlOOOOO) =10.99 < X370_95 =16.92.
— Thus, the hypothesis of a uniform distribution on (0, 1] is not rejected.

Remarks
e As a generalization of the xy?-goodness of fit test for checking the uniform distribution of some
sample variables one can also check
— if for a given natural number d > 1 (e.g. d = 2 or d = 3) the pseudo-random vectors
(u1,.-,ua)y -5 (W(n—1)d+1,- - - » Una) can be regarded
— as realizations of independent random vectors (U, ...,Us), .-, (Umn—1)dt+1,- - -, Und) that are
uniformly distributed on (0, 1]¢.
e For this purpose the unit cube (0,1]¢ is divided into r? smaller cubes B; of equal size,
— which are of the form ((43y — 1)/r,41/r] x ... x ((ig — 1) /7,4a/r].
— Furthermore, we consider the (r? — 1)-dimensional (hypothetical) vector pg = (1/r%,...,1/r)
of parameters and
— the test statistic T}, : R"? — [0, 00) where
r dy2
(Z;j(uy,...,up) —n/r?)

Tn(ula-"aun)zz n/rd )

=1

W = (U(i—1)dt1,--->%ia) and Zj(u,...,u,) = #{i : 1 < i < n,u; € B;}. Notice that
Zj;(uy,...,u,) denotes the number of pseudo-random vectors in Wj.

2. Run Test
There are a number of other significance tests allowing to evaluate the quality of random number generators.
In particular it can be verified

e if the generated pseudo-random numbers uy,...,u, can be regarded as realizations of independent
random variables Uy, ..., U, having a certain distribution. In our case we consider the hypothesis of a
uniform distribution on (0, 1].

e The following run test checks in particular

— if the independence assumption for the sampling variables Uy, ..., U, is reflected sufficiently well
by the pseudo—random numbers wuy, . .., Uy,.
— This is done by analyzing the lengths of monotonically increasing subsequences, also called runs,
within the sequence uj, us, ... of pseudo-random numbers.
e For this purpose we define the random variables V1, V5, ... by the recursion formula
Vigr =min{i: i > V; +1,U; > Uia }, Vi=1,2,..., (5)

where Vi = min{i: ¢ > 1,U; > U;y1}.
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e The random variables Wy, W5, ... where
W, =W and Wj+1 :V}'+1—(‘/J‘+1) forj:1,2,... (6)

are called the runs of the sequence Uy, Us, .. ..

The significance test that will be constructed is based on the following property of the runs Wy, Wa, . . ..

Theorem 3.3 The random wvariables Wi, W, ... introduced in (6) are independent and identically dis-
tributed such that "
PW; =k)= — Vk=1,2,... 7
( J ) (k—|— 1)' ’ » < ’ ( )
if the random variables Uy, Us, ... are independent and uniformly distributed on (0, 1].
Proof
e Let Uy, Us,... be independent and uniformly distributed on (0, 1].
— Then for all n > 1 and for arbitrary natural numbers ki, ..., k, > 1, we get that

PWi=ki,....Wn=ky)=PVi=k,Vao—-Vi—1=ks,.... Vo= Vo1 —1=k,)
= PWi=k,Va=ko+ki+1,....Vo=kn+...+ ki +n—-1)

= P(Uz <Uit1, Vi=1,...,k — 1, Uk, > Ugy41,
Ui <Ujj1,Vi=k1 +2,...;k1 + 1+ ko — 1, Uy 414ks > Ukytidkotis- -
U <Uip,Vi=ki+1+...+ky 1+2,.. ., +1+ ...+ ky 1 +1+k,— 1,
Ukyt 14 Ak 1tk > Ukibi e k4 1kt 1)
= P(U; <Ui1,Vi=1,... .,k — 1, Ug, > Up,41)
P(Ui <Upp1,Vi=k1 +2,.... k1 + 1+ ks — 1, Upy414ks > Ukyt14ko+1)
o PUi U1, Vi=ki+1+ ...+ kp1+2,.. ki + 14+ .+ koo + 14+ ky — 1,

Ukyt 14t kn 1t 14k > Ui k4 1kt 1)

PU; <Uiy1,Vi=1,....k1 — 1, Up, > Uk 41)
o P(U; < U1, YVi=1,...,k, = 1, U, > Up,41) -

— This implies that the runs Wi, W5, ... are independent and identically distributed.
e Furthermore, an induction argument shows that for arbitrary k € R and ¢ € (0, 1]

tk
P(Uls---SUkSt)ZE- (8)

— For k = 1, equation (8) obviously holds. By the formula of total probability we obtain
1
PU; <...<Uk1 £t) = / P(Ui ... LU £ Upt1 < t| Upt1 = 2) P(Ugt1 € do)
0

1
_ / PUL<...<Up<2<t|Upss = 2) P(Usss € da)
0

1
/ P{U; <£...<Up <z <t)dz,
0

where the last equality is a consequence of the independence and (0, 1]-uniform distribution of
U1,U,,....
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— Assume now that (8) is true for some k > 1. Then

t
PUi1£...8Up1 <) = /P(Ulﬁ---SUkﬁm)dm
0

t Z'k tk+1
/ —' d.Z' = s
o Kl (k+1)!

where the second but one equality uses the induction hypothesis.
— This shows (8) for any k > 1.
e Moreover, by (8) we can conclude that for any k € N

1
PUy £...<Ug, U > Ugy1) = /P(Ulf...SUk,Uk>$)d:E

0
1
0
1 1 .Z'k

= /O(H_E)dm

_ i_ 1 - k

T (k—Fl)!_(k—f—l)!' o

Remarks
e Let us assume that sufficiently many pseudo-random numbers wuq, us . .. have been generated that
are resulting in the n runs wy, ..., w, according to (5) and (6).
e We choose r pairwise disjoint intervals (a1, b1], ..., (ar, by] on the positive real axis such that
— the probabilities

Poj= Y. (kfl)!’ j=1,...,r
keNN(a;,b;]
are almost equal.
— For these probabilities we consider the (r — 1)-dimensional (hypothetical) vector
Po = (Po,1,---,Po,r—1) and
— the test statistic T), : R® — [0, 00) where

r 2

Y; — ;
Tn(wla-..;wn) :Z ( ](wh ,wn) npo,J) )

=1 "Po.j

and Yj(wi,...,wp) = #{i : 1 < i < n,a; < w; < b;} denotes the number of run lengths
wi, . .., w, belonging to class j.
e According to Theorem 3.3 for large n the hypothesis Hy : p = po will be rejected if T' (w1, - . ., wy,) >
X%71,17a- Note that this requires the generation a sufficiently large number of pseudo—random
numbers uq, us, . . ..

3.2 Transformation of Uniformly Distributed Random Numbers

e Based on standard pseudo-random numbers uj,us ... that can be generated by methods like the linear
congruential generator

— it is possible to generate pseudo—random numbers x1, 2 ... that can be regarded as realizations of
random variables X7, X5 ... having other than uniform distributions.
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— Examples are realizations 1, z2, . .. of exponentially, Poisson, binomially or normally distributed ran-
dom variables X1, Xo,.. ..

e For this purpose one can apply algorithms like the so-called inversion method and rejection—sampling, whose
basic ideas will be explained by some examples.

e A much more comprehensive discussion of these algorithms can be found e.g. in

— L. Devroye (1986) Nonuniform Random Variate Generation. Springer, New York,
— G.S. Fishman (1996) Monte Carlo: Concepts, Algorithms and Applications. Springer, New York,
— C.P. Robert and G. Casella (1999) Monte Carlo Statistical Methods. Springer, New York.

3.2.1 Inversion Method

e The following property of the generalized inverse can be used as a basis for the generation of pseudo-random
numbers z1,Zs ... that can be regarded as realizations of random variables X;, X5 ... whose distribution
function F' : R — [0, 1] is an arbitrary monotonically nondecreasing and right—continuous function such that
lim, o F(z) =0 and lim,_, o, F(z) = 1.

e Recall the following auxiliary result.

— Let F : R — [0,1] be an arbitrary distribution function. Then the function F~1 : (0,1] — R U {oo}
where
F~'(y) =inf{z: F(z) >y} 9)
is called the generalized inverse of the distribution function F.

— For arbitrary z € R and y € (0,1)

y < F(x) if and only if Fly) <z, (10)
see Lemma WR-4.1.
Theorem 3.4
o Let Up,Us,... be a sequence of independent and uniformly distributed random variables on (0,1] and let

F :R — [0,1] be a distribution function.

o Then the random wvariables Xy, Xo,... where X; = F~1(U;) for i = 1,2,... are independent and their
distribution function is given by F'.

Proof

e The independence of X7, Xs,... is an immediate consequence of the transformation theorem for inde-
pendent random variables; see Theorem WR-3.18.

e Furthermore, (10) implies for arbitrary z € R and 1 € N

P(X; <) =P(F'(U;) <) © P(U; < F(z)) = F(a).
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Examples

e In the following we discuss some examples illustrating

— how Theorem 3.4 can be used in order to generate pseudo-random numbers 1,5 . ..

— that can be regarded as realizations of independent random variables X7, Xs... with a given
distribution function F : R — [0, 1].

e These numbers are also referred to as F—distributed pseudo-random numbers z1, 25 .. .,

— in spite of the fact that the empirical distribution function f‘n of the sample zy,...,z,
— is only an approximation of F' for large n.

e Note that Theorem 3.4 can only be applied directly if

— the generalized inverse F'~! of F is given explicitly (i.e. by an analytical formula).
— Unfortunately, this situation is merely an exception.

1. Exponential distribution

e Let A>0and F: R — [0,1] be the distribution function of the Exp(\)—distribution, i.e.

1—e? ifx >0,
0 if x < 0.

F(z) =

e Then F~'(u) = —A"1log(1 — u) for all u € (0,1].

e By Theorem 3.4,

— we have X = —A~!logU ~ Exp(]) if U and hence also 1 — U are uniformly distributed on (0, 1]
— and the pseudo-random numbers zy, ..., z, where

_ log u;
A

T; = fori=1,...,n

can be regarded as realizations of Exp(\)—distributed random variables

— if uy,...,u, are realizations of independent and uniformly on (0, 1] distributed random variables
Uy,...,Up,.

2. FErlang distribution

e Let A >0,r € Nand let F: R — [0,1] be the distribution function of the Erlang distribution, i.e., of
the T'(A, r)—distribution where

T —Av r—1
/ w dv ifx>0,
o (r=1! (11)

0 ifz <0.

F(z) =

e Then the generalized inverse F~! of F' cannot be determined explicitly and therefore Theorem 3.4
cannot be applied directly.

e However, in Section 1.3.1 of the course ,Statistik I” we showed that X; + ... + X, ~ ['(\,r) if the
random variables X3, ..., X, are independent and Exp(A)-distributed.
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e By Theorem 3.4
— the pseudo—random numbers y1,...,y, where
log(ur(i—1)+1 el uri)
A

can be regarded as realizations of independent T'(), r)—distributed random variables,
— if uq, ..., u., are realizations of independent and uniformly distributed random variables on (0, 1].

Yi = Tpi—1)41 T -+ i = — fori=1,...,n

— In particular, for A = 1/2 the pseudo-random numbers y1,...,y, can be regarded as realizations
of a x3,—distributed random variable.

3. Normal distribution
e In order to generate normally distributed pseudo-random numbers one can apply the so—called Boz—
Muller algorithm, which also requires exponentially distributed pseudo—random numbers.
e Assume the random numbers Uy, U, to be independent and uniformly distributed on (0, 1].
— By Theorem 3.4, we get that X = —2logU; is an Exp(1/2)—distributed random variable and

— the random vector (Y7,Y5) where
Vi = VX cos(2nla), Yo = VX sin(2xls)

turns out to be N(o,I)—distributed, i.e., Y1, Y5 are independent and N(0, 1)—distributed random
variables

— as for arbitrary y1,y2 € R
PYi<y,Ys<y) = P(\/—QlogUl cos(2nUs) < y1, \/—2log U sin(2rUs) < yz)
= / / vz cos(2mu) < yp, vrsin(2ru) < y2)e*$/2 dz du

Y2 Y1
= — / e~ @2 gy, dyy

02 1 Y2 2
e g [
T J -0

where the last but one equality follows from the substitution

v = v/z cos(2mu) , w = /z sin(2mu)
whose functional determinant is 7.

e The pseudo-random numbers yy, . .., ys, where

Yok -1 = /—2logugy 1 cos(2muay,), Yor = / —2logugy 1 sin(2musay,) (12)

— can thus be regarded as realizations of independent and N(0, 1)-distributed random variables ,
— if uy,. .., us, are realizations of independent and uniformly on (0, 1] distributed random variables
Ul, ey Ugn.

e For arbitrary u € R and o2 > 0 the pseudo-random numbers yj, ..., y5, where yi = o(y; + u) can be
regarded as realizations of independent and N(u, o?)—distributed random variables.

e Remarks
— A faster algorithm for the generation of normally distributed pseudo-random numbers is obtained
if additionally a method of rejection sampling is applied that will be introduced in Section 3.2.3.

— This method avoids the relatively time-consuming computation of the trigonometric functions in
(12).
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3.2.2 Transformation Algorithms for Discrete Distributions

o If pseudo-random numbers z;, 25 ... need to be generated

— that can be regarded as realizations of discrete random variables X1, X5 ...

— taking the values ag,a; ... € R with probabilities p; = P(X; = a;) > 0for j =0,1,...,

e then it is sometimes advisable to proceed as follows:

— Let U be a (0, 1]-uniformly distributed random variable and let the random variable X be given by

(ao ifU < po,
a1 if po LU < po+p1,

a; ifp0—|—...+pj_1 §U<p0—|—...—|—pj,

L :
— Then P(X =a;) =p; forall j =0,1,....

e The pseudo—random numbers z1,...,x, where

(a0 if u; < po,

ao if po <u; <po +p1,

T; =

a; ifp0+...+pj_1Sui<p0+...+pj,

L
— can thus be regarded as realizations of independent and p-distributed random variables where

P= (p07p17 .. ‘)TJ

— if wy,...,u, are realizations of independent and uniformly distributed random variables on (0, 1].

Example (geometric distribution)

e We consider the following values for a; and the corresponding probabilities p;.

— Letaj=jforj=0,1,...,andfor 0<p<1l,g=1—plet

0 if j =0,
pj = .
pg ' ifj>1
— Then, for all j > 1,
1= (pr+...+p) =pjs1+pjya+...=pY ¢ =¢ (14)
i=j

and p; = ¢'1 — ¢/.
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e Furthermore, we consider the random variable
logU
= 1 15
{ loqu i (19)
where U is a (0, 1]-uniformly distributed random variable and |z| denotes the integer part of z.

e Then P(X = j) =pg'~! forall j =1,2,..., i.e. X ~ Geo(p),
— as (14) and (15) imply

A%

X (15) min{j 1:i> logU}

loggq
= min{j >1: jlogq<logU}

= min{jZl:qj<U}
= i]’ I(¢’ <U<g™)
j=1

)

— where the random variable 1 — U is also uniformly distributed on (0, 1].

e The pseudo-random numbers z1, ..., z, where

log q
— can thus be regarded as realizations of independent and geometrically distributed random variables
X1,...,Xn ~ Geo(p)
— if ug,...,u, are realizations of independent random variables Uy, ..., U, that are uniformly dis-
tributed on the interval (0, 1].

For some discrete distributions there are specific transformation algorithms allowing the generation of pseudo—
random numbers having this distribution.

Examples

1. Poisson distribution (with small expectation \)

o If A > 0 is a small number, then the following procedure is appropriate to generate Poisson—
distributed pseudo—random numbers

— by transformation of exponentially distributed pseudo-random numbers (as in Section 3.2.1)
— or directly based on (0, 1]-uniformly distributed pseudo-random numbers.
e Let the random variables X1, X5, ... be independent and Exp(A)-distributed.
— If we consider the random variable Y = max{k > 0: X; +...+ X} < 1}, formula (11) for the
distribution function of the Erlang—distribution yields for all j > 0

P(Y=j) = PY>j)—PY¥ >j+1)
= P(Xi+.. +X <1) P(X; + .. X+1<1)

/ Ae 2 (Aw)d / )\e’)‘” Av)J

= dv
(- 1

_ d A (Aw)

B /0 dv ( J! ) dv

.Y

J!
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— In other words we obtained Y ~ Poi()).

e The pseudo—random numbers y, ..., y, where
yi=max{k>0:z1+ ...+ 2, < i} —yi_1, Vi=1,...,n, (16)
and _
y,-:max{kZO:ul-...-ukZe*’)‘}—yi_l, Vi=1,...,n, (17)

where yo = 0 and z; = —A"tlogu; for j =1,2,..,
— can thus be regarded as realizations of independent and Poi(\)—distributed random variables,
— if @1, x5 ... are realizations of Exp(A)—distributed random variables X, X5 ... and

— if uy,...,u, are realizations of independent random variables Uy,...,U, that are uniformly
distributed on the interval (0, 1], respectively.
e Remarks

— As the expectation of the Poi(\)—distribution is given by A, the mean number of uniformly
distributed pseudo-random numbers necessary in order to generate a new Poi(\)—distributed
pseudo-random number is also .

— For large X this effort can be reduced if one proceeds as follows.

2. Poisson distribution (with large expectation A)
o If A\ >0islarge, a; = j and p; =e *N /jl for j =0,1,...,
— then the procedure based directly on the transformation formula (13) is more appropriate to
generate Poi(\)—distributed pseudo—random numbers,
— The validity of the inequalities

U<po, po<U<po+pt,...,po+...+pjc1 SU<po+...+pj, ... (18)

needs to be checked in the order defined below.
— Note that the recursion formula

A
1= ——py,  ¥ji>0
Dj+1 J+1pJ7 J=2Y,

is applied to calculate the sums P; = Ei:o py, for j > 0.
e Let |[A] > 0 be the integer part of A. Then it is firstly checked if U < Py.
— If this inequality holds it is checked if U < P|yj_1,U < P|5|_2,... where we define X =
min{k : U < P}.
— If the inequality U < P, does not hold then it is checked if U < P|5)41,U < P|x|42,--- and
we also define X = min{k: U < P;}.
e For the expectation EV of the necessary number V' of checking steps we obtain the approximation

EV ~ 1+E|X )

= 1+\/X]E<|X\/_X)‘|)

1+ 0.798 VA,

Q

— where the last approximation uses the fact that the random variable (X — \)/v/ is approxi-
mately N(0, 1)-distributed for large A for the following reasons.
— As the Poisson distribution is stabile under convolutions, i.e.,

Poi(A1) x...x Poi(\,) = Poi( i )\i) ;

k=12

the random variable X ~ Poi()) can be viewed as the sum Y " | X; of n independent and
Poi(A\/n)—distributed random variables X;. The last approximation then follows from the
central limit theorem for sums of independent and identically distributed random variables;
see Theorem WR-5.16.
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o We observe that

— for increasing A\ the mean number of checking steps only grows with rate v/ if this simulation
procedure is applied,

— whereas for the formerly discussed method generating Poi(\)—distributed pseudo-random num-
bers the necessary number of standard pseudo-random numbers grows linearly in A.

3. Binomial distribution

e For the generation of binomially distributed pseudo-random numbers one can proceed similarly
to the Poisson case.

— For arbitrary but fixed numbers n € N and p € (0,1) where ¢ =1 —p let

n! . .
aj=3j and pj=-—"7=p q¢"77, Vi=0,1,...,n.
! T =)
— For j =0,1,...,n the sums P; = Ei:o pr are calculated via the recursion formula
n—jp .
i+l = ——— — Dj Vi=0,1,...,n—1
Pj+1 J+1qp]7 J s 4y T

e If np > 0 is small, then
— the validity of the inequalities (18) is checked in the natural order
— starting at U < pp and defining X = min{k : U < Py}.
o If np is large,
— then it is more efficient to check the validity of the inequalities (18) in the following order. It
is firstly checked if U < Ppp)-
— If this inequality holds it is checked if U < P|ppj—1,U < Ppp|—2,--- where we also define
X =min{k: U < Py }.
— If the inequality U < P|,;| does not hold it is checked if U < P|pp|41,U < Ppp|42,--- Where
we again define X = min{k: U < P}.

3.2.3 Acceptance-Rejection Method

e In this section we discuss another method for the generation of pseudo—random numbers y1,ya, . ..
— that can be regarded as realizations of independent and identically distributed random variables
Y1,Y5.... Their distribution function is assumed to be given; it is denoted by G.

— This method also requires a sequence of independent and identically distributed pseudo—random num-
bers z1, 2, ..., but we abandon the condition that they need to be uniformly distributed on (0, 1].

— The only condition we impose on their distribution function F' is that G needs to be absolutely con-
tinuous with respect to F' with bounded density g(z) = dG(x)/dF(z),

— i.e., for some constant ¢ > 0, we have
y
glz)<c¢  and Gy) = / g(z)dF(x), Vz,y€R. (19)

—0o0
e First of all we consider the discrete case.

— Let aj = j for all j = 0,1,..., and let p = (po,p1,...)" and q = (qo,q1,...)" be two arbitrary
probability functions such that for all j =0,1,... p; = 0 implies ¢g; = 0.

— Let X : Q — {0,1,...} be a random variable P(X = j) =p; for all j =0,1,...,
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— and let ¢ > 0 be a positive number

(g(j) = ) Z—J <c for all j > 0 such that p; > 0. (20)
]

Theorem 3.5

e Let (U, X1),(Us, X3),... be a sequence of independent and identically distributed random vectors whose
components are independent. Furthermore, let U; be a (0,1]-uniformly distributed random variable and X;
be distributed according to p.

o Then

— the random variable

I=min{k21:Uk<cqpi} (21)
X3

is geometrically distributed with expectation c, i.e., I ~ Geo(c™1),

— and the random variable Y = X is distributed according to q.

Proof

e By the definition of I given in (21), we obtain for all j > 1

P(I=j) = P(iz 2, v, > B o 0
CPXx, CPX; 1 CPX;

P(Uy > ) L p(U; > 25 p(U; < 21
CPx, CPx;_1 CPXx;

= pgdt,

— where ¢ =1 — p and

p o= PUi<r)

gx; _ _
k:pZDOP(Ul < oslx= k) P(X, = k)

> P(U1 < Cq—k) Pk
k: pr >0 Dk

qr 1
= D =g
k: pr >0 Dk

— This shows I ~ Geo(c™!).
o Furthermore, for any j > 1 such that p; > 0, we get that

P(Y=j) = P(X;=j) =Y PXr=j,I=k)
k=1

—iP(X—'I—k—OOPX—"“_IP 4
= k= Js —)—Z Xk =14)q Ur < —
k=1 k=1 Pj

- g g

— ijqkflc_Jl — ?J qkfl
k=1 Dj k=1
g 1

= eToq Y
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and for all j > 1 such that p; =0

P(YZj)=iP(Xk=j,I=k)SiP(Xk=j)=0. 0

Remarks
e Theorem 3.5 implies that the mean number of F—distributed pseudo-random numbers necessary to
obtain a G—distributed random number is c.
e In case there are several alternatives for the choice of the the distribution function F,

— possessing equally nice properties with respect to the generation of F—distributed pseudo—random
numbers,

— then one should choose the distribution function with the smallest c.
e Furthermore, as a consequence of Theorem 3.5,

— the values g(x) and g(j) of the density in (19) and (20), respectively need only be known up to a
constant factor.

In the general (i.e. not necessarily discrete) case one can proceed in a similar way. The following result will serve
as foundation for constructing acceptance-rejection algorithms.

Theorem 3.6

o Let F,G : R — [0,1] be two arbitrary distribution functions such that (19) holds.

o Let (U1, X1), (U2, X3),... be a sequence of independent and identically distributed random wvectors whose
components are independent. Furthermore, let U; be a (0, 1]-uniformly distributed random variable and X;
be distributed according to F.

e Then the random variable o(X
I:min{k>1 Uy < (c’“)} (22)

is geometrically distributed with expectation c, i.e., I ~ Geo(c ') and the random variable Y = X is
distributed according to G.

Proof
e Similarly to the proof of Theorem 3.5 we obtain P(I = j) = pg~! for any j > 1 where

p = (U< (Xl))z/ (U<( V) x, = )dF(;c)
R

c

= /RP(U1<@)dF(:E)=/R @dF(w)Zé-

e Furthermore, for all y € R we have

P(Y<y) = P(X;<y) iPXIgyJ:k):iP(ngy,I:k)
k=1 k=1
- Z/ P(I =k | Xy =v)dF(v) = iqk—l /y P(Uk < &:)) dF (v)
k=1Y 7% k=1 e
- 2 [ are) = [7 gware) = 6w,

where 1 —g=p=c"1. O
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In the same way we obtain the following vectorial version of Theorem 3.6.

Theorem 3.7

o Let m > 1 be an arbitrary but fixed natural number and let F,G : R™ — [0, 1] be two arbitrary distribution
functions (of m—dimensional random vectors) and let ¢ > 0 be a constant such that

g(x)<c and G(ly) = /(_ ]g(x) dF(x), Vx,y € R™. (23)

o Let (U,X4),(Ua,X2),... be a sequence of independent and identically distributed random vectors whose
components are also independent. Furthermore, let U; be a (0, 1]-uniformly distributed random variable and
X; be distributed according to F.

e Then the random variable %
I:min{kZl:Uk<g(—ck)} (24)

is geometrically distributed with expectation c, i.e., I ~ Geo(c™!) and the random vector Y = Xj is
distributed according to G.

Examples

1. Uniform distribution on bounded Borel sets

e Let the random vector X : @ — R™ (with distribution function F') be uniformly distributed on
the square (—1,1]™ and let B € B((—1,1]™ be an arbitrary Borel subset of (—1,1]™ of positive
Lebesgue measure |B|.

e Then the distribution function G : R™ — [0, 1] given by

I B
G(y) = / % dF(x), Vy € R™
(7O°’y] | |

is absolutely continuous with respect to F' and we obtain for the (Radon—Nikodym) density
g :R™ — [0,00) that

I B
g(x):%gc=|3|_1 and 9() =1I(x € B), VxeR™.
c
e By Theorem 3.7 we can now in the following way generate pseudo—random vectors yi,ys, - .. that
are uniformly distributed on B.
1. Generate m pseudo-random numbers ug, ..., u,, that are uniformly distributed on the interval
(0,1].

2. If (2u; — 1,...,2uy, —1)T € B, then return to step 1.
3. Otherwise put y = (2u; — 1,...,2u, — 1)7.

2. Normal distribution
e As an alternative to the Box-Muller algorithm discussed in Section 3.2.1 we will now introduce
another method to generate normally distributed pseudo-random numbers,
— which is often called the polar method.
— Notice that the polar method avoids calculating the trigonometric functions in (12).

e Let the random vector (V1, V2) be uniformly distributed on the unit circle B, where
B = {(z1,72) € R? : 27 + 2% < 1}.
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e Then, the random vector (Y1,Y>) where

Va

1
Vi =/—2log(V2 + V) ———, Yo =4/=2log(V2+ V) ——
1 \/ g(l 2)\/@ 2 \/ g(l Z)W

is N(o,I)-distributed, i.e., Y1, Y5 are independent and N(0, 1)-distributed random variables. This
can be seen as follows.
— By the substitution

v1 =T1cosh, vg =rsinf,

— i.e. by a transformation into polar coordinates we obtain for arbitrary y;,y2 € R

P(Y1 <y, Ys <ya)

v/ —2log(v? + v2 vor/—2log(v? + v2
/][( 1 g(vi 3) <y 2 g (v 3) Sy2) d(v1, )
B

27 1
/ / r][(x/—Qlog(rz) cosf < w1, /—2log(r?) sinf < yz) dr do
o Jo

1 27 e’}
— / I(ﬁcosﬁgyl,ﬁsinGSyg) e *2dz dh,
27 0 0

I N

— where the last equality results from the following substitution:

e /2 dy = 2rdr.

N | =

x = —2log(r?) bzw. -

— By the same argument that was used to verify formula (12) in Section 3.2.1 one can check that
the last term can be written as the product F(y;)F(y2) of two N(0, 1)-distribution functions.

e The pseudo-random numbers y1, ..., Y2, with
_ 2 2 Vok—1 _ 2 2 Vak
Yok—1 = \/—210g(1)2k_1 +v3)) TS Yok = \/—2log(02k_1 +v3,) T
Vg1 t U3y, \/ Y2k—1 + vy,

— can thus be regarded as realizations of independent and N(0, 1)-distributed random variables,
— if (v1,v2),..., (Van—1,v2,) are realizations of the random variables (V1,V2),..., (Vap—1, Vay)
that are independent and uniformly distributed on the unit circle

B={(.’L‘1,.’L‘2) ER2 : .CC%—{—.CII% S].}

— Those can be generated via acceptance-rejection sampling as explained in the last example.

3.2.4 Quotients of Uniformly Distributed Random Variables

In many cases random variables having absolutely continuous distributions can be represented as quotients of
uniformly distributed random variables.

e Combined with acceptance-rejection sampling (see Section 3.2.3) this yields another type of simulation
algorithm.

e The mathematical foundation for this type of algorithm is the following transformation theorem for the
density of absolutely continuous random vectors (that has already been mentioned e.g. in Section 1.2.3 of

the course ,Statistik I”).
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Theorem 3.8
o Let X = (X1,...,X,)"T : Q = R™ be an absolutely continuous random vector with joint density fx :
R™ — [0,00) and let o = (p1,...,pn) : R* = R™ be a Borel-measurable function with continuous partial
derivatives 0p; [0x;(z1,...,%n).

o Let now the Borel-set C € B(R™) be picked in a way such that
{xelR": fx(x)#0}CC

and

det(%(Z'h...,iL'n))#o, VX:(.’L‘l,...,SL'n)GC,

Tj

which ensures that the restriction ¢ : C — D of ¢ to the set C is a bijection where D = {p(x) : x € C}
denotes the image of .

o Let o7t = (p; 1, ..., 071) : D — C be the inverse of p : C — D.

e Then the random vector Y = p(X) is also absolutely continuous and the density fv(y) of Y is given by

-1 690'_1
Ix @ @) 97" ) |det( =, oym)) |, falls y = (i, m) €D,
fx(y) = Yi (25)
0, fallsy € D.
which is the same as
-1 —1 9vi, 4 -1
Ix (@ @)yt ) | det(52 07 @ owa)))| 1 Solls ¥ = (s-s9a) €D,
fx(y) = ’ (26)

0, fallsy € D.

From Theorem 3.8 we obtain the following result concerning the representation of absolutely continuous random
variables as quotients of uniformly distributed random variables.

Theorem 3.9

o Let f': R — [0,00) be Borel measurable and bounded such that

0< / fl(z)dr < oo and sup |z| v/ f'(z) < oo (27)
R Tz€R

e Let the random vector (V1, V) be uniformly distributed on the (bounded) Borel set
B={(.’L‘1,$2) €R2 0<r < \/f’(.’lfg/.fb‘l)}. (28)

o Then the quotient Vo /Vy is an absolutely continuous random variable with density f: R — [0,00) where

W )
flz) = fRf’(y)dy’ VzeR.

Proof

e Notice that (27) implies that the Borel set B defined in (28) is bounded, i.e. 0 < |B| < oo. This is due
to the following reasons.

— For x5 > 0 the inequality z1 < \/f'(z2/x1) is equivalent to z2 < za/z1+/ f'(x2/21)-
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— If on the other hand z2 < 0 it is equivalent to x2 > za/z1/f'(z2/21).

— Therefore
c o, sup\/ )] x [inf z v/ f'(2), Sup 7 f'(@)] (29)

and

B C{0,sup /f'(@)] x [ sup || V/ ['(@), sup [+] v/ [ (2)]

e The following joint density f(v; v,)(vi,v2) of the random vector (V1,V2) is thus well defined

f(Vl,Vg)(U15U2) = |B|_1][(0 < v < f’(Uz/Ul)) .

e The function ¢ : C — C where C = (0,00) x R and ¢(z1,22) = (21, 22/1)
— is a bijection of C onto itself
— and its functional determinant is given by

Op; 1 0 1
det (67;(311,;62)) = det( 9 i = ,(L'_l , V(ZL'l,.CL'z) eC.
e Theorem 3.8 therefore implies

— that the density fv, v,/v1)(y1,%2) of the random vector (Vi,V2/V1) has the following form:

fonveviyW,y2) = |BI7 i 1(0 < g1 < v/ f'(32))

— Moreover, the marginal density fy, v, (y2) of the second component V2/V; von (Vi,V5/V1) is given
by
F'(y2)
= B -1 d = .
fvarvi(y2) = |B| / wdy = Gp -
0

Example (normal distribution)

e Theorem 3.9 yields a third method to generate N(0,1)—distributed pseudo-random numbers (as an
alternative to the Box—Muller algorithm from Section 3.2.1 and the polar method explained in Sec-

tion 3.2.3).
e Consider the function f' : R — [0,00) where f’(z) = exp(—z?/2) for all z € R. For the bounds in (29)
we obtain:
sup/ fl(z) =1, iréfox\/f’(m) =—v/2/e, supz/ f'(z) = v/2/e.
Tz€R r >0
e According to Theorem 3.9 a sequence x1, s, ... of N(0,1)—distributed pseudo—random numbers can

now be generated as follows.
1. Generate a (0, 1]-uniformly distributed pseudo-random number u and a (—/2/e, \/2/e]-uniformly
distributed pseudo—random number v.
2. If u > Jexp(—v?/(2u?)) , i.e., if logu > —v?/(4u?) & v? > —4u?logu, then return to step 1.
3. Otherwise put ¢ = v/u.
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3.3 Simulation Methods Based on Markov Chains

e Let E be an arbitrary finite set, e.g. a family of possible digital binary or greyscale images x = (z(v), v € V),

— where V is a finite set of pixels
— and every pixel v € V in the observation window V gets mapped to a greyscale value z(v) > 0,

— resulting in a ,matrix” (z(v), v € V) that has certain properties.

e Let m: E — (0,1) be an arbitrary probability function, i.e.

Zﬂ'le and >0, VxeFE.

e If the number |E| of elements in E is large,
— the inversion method discussed in Section 3.2 as well as acceptance-rejection sampling are inefficient
algorithms
— for the generation of pseudo—random numbers x1,xs,... in F that are distributed according to .

Remarks

e An alternative simulation method is based on

— constructing a Markov chain Xy, Xy, ... with state space E
— and an (appropriately chosen) irreducible and aperiodic transition matrix P,
— such that 7 is the ergodic limit distribution of the Markov chain.

e For sufficiently large n

— X, is approximately w—distributed
— and can thus serve as an efficient tool for the generation of (approximately) w—distributed pseudo-
random elements in F.

e Therefore one also uses the term Markov—Chain—Monte—Carlo Simulation (MCMC).

3.3.1 Example: Hard—Core Model

(see O. Haggstrom (2002) Finite Markov Chains and Algorithmic Applications. CU Press, Cambridge)

e We consider a connected graph G = (V, K)

— with finitely many vertices V' = {v1,..., vy}

— and a certain set K C V2 of edges, each of them connecting two vertices.
e Each vertex in V gets either mapped to 0 or 1,

— where we consider the following set E C {0,1}/V! of admissible configurations,
— characterized by the property that pairs of connected vertices are not allowed to obtain the value 1 on
both vertices; see also Figure 6.
e As we want to pick one of the admissible configurations x € E ,at random” we consider the (discrete)
uniform distribution 7 on E, i.e.
VxeFE, (30)

Ty =

where ¢ = |E| denotes the number of all admissible configurations.
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Figure 6: Lattice G of size 8 x 8, black pixels are corresponding to value 1

o If the numbers |V| and | K| of vertices and edges, respectively, of the connected graph G = (V, K) are large,

— the explicit description of the admissible configurations E will cause difficulties.
— Therefore, the number £ of all admissible configurations is typically unknown.

— Consequently, formula (30) cannot be applied directly for the simulation of ,randomly” picked admis-
sible configurations.

MCMC Simulation Algorithm

e Alternatively, a Markov chain X, Xy,... can be constructed

— that has the state space E and an (appropriately chosen) irreducible and aperiodic transition
matrix P,
— such that the ergodic limit distribution 7 is given by (30).
e Then we generate a path xg,x1,... of the Markov chain using the recursive construction of Markov
chains that has been discussed in Section 2.1.3:
1. Pick an admissible initial configuration x¢ € E.
2. Pick an arbitrary vertex v € V ,at random” and toss a fair coin.

3. If the event head” occurs and if z,(w) = 0 for all vertices w € V connected to v € V, then set
ZTnt1(v) = 1; else set x,41(v) = 0.
4. The values of all edges w # v are not changed, i.e., 11 (w) = z,(w) for all w # v.

Remarks

e In order to implement steps 2 — 4 of this algorithm, the update function ¢ : E x [0,1] — E considered
in (2.19) needs to be specified.
e For this purpose the unit interval (0,1] is divided into 2|V| parts of equal length 1/2|V|

— that correspond to the events (v, head), (v1, tail), ..., (v|v|, head), (vjy|, tail).
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— Then x' = p(x, z) where
( 2i—2 2i—1
LY
ST 2w

connected tov € V,

] and z(w) = 0 for all vertices w € V

2i—1 2@']0 (2i—2 2i—1
2[v| 7 2V 2V T 2V
not for all vertices w € V connected to v € V,

z'(vi))=1¢ 0 if z € ( and z(w) =0 (31)

2i—2 Zi]

z(v;) ifz ¢ ( 2[V] 2V

\

e The following theorem implies that for sufficiently large n the return x,, = (z,(v), v € V) of the
algorithm can be regarded as a configuration that has been approximately picked according to the
distribution .

Theorem 3.10

e Let P = (pxx') be the transition matriz of the MCMC' algorithm simulating the hard core model in (31) and
let w be the probability function given in (30).

e Then P is irreducible and aperiodic and the pair (P,7) is reversible.

Proof

e In order to show that P = (pxx’) is aperiodic it suffices to note that all diagonal elements pyx of P are
positive.
e The following considerations show that P is also irreducible.
— Let x,x’ € E be two admissible configurations and let m(x) and m(x’) denote the number of
vertices set to 1 in x and x’', respectively.
— First we observe that the transition x — x¢ to the ,zero configuration” xo € F is possible in
m(x) steps with positive probability, where x¢(v) =0 for allv € V.
— For this transition all vertices that were originally set to 1 are subsequently set to 0. Each of these
steps happens with positive probability.
— Afterwards, in a similar way the chain can transfer from the ,zero state” xo to state x' taking
m(x') steps where each of them happens again with positive probability.
— Thus the transition x — x’ in a finite number of steps is possible with positive probability.

o It is left to check that the detailed balance equation (2.85) holds, i.e.
Tx Pxx! = Tx! Px'x » VX, x €E. (32)

— If the configurations x,x’ € E coincide then (32) obviously holds.

— If 2(v) # 2'(v) for more than one vertex v € V then pxx = px'x = 0 and thus (32) also holds for
this case.

Let now z(v) # z'(v) for exactly one v € V (and hence z(w) = z'(w) for all w # v).

— Then z(w) = z'(w) = 0 for all vertices w # v connected to v and consequently

1
W = Tix' Px'x - 0

Tx Pxx! =

| =
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Remarks

e For all x € E let m(x) be the number of vertices set to 1 of the admissible configuration x.

e If the admissible configuration is picked ,at random” then the expectation EY of the random number
Y of vertices set to 1 is given as

EY =5 > m(x). (33)

xeFE

e If ¢ is large the direct calculation of the expectation EY via formula (33) is in general not possible
because it is difficult to determine the numbers m(x) analytically.

e A method to approximate the expectation EY is based on generating k ,randomly picked” admissible
configurations x£3), xg), e x£{“) € E by k runs of the MCMC simulation algorithm described above.
e As a consequence of the strong law of large numbers the arithmetic mean (m(xg)) + m(xg)) +...+

m(x%k) )) /k is close to EY with high probability if the run length n and the sample size k are sufficiently
large.

3.3.2 Gibbs Sampler

The MCMC algorithm for the generation of ,randomly picked” admissible configurations of the hard core model
(see Section 3.3.1) is a special case of a so—called Gibbs sampler for the simulation of discrete (high dimensional)
random vectors.

e Let V be a finite (nonempty) index set and let X = (X (v), v € V) be a discrete random vector

— taking values in the finite state space E C RV with probability 1 where we assume

— that for every pair x,x’ € E there is a finite sequence of states yo,y1,...,yn € E such that
Yo=%x, yo=%x and #{veV:y@w) #yp(v)} =1, Vi=0,...,n—1. (34)

e Let m = (nx, x € E) be the probability function of the random vector X with 7 > 0 for all x € E, and for
allv eV let
To() x(—v) = P(X (v) = 2(v) | X(-v) = x(-v)) (35)
— denote the conditional probability that the component X (v) of X has the value z(v)

— given that the vector X(—v) = (X(w), w € V' \ {v}) of the other components equals x(—v) where we
assume (z(v),x(—v)) € E.

MCMC Simulation Algorithm

e Similar to Section 3.3.1 we construct a Markov chain Xg, X4, ...
— with state space E and an (appropriately chosen) irreducible and aperiodic transition matrix P,
— such that 7 is the ergodic limit distribution of Xg, X4, .. ..

e Then we generate a ,path” xg, Xy, ... of the Markov chain by the recursive construction discussed in
Section 2.1.3:

1. Pick an initial state x¢ € E.

2. Pick a component v € V according to a given probability function q = (g, v € V) such that
gy >0forallveV.
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3. Generate the update z,41(v) of the vth component according to the (conditional) probability
function
T xn(—v) = (Ta(o)| xn(—v)> ¥ 2(v) such that (z(v),x,(—v)) € E) .

4. The values of all components w # v are not changed, i.e. z,+1(w) = z,(w) for all w # v.

Theorem 3.11 Let the transition matric P = (pxx) be given as

P = D Qo) x(—) L(x(—v) = x'(=v)),  Vx,x' € E, (36)
veV

where the conditional probabilities Ty (y)|x(—v) are defined in (35). Then P is irreducible and aperiodic and the
pair (P, ) is reversible.
Proof The assertion can be proved similarly to the proof of Theorem 3.10.

e In order to see that P = (pxx') is aperiodic it suffices to notice
— that for all x € E

TTx
Pxx = ) o) x(—v) = )_ o > .

vev vev z€EE: z(—v)=x(—v)

— and hence all diagonal elements px x of P are positive.
e The following considerations show that P is irreducible.

— For arbitrary but fixed x,x' € E let k < |V| be the number of components v € V such that
z(v) # z'(v).

For k =0, i.e. x =x', we already showed while proving the aperiodicity that pxx > 0.
g

Let now k > 0. Without loss of generality we may assume that the components are linearly ordered
and that the first k£ components of x and x' differ.

By hypothesis (34) the state space E contains a sequence yo,--..,yx € E such that yo = x and

y1 = (' (n1),2(v2),. .., z(vpv))), -5 Yi = (&' (01),- .., 2" (0k), 2(Vk41), - -, 2(v)y))) =%
— Moreover, for each i =0,...,k—1
Py.v; = @y, TN = qy, Tyit1 >0 (37)
ViYi+1 Vi Ty 11 (vi) | yi(—vi) v; > -

zEE: z(—v;)=yi(—wv;)

and thus pfc’;), > Hf:_ol Dyiyis1 > 0.
o It is left to show that the detailed balance equation (2.85) holds, i.e.

Tx Pxx! = Tx! Px'x 5 Vx, x' e E. (38)

— If x = X, then (38) obviously holds.
— If z(v) # z'(v) for more than one component v € V, then pxx = pxrx = 0 and hence (38) holds.

— Let now z(v) # z'(v) for exactly one v € V' (and hence z(w) = z'(w) for all w # v). Then (37)
implies
Tx Pxcx! = T o Tx = Ty o = Ty Px'x -
X XX X 7rz X E 7rz X X'X D
zEE: z(—v)=x(—v) zEE: z(—v)=x'(—v)
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Let Xg, X4, ... be a Markov chain with state space E and the transition matrix P = (pxx) given by (36). As a
consequence of Theorem 3.11 we get that in this case

lim drv(a,,w) =0 (39)

n—oo

for any initial concentration ag where «,, denotes the distribution of X,,. Furthermore, the Gibbs sampler shows
the following monotonic behavior.

Theorem 3.12 Foralln=0,1,...,

drv (o, ) > drv(angr, ) . (40)

Proof

e For arbitrary v € V and x' € E, formula (35) implies

(35)
Z Ta!(v)|x(-v) Tx = Z Tx! Tz (v)] x’ ()

xEE: x(—v)=x'(—v) xEE: x(—v)=x'(—v)

= 7y > Ta(v)| x! (—v) = Tx’ - (41)
3{€E: x(—v)=x'(-v)

=1

J

e Using this and the definition (36) of the transition matrix P = (pxxr) we obtain

2 dTV(an+1, 7T) = Z | Opt1,x! — Tx!
x'eE
= Z Z an,xpxx’ — Tx!
x'eE xeFE
(3:6) Z Z On,x z qvﬂ-m’(’UNX(*U) ][(X(—’U) = X/(—’U)) — Trx!
x'cE xcF veEV

= Z Z Qv z Tz (v)| x(—v)An,x — Tx!

x'€E veV x€E: x(—v)=x'(—v)

(‘2) Z Z ) Z Tz (v)| x(—v) (a”’x - ﬂ-x)

x'€E veV x€E: x(—v)=x'(—v)

< Y > > Tt (v)] x(~v) | ¥n,x — x|

x'€EveEV x€E: x(—v)=x'(—v)

= Z Z qu Z Tz (v)| x(—v) | Op,x — 7Tx|

xEEvEV x'€E: x!'(—v)=x(—v)

~ J/

~~

(36)

=" 3 Pux=1
x'€eE

= Z|an,x—7rx = 2drv(ap, ).
xeF

Remarks

e A modified version of the Gibbs sampler that was considered in this section is the so-called cyclic Gibbs
sampler, which uses a different procedure for picking the component v € V' that will be updated.
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— Namely, it is not chosen according to a (given) probability function q = (g,, v € V'), where ¢, > 0
forallv eV,
— but the components v € V are sorted linearly and chosen one after another according to this order.
The selection of the update candidates thus becomes a deterministic procedure.
e If k = n|V| + i for some numbers n =0,1,... and i = 1,...,|V]|, then the matrix P(k) = (pxx (k)) of
the transition probabilities pxxs (k) in step k is given as

Dxxt (k) = T (o) x(=vp) L(x(—v3) = X' (—v5)), Vx,x' €E. (42)

e For an entire (scan) cycle, updating each component exactly once, one obtains the following transition
matrix

P=PQ)-...-P(|V)). (43)
e It is easy to show that the matrix P = (pxx’) given by (42) and (43)

— is irreducible and aperiodic
and that 7 is the stationary (limit) distribution of P as
—foralli=1,...,|V]| and for all X’ € E formulae (41) and (42) imply that

\ ( 4
Z TxPxx' (1) @ Z T (1) x(—vi) L(X(=0;) = X' (—v3)) @ e

xelE xeE

and hence also

E TixPxx! = Tx! -

xelE

e The pair (P, ) is in general not reversible. However, in Section 2.3.4 we showed that the pair (M, )

is reversible where _ _
M=PP for P = diag(z )P ' diag(my) (44)

denotes the multiplicative reversible version of P.

Theorem 3.13 The matriz M has the following representation
M=PQ)-...-P(V])-P(V])-...- P(1), (45)

i.e., the multiplicative reversible version M of the ,forward—scan matriz” P coincides with the ,forward—backward
scan matriz”.

Proof

e It suffices to show that P = P(|[V]) - ... P(1) for the matrix P = (Pxx) defined by (44).
e Formulae (42)—(44) imply for arbitrary x,x’' € E

Pxx’ = (diag(w; Hp?’ diag(ﬂx))

xx!

= <diag(7rx1)PT(|V|) <..PT(1) diag(wx)>

xx/

1
= Yo Tatul o) TOC0) = Y1 (=0 ) Ty oy ol ya(-uy o)
Yi5-oY | v|—1€EE x

X I(y1(=vvi-1) = ¥2(=vv|=1)) - - Ty s o) x (=) T(¥ v -1 (1) = %' (—01)) e -
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e This and (35) yield (similar to the proof of (38))

P = D Ty(o)ixtov) TE(=0v) = Y1(=0v)) Ty oy 1) ya(- vy 1)
Y15y | v|—1€EE

X I(y1(—vjv1) = ¥2(—0v|-1) -+ T (1) y i1 (—on) LI V-1 (=o1) = X' (—01))

= (P(|V|) -P(l))XXI. -

Remarks

e If Gibbs samplers are used in practice it is always assumed
— that the conditional probabilities considered in (36) and (42)

Ta(0)| x(—v) = P(X(v) = z(v) | X(—v) = x(—v))

only depend on the vector (z(w), w € N'(v)) of the values
— obtained by the random vector X = (X (w), w € V) in a certain small neighborhood N (v) C V of
veV.
e The family N' = {N(v), v € V} of subsets of V is called a system of neighborhoods if for arbitrary
v,w eV
(a) v € N(v),
(b) w € N(v) implies v € N (w).
e For the hard—core model from Section 3.3.1, A/(v) is the set of those vertices w # v that are directly
connected to v by an edge.

3.3.3 Metropolis—Hastings Algorithm

e We will now show that the Gibbs sampler discussed in Section 3.3.2 is a special case of a class of MCMC
algorithms that are of the so—called Metropolis—Hastings type. This class generalizes two aspects of the
Gibbs sampler.

1. The transition matrix P = (pxx’) can be of a more general form than the one defined by

Pxx' = Z QuTg! (v)| x(—v) ]I(X(_U) = X’(_U)) ) VX;XI €E. (46)
veV

2. Besides this, a procedure for acceptance or rejection of the updates x — x' is integrated into the
algorithm. It is based on a similar idea as the acceptance-rejection sampling discussed in Section 3.2.3;
see in particular Theorem 3.5.

e Let V be a finite nonempty index set and let X = (X (v), v € V) be a discrete random vector,

— taking values in the finite state space E C RIY! with probability 1.

— As usual we assume 7wy > 0 for all x € E where w = (7%, x € E) is the probability function of the
random vector X.

e We construct a Markov chain Xg, Xy, ... with ergodic limit distribution w whose transition matrix P =

(pxx') is given by
DPxx' = Qxx'Gxx’ , VX, x' € E with x 7é xla (47)
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— where Q = (gxx) is an arbitrary stochastic matrix that is irreducible and aperiodic, i.e. in particular
gxx = 0 if and only if gxx = 0.

— Moreover, the matrix A = (axx/) is defined as

Sxx!
xx! = 5 48
@ ]- + txx’ ( )
where
TxQxx’ .
L if Oxx' > 07
b = 4 T (49)
0 if gxxr = 0,

— and S = (sxx) is an arbitrary symmetric matrix such that

0 < 8xx' <1+ min {txx’ ;tx’x} . (50)

Remarks

e The structure given by (47) of the transition matrix P = (pxx) can be interpreted as follows.
— At first a candidate x’ € E for the update x — x’ is selected according to Q = (qxx/).
— If x' # x, then x’ is accepted with probability axx/,
— i.e., with probability 1 — ax, the update x — x’ is rejected (and the current state is thus not
changed).

e In order to apply the Metropolis—Hastings algorithm defined by (47)—(50), for a given ,potential”
transition matrix Q = (gxx’) only the quotients m/mx need to be known for all pairs x, x' € E of
states such that gxxr > 0.

e The special case of the Gibbs sampler (see Section 3.3.2) is obtained

— if the ,potential” transition probabilities gxx are defined by (46).
— Then for arbitrary x, x' € E such that #{v e V : z(v) #z'(v)} <1

TxGxx' = Tx'{x'x and thus txxl =1.

— By defining sxx» = 1 + min {txx/ ,txzx} we obtain axx = 1 for arbitrary x, x’ € E such that

#{veV:z@) #2'(v)} <1

Theorem 3.14  The transition matriz P = (pxx') defined by (47)—(50) is irreducible and aperiodic and the pair
(P, ) is reversible.

Proof

e As the acceptance probabilities axx given by (48)—(50) are positive for arbitrary x,x’ € E the irre-
ducibility and aperiodicity of P = (pxx:) are inherited from the corresponding properties of Q = (gxx’)-

e In order to check the detailed balance equation (2.85), i.e.
Tx Pxx! = Tx! Px’x » vx, x' € E, (51)

we consider two cases.

- If Oxx' = Qx'x = 0; then Pxx' = Px'x = 0 and (51) holds.
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— If gxxr > 0, then also gxx > 0 and (47)—(50) imply

TxPxx! — TxGxx'Axx’
Sxx!Tx'@x'x
= TxQxx —
Tx' x'x + TxJxx’
= Tx'Px'x,
where the last equality follows by the symmetry of the matrix S = (sxx/). O

Examples

1. Metropolis Algorithm

e The classic Metropolis algorithm is obtained if we consider equality in (50), i.e. if
Sxx! :1+min{txx’atx’x}a VX) x' €E.

e In this case the acceptance probabilities axys for arbitrary x, x' € E such that gxx > 0 are of the
following form:

1+ min {txx' , txrx }

Qxx!

1+ txrx
min {1+ txe , 14 tox } , 1+ twx
= = min{¥ 1,
1 + txx’ 1 + txx’
. Tx! 4x'x
= minql, ——— 5,
{ Txqxx' }
ie.
. Tx'Qx'x ]
Axx! = mln{l7 7} , Vx, x € E such that gxx > 0. (52)
TrxQxx’
e If the matrix Q = (gxx’) of the ,potential” transition probabilities is symmetric, then (52) implies
Uxx! = min{l, T } , Vx, x' € E such that g > 0. (53)
Tix

e In particular, if the ,potential” updates x — x’' are chosen ,randomly”, i.e. if

1

CIxx’:E, VX,X'EE,

then the acceptance probabilities axx are also given by (53).

2. Barker Algorithm
e The so—called Barker algorithm is obtained if we consider the matrix S = (sxx:) where sxx = 1
for arbitrary x, x' € E.

e The acceptance probabilities axx’ are then given by
Tx!'@x'x

Oggt = ———— 2% Vx, x' € E such that g > 0. (54)
Tx'Qx'x + Txdxx'

e If the matrix Q = (gxx/) of ,potential” transition probabilities is symmetric, then

O = _ T , Vx, x' € E such that g, > 0. (55)
Tx' + Tx



3 MONTE-CARLO SIMULATION 92

MCMC Simulation Algorithm

e As it was done for the Gibbs sampler (see Section 3.3.2) we construct a Markov chain Xg, Xy, ...

— with state space E and with the (irreducible and aperiodic) transition matrix P = (pxx’) defined
by (47)—(50)
— such that 7 is the ergodic limit distribution of Xg, Xy, .. ..
e For sufficiently large n the distribution o, on X,, coincides approximately with 7.
e In estimating the approximation error for MCMC simulation algorithms it is useful

— to know the variational distance drv(a,, ™) between the distributions ., and =
— as well as its upper bounds; see Section 3.4.1.

3.4 Error Analysis for MCMC Simulation
3.4.1 Estimate for the Rate of Convergence

e We will now show how the upper bounds for the variational distance drv (., w) and the second largest
absolute value |62] = max{)\a,|A¢|} of the eigenvalues Ai,...,A; of the transition matrix P derived in
Section 2.3 can be used

— in order to determine upper bounds for the distance drv(a.,, ®) occurring in the nth step of the
MCMC simulation via the Metropolis algorithm,

— if the simulated distribution 7 satisfies the following conditions.
e Namely we assume

— that mx # mx for arbitrary x, x' € E such that x # x/,

— and that the states x;,...,%x; € E are ordered such that myx, > ... > 7x,.

e We may thus (w.l.o.g.) return to the notation used in Section 2.3 and identify the states x1,...,x¢ € E
and the first £ natural numbers, i.e. E = {1,...,£}.

e The probabilities 7; (= ;) can thus be written in the following way:

LA v 1 l 56
Ty = Z(b) ) t=1,...,&, ( )
— where h: {1,...,£} = (1,00) is a monotonically increasing function,

— and b € (0,1) is chosen such that for a certain constant ¢ > 1

hi+1)—h@) >c, Vi=1,....0—1 (57)

— and z(b) = Zle b*® is an (in general unknown) factor.
e Furthermore, the definition of a Metropolis algorithm for the MCMC simulation of ® = (my,...,m)"
requires
— that the basis b and the differences h(i + 1) — h(i) are known for all ¢ =1,...,¢—1,

— i.e. in particular that the quotients m;41/m; are known for all i =1,...,£—1.
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e Let the matrix Q = (g;;) of the ,potential” transitions ¢ — j be given by

1
5 fi=lLj=l2ori=fj=¢6(-1,
.. . .
gij = 3 ifi=2,....0—1landj=i—1,i+1, (58)
0, else.

— Let the acceptance probability a;; be defined as in (53), i.e.

aij = min{l, WJ—;I”} = min{l, bh(j)_h(i)}, Vi,j€{1,...,£} where ¢;; = gj; > 0.
Tiij

— By (56) and (58) the entries p;; = g;ja;; of the transition matrix P = (p;;) for the MCMC simulation
are thus be given as

ph(2)—h(1) ph(2)—h(1) 1
pi1=1-— — P12 = 5 Peo—1 = Do = 5 (59)
and fori=2,...,0-1
1 ph(i+1)=h(3)
Pii-1 =75 Piit1 = ——5 > Pii =1 —Ppii-1— Pijit1 - (60)

Theorem 3.15  The second largest eigenvalue Ay of the transition matriz P = (p;;) defined by (59)—(60) has

the following upper bound
(1 _ bc/2)2

A2 <1— 5

(61)

Proof
e By Theorem 3.14 the pair (P, ) is reversible.
e Hence, Rayleigh’s theorem (see Theorem 2.17) yields the following representation formula

No=1- inf 2EmxX)

) (62)
xeR, Varg (%)

— where Rfé ={x=(x1,...,2¢)" € R': z; #x; for somer i,j € E} denotes the subset of vectors
in R whose components are not all equal,

— Var »(x) = ||x||2 — (x)2 is the variance of the components of x with respect to

— and D(p ) (x,x) = (I - P)x, x)_’T denotes the Dirichlet form of the reversible pair (P, ).
e Due to (62) it is sufficient to show that
Var (x) < aD(p ) (X,X), Vx € R (63)

for some constant a such that

2
0<a§7(1—b°/2)2 .

— Similar to the proof of Theorem 2.18 we obtain by copying the notation that for all § € (0,1)
2 Var,r(x) = Z (ZU, - .Zj)Qﬂ'i?Tj

i,jEE

= Z (Z Q(le)g Q(e)? (z- —$e+))27r,-7rj

1,jEE €e€vij

1
Z (Z Qe)* (xe- — $e+)2> (Z W ) Ty,

1,JEE \e€7ij e€yij

IA
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where the ,edge probability” Q(e) = m,- p.- .+ is assigned to the ,directed” edge e = (e, et) and
7i; denotes the ,path” from ¢ to j.

— Using the notation |y;j]lo = Y Q(e)~%% we thus obtain

e€%ij
2Var . (x) < Z |vij |0 Z Q(e)* (zo- — Te+)? myim;

i,JEE ecYij

= D (@ — )’ QEQ)* ™ Y mimjlyisla -
eef Yijde

— This shows (63) for
a=max{ Q)" Y mimiliglo} (65)
Yijoe

as we showed in Lemma 2.8 that

2D(P,‘lr) (Xa X) = Z(xe— - $e+)2Q(e) .

ecé
o It is left to show that the constant a considered in (65) satisfies the inequality (64).
— For this purpose we choose the path v;; = (i,i+1,...,5 — 1,7) for each pair ¢,j € E such that
i<j.
— Then (56) and (59)—(60) imply
ph(i) ph(i+1)—h(i)

. T
QU,i+1)=mpiip1 = ) 2 = 1;1

Thus, the reversibility of the pair (P,7r) shown in Theorem 3.14 yields

Q(i+1,z‘):Q(i,i+1)=%.

Because of (56) and (57) we obtain for arbitrary 4,j € E such that i < j

Ivijle = ((W;—J;l)_w +...+ (%)_26> (%)_29 < (b2(j—z'—1)c9 IS L 2 1) (%)_29

2297.‘.'*29
< J
= 1 —p2ct

— Moreover, all edges e € £ are of the form e = (i,3+ 1) or e = (i,4 — 1), as for the entries p;; of the
transition matrix P = (p;;) defined by (58)—(60) we have p;; = 0 if |§ — j| > 1.

e Thus, for § < 1/2,
a = max{Q(e)M*l Z 7r,»7rj|%'j|a}

ecé
Yijde

7TZ'7T1-720
max { Q(k, k+1)21 > 220 11

k=1,...,0—1 ) _ 1 — p2cb
1<i<k,k+1<j<e

IN

2
<
= (1 —b20)(1 — pe(1-20))

1

as Q(k, k+1)2-1 = (7Tk+1/2)29_ and 37, ;<) ™ < 1 and hence

1-260

1-20 _ Tt1) 12 e \1720) 1o Tr+1
T _((_) T . iy

T, T
k1<y<t k+1 k1




3 MONTE-CARLO SIMULATION 95

e For § = 1/4 we obtain the estimate (64). O

The following lemma will turn out to be useful in order to derive a lower bound for the smallest eigenvalue A, of
the transition matrix P = (p;;) defined by (59)—(60).

Lemma 3.1
o Let A = (a;;) be an arbitrary £ x L-—matriz and for all i =1,..., 0 let i = 3 . 1 cicp jrq |aig]-

o Let \ be an arbitrary eigenvalue of A, let ¢ = (¢1,...,¢¢)" # o be a left eigenvector corresponding to
and let k be the number of the component ¢ where

|| = max |¢i] > 0.
i=1,...,¢

o Then,
A — ag] <7 - (66)

Proof
e By definition of A and ¢ we have A¢ = A¢. In particular

¢
D akjd;=Aér  and A —aw)dk = Y, ako;-

j=1 J1<j<¢L, j#k
e This implies

A —arellgel < D0 lawgllggl <relgel  and (A —awe] <7 0
J1<G<L, j#k

Theorem 3.16  The smallest eigenvalue A\¢ of the transition matriz P = (p;;) defined by (59)—(60) has the

following lower bound
Ag > —=b°. (67)

Proof
e By Lemma 3.1 applied to A = P (and to the index k determined for \,)
Ne—pekl < Y pri=l-pw = A= —1+2pu.
7:1<5<L, j#k

e Thus, taking into account (59)—(60) we derive

. 1 b
Yoz 1a2 min pu > 142(1og -5 ) =0 0

Remark Summarizing the results of Theorems 3.15 and 3.16 we have shown that

(1 _ bc/2)2 bc} 1 (1 _ bc/2)2

|62] = max{Az, [A¢|} < max{l - 5 ;
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3.4.2 MCMC Estimators; Bias and Fundamental Matrix

In this section we will investigate the characteristics of Monte—Carlo estimators for expectations.

e Examples for similar problems were already discussed in Section 3.1.1,

— when we estimated 7 by statistical means
— and the value of integrals via Monte—Carlo simulation.
e However, for these purposes we assumed
— that the pseudo—random numbers can be regarded as realizations of independent and identically dis-
tributed sampling variables.
— In the present section we assume that the sample variables form an (appropriately chosen) Markov

chain.

e This is the reason why these estimators are called Markov-Chain—Monte—Carlo estimators (MCMC estima-
tors).

Statistical Model

e Let V be a finite (nonempty) index set and let X = (X (v), v € V) be a discrete random vector,

— taking values in the finite state space E C RV | with probability 1,
— where E is identified with the set E = {1,...,£} of the first £ = |E| natural numbers.

— Furthermore, we assume 7; > 0 for all ¢ € E where ® = (m;, i € E) denotes the probability
function of the random vector X.

e Our goal
— is to estimate the expectation 6§ = E ¢(X) via MCMC simulation where

b=7"¢p (69)

— and ¢ = (¢1,...,¢) " : E — Ris an arbitrary but fixed function.
e As an estimator for 8 we consider the random variable

n—1

~ 1
k=0
— where Xg, X, ... is a Markov chain with state space E, arbitrary but fixed initial distribution a

and

— an irreducible and aperiodic transition matrix P = (p,-j), such that 7 is the ergodic limit distri-
bution with respect to P.

Remarks

e Typically, the initial distribution a does not coincide with the simulated distribution 7.

— Consequently, the MCMC estimator 6,, defined by (70) is not unbiased for fixed (finite) sample
size,
— i.e. in general Egn #6 for alln > 1.

e For determining the bias E é\n — 0 the following representation formula will be helpful.

Theorem 3.17 Foralln > 1,

E@n:—aTZPk¢. (71)
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Proof

e In Theorem 2.3 we proved that for all k¥ > 1 the distribution oy, of Xy, is given by e = a"PF.

e Thus, by definition (70) of the MCMC estimator 1/9\”, we get that

n—1 n—1 1 n—1
Z]Ego(Xk): ZaTPkcp:—aTZPkcp. 0
k=0 k=0 " k=0

i
L

]Eé\n: app=

0

S|
S|
S+

x~
Il

Remarks

e As an immediate consequence of Theorem 3.17, the ergodicity of the transition matrix P, and (69),

one obtains R
lim E§, =0,

n— o0

e i.e., the MCMC estimator 8,, for 0 defined in (70) is asymptotically unbiased.

Apart from this, the asymptotic behavior of n(]E §n — 0) for n — oo can be determined. For this purpose we need
the following two lemmata.

Lemma 3.2 Let IT be the £ x £ matriz consisting of the £ identical row vectors w' . Then

P-m"=pP*"-1I (72)
for all n > 1 and in particular
li_)m (P-ID"=0. (73)

Proof

e Evidently, (72) holds for n = 1.
— If we assume that (72) holds for some n — 1 > 1, then

P-II)" = (P-IN""Y(P-II)= (P! -II)(P - 1II)
P'-IIP - P 'II+II’=P"-1I,

where the last equality follows from the fact that
7' P=n" andthus TP=PIO=II=II".

— This proves (72) for all n > 1.
e As P is assumed to be irreducible and aperiodic,

— by Theorems 2.4 and 2.9 we get that P —II — 0 if n — oo.
— Thus, by (72), also (P —II)” — 0 if n — oc. O

Remarks
e By the zero convergence (P—II)"” — 0 for n — oo in Lemma 3.2 and Lemma 2.4, the matrix I— (P —II)
is invertible.
e In order to show this it suffices to consider the matrix A = P — IT in Lemma 2.4.
e The inverse matrix

Z=(I-(P-II)" (74)

is hence well defined. It is called the fundamental matriz of P.
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Lemma 3.3 The fundamental matriz Z = (I — (P — II))~! of the irreducible and aperiodic transition matriz
P has the representation formulae
= 2 (75)

and

—1I). (76)

Proof
e Formula (75) follows from Lemmas 2.4 and 3.2 as for A =P —II

Z (I—A)!
_ 19 _ AT
= (I-A)7 lim (I-A")
- (aariaoa)
@1 im (I+A+ + A" 1)
n—oo
= I+) A* <_I+Z(P—H)k>
k=1 k=1
EEU SR L 1§
k=1

SEr-m-y e om=y

k=1 k=1 k=1 k=1

and that the last expression converges to 0 for n — oo.

e The zero convergence is due to the fact that for every £ x £ matrix A

ZkA’“ ZAk nA"t!

k=1

and thus for A =P —1II

n
Jm, L SMP-ID = i (% 2) (P -1° -2 “”“)
@ z<hm il i(P’“—H)— lim (P H)”+1>
U871 o

Theorem 3.17 and Lemma 3.3 enable us to give a more detailed description of the asymptotic behavior of the
bias E 6,, — 6.
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Theorem 3.18

o Leta= (aTZ — 7rT)<p where Z denotes the fundamental matriz of P that was introduced by (74).

e Then, for alln > 1, R
n(E 6, —0) =a+e,, (77)

where e, is a remainder such that e, — 0 for n — oo.

Proof

e The representation formula (75) in Lemma 3.3 yields

n—1

T _ T T k_
a'Zy = a'pt+a nh_{r(io;(P | B §1%

- o i (o7 (S P)e - - nal1e)
k=1 T

i (o (P)e- - 0ee).

e Hence by taking into account Theorem 3.17 we obtain the following for a certain sequence {e,} such
that e, — 0:

a = (&'Z-m")p
n—1
= a' (Z Pk)cp —nw P —ep
k=0

n]Egn —nﬂ'Tcp —en

n(Eé\n—H)—en. 0

3.4.3 Asymptotic Variance of Estimation; Mean Squared Error

For the statistical model introduced in Section 3.4.2 we now investigate the asymptotic behavior of the variance
Var 0,, if n — oo.

Theorem 3.19  Define 0 = Y.\, mi(pi —0)? and let Z = (1 — (P — I0))~" be the fundamental matriz of P
defined by (74). Then

lim nVar 8, =02+ 2n " diag(e)(Z — I)e. (78)
n—0o0
Proof
e Clearly,
R n—1 2 n—1 9
n?Varf, = E (3 o(Xe)) = (3 Ee(Xe)) (79)
k=0 k=0

and thus

n—1

n—1 2
wVardy =S EPX)+2 Y E(pXeeXw)) - (S EeXe) -
k=0

0<k<k'<n—1 k=0
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e This representation will now be used to show (78) for the case ap = .

— In this case we observe
n—1 2 n—1 4
(Z IEcp(Xk)) = (n)? and ZEgoz(Xk) = ancpf.
k=0 k=0 i=1

— Furthermore, by the stationarity of the Markov chain {X,},

n—1

Y OE (go(xk)SO(xk’)) =Y (n—-kE (so(Xo)sO(Xk)) :

0<k<k <n—1 k=1
where
¢
E (p(Xo)p(Xe)) = 3D mpinl o; = =" diag(9)P*p
i=1 j=1
and P* = P(F) = (pgf)) denotes the matrix of the k-step transition probabilities.
— A combination of the results above yields

n—1

2 n—1

1 . n—k )

— Var (Z cp(Xk)) = chp? + 27 " diag(ep) Z — Pkp — nb?

n k=0 i=1 k=1
R n—1

= o? 427" diag(p) (Z - Prp — 5 Hcp)

k=1
n—1

n—=k
n

= o%+2n' diag(yp) ( (P’c — H)) P,

k=1

— where the second equality is due to the identity
62 =" diag(p)p.

— Taking into account the representation formula (76) for Z — I this implies (78).

o It is left to show that (78) is also true for an arbitrary initial distribution a.

— At this point we will use a more precise notation: We will write X(()a), Xga), ...instead of X, X1, ...
and 0% instead of 8,,.

— It suffices to show that

lim n (Va,r ™) — Var 52“)) =0. (80)

n— 00

— For this purpose we introduce the following notation: For 0 < r <n —1 let

r—1 n—1
YO =3 oX)  und  z{) = oX{).
k=0 k=r

— Then, by (79),
n? (Var i) — Var 6()
— (IE (Y + Zi)? —E (v, + zg;-;)f) - ((E Y™ +EZM)® - (BY® + 1EZ§;;0)2)
= (E@™)’ - @)’ -E¥)" + (EY)?)
+2E ((v/™ - E (v,™)) (2 - E (27)) ) - 2E (%' - E (v{)) (25 - E(2()))
HEED) - @20)) - () - @22)7),

where we denote the three summands in the last expression by I,., I, and II1,,, respectively.
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— I, does not depend on n and hence lim,_,oo n "I, = 0.

— As the state space E is finite we obtain for ¢ = max;ecg |p(7)| < oo that

= I < dreE (|25 —B(27)|) +4reE ( — |25 - E(2(2))]).
— This implies lim,, oo n ' II,, =0 for any r > 0, as
= |20 - R (7)) <2
with probability 1 for all n > r and
lim |Z(") E(z{7))|= lim |Z(°‘) E(z!2)] =0.

n—00 n n—0o n

— Furthermore, for n > r > 0 we have the following estimate
1 1 & 5) \2 5) 12
E I, < E Z( Z(g n) 1‘ ( Z(g n) 7') )|7Ti—05”'|

E (2 - Ez‘”) Zm—am :

< sup max
n>03€{1 S} n+r

~ _ =1
<o
where it is easy to see that the supremum is finite.
— Due to the ergodicity of the Markov chain X{®, X{® . the last summand will become arbitrarily
small for sufficiently large 7. This completes the proof of (80). O

Remarks

e Recall that
— by Theorem 2.1 from ,Statistik I’ we obtain for the mean squared error E((gn — 0)2) of the
MCMC estimator defined in (70) 6, = (Xy,...,X,) for 8 that

E((8, —6)") = (E8,—6)" + Var 8,, (81)
— i.e., the mean squared error of the MCMC estimator Hn is equal to the sum of the squared bias

(E 0 — )2 and the variance Var 8, of the estimator 6,,.

e Both summands on the right hand side of (81) converge to 0 if n — oo but with different rates of
convergence.

— In Theorem 3.19 we showed that Var 8, = O(n™1).
— On the other hand, by Theorem 3.18 we get that (E 8, — )2 = O(n"2).
e Consequently, the asymptotic behavior of the mean squared error ]E((0 - 0) ) of 8, is crucially
influenced by the asymptotic variance Var Hn of the estimator, whereas the bias plays a minor role.
e In other words: It can make sense to choose the simulation matrix P such that

— the asymptotic variance lim,,_,, nVar 5n is as small as possible,
— even if this results in a certain increase of the asymptotic bias lim,_,, n(E 6, — 6).

In order to investigate this problem more deeply we introduce the following notation: Let

Vip,P,mw) = ILm nVar 0, ,

where ¢ : E — R is an arbitrary function and (P, ) is an arbitrary reversible pair.
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Theorem 3.20

o Let Py = (p15) and Py = (p2;;) be two transition matrices on E such that (Py,w) and (P3,m) are
reversible.

— For arbitrary i,j € E such that i # j let p1; > p2,ij,

— i.e., outside the diagonal all entries of the transition matrix Py are greater or equal than the corre-
sponding entries of the transition matriz Ps.

o Then, for any function ¢ : E - R,
V((paplaﬂ-) < V((,D, P277T) . (82)
Proof
e Let P = (p;;) be a transition matrix such that the pair (P, ) is reversible. It suffices to show that

0

Vip,P,w) <0, Vi,j € E with ¢ # j. (83)
Opij
e By Theorem 3.19,
9 V(p, P, ) =27 " diag( )6—Z (84)
Opi; », L, gLy opi; @,
where Z denotes the fundamental matrix of P introduced by (74).
— On the other hand, as ZZ~! = I, we get that
07Z 0Z1
Z7'+Z =0
(Bpij) + ( apij )
and thus 07 971
=-Z Z.
Opij Opij
— Taking into account (84) this implies
0 T 0Z7!
V({p,P,w) = —2m dia Z Zp. 85
5 (o, P, ) g(») oy 2P (85)

o As the pair (P, 7) is reversible, by the representation formula (75) for the fundamental matrix Z = (z;;)
that was derived in Lemma 3.3 we obtain for arbitrary i,j € E

o) [e's)
k k
mzij = méij + Z(?Tipgj) - 71','7Tj) = 7Tj(5ji -+ Z(?ij‘g-i) - 7Tj7'l'i) = 7Tiji .
k=1 k=1
— This implies
4 4
7TT dlag(cp)Z = (Z TiPiZi1y-- -, Z 71'1'(,01'21'()
i=1 i=1

V; V;
= (m E 21iPi5 - - - g E zzm)
i=1 i=1

(Zy) " diag() .
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— Thus, by (85),

-1
821-]- Vip,P,m) = —2(Z<,o)T diag(m) %iw Zp = 2(Z<,c>)T diag(m) 8872 Zy, (86)
where the last equality is due to the fact that
oz—' 0P
Opi;  Opy

which is an immediate consequence of the definition (74) of Z.
o As P = (p;;) is a stochastic matrix and (P, ) is reversible

only the entries p;; where ¢ < j (or alternatively the entries p;; where ¢ > j) can be chosen
arbitrarily. This can be seen as follows.

— For every pair 4, j € E such that ¢ # j the entries pj;;, p;; and pj; can be expressed via p;; in the

following way:

pi= T g pize—pi.  pa=d— T
'ji m; ij > (23 R 33 7 ij )

where ¢ and ¢’ are constants that do not depend on p;;.
— For arbitrary i',j' € E the entry (diag(ﬂ')(BP/Bpij))i, i of the matrix product diag(w)(0P/0p;;)

is given by

-7 if (7:,7.7.,) = (7'71') or (2.17.7.1) = (.77.7)7

oP
Opij

(ding(m) ), =4 m @) = Gd) or (1,5 = (o),

0, else

— This implies that the matrix diag()(0P/0p;;) is non-negative definite, i.e., for all x € R¢

P
x<0.
8pz‘j

— By (86) this yields for arbitrary 4,5 € E such that i # j

x| diag(m)

T oP
Vie,P,w) =2(Z diag(m
e (p,P, ) =2(Zyp) diag(n) o

e This completes the proof of (83). O

Zp <0.

Remarks As a particular consequence of Theorem 3.20 we get that

e the simulation matrix P of the Metropolis algorithm (i.e. if we consider equality in (50) ) minimizes
the asymptotic variance V(p, P, )

e within the class of all Metropolis—Hastings algorithms having an arbitrary but fixed ,,potential transition
matrix” Q = (qij) .

3.5 Coupling Algorithms; Perfect MCMC Simulation

e In this section we will discuss algorithms

— that are also based on Markov chains,

— but this new class of algorithms simulates a given discrete distribution 7 not only approximately but
in a certain sense exactly.

e Therefore, these techniques are referred to as methods of ,,perfect” MCMC simulation.
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3.5.1 Coupling to the Future; Counterexample

e First of all we consider a method for ,coupling” the paths of Markov chains where the ,time”

— is running forward, i.e. in a way that is perceived as natural.

— Therefore, one also refers to this method as coupling to the future.

e Foralli € {1,...,£} let X() = (xg"),x?’, ...) be a homogenous Markov chain with finite state space
E={x1,...,%x¢}

— with deterministic initial state X((,i) = x; and with an irreducible and aperiodic transition matrix
P = (pxx’)a
— such that = (7, x € E) is the ergodic limit distribution of the Markov chain X%,

Definitions

e For all k € {1,...,£} we consider
— a sequence U®) = (Ul(k),Uz(k), ...) of independent and (0, 1]-uniformly distributed random vari-
ables Uy(bk),
— called innovations in step n for the current state x, € E.
e We consider two different cases:
— Either we assume the sequences UM ... U® to be independent
— or we merely consider a single sequence U = (Uy,Us,...) and define UV = ... =U® =U.

e Let the Markov chain X9 be defined recursively by
X0 =(x, UP) i XP) =x, (87)

where ¢ : E x (0,1] — E is a so—called valid update function, i.e.
— p(x,-) : (0,1] > E is piecewise constant for all x € E
— and for arbitrary x, x' € E such that pxx > 0 the total length of the set {u € (0,1] : p(x,u) = x'}

equals pxx.
e The random variable 7 = min{n > 1 : xM = =x )} is called coupling time where we define
7 = oo if there is no natural number n such that XS) =...= ng).

Theorem 3.21 If the sequences of innovations UL ... UY are independent, then T < oo with probability 1
anng) =...=X£f) foralln > 7 .

Proof

e The recursive definition (87) of the Markov chains X1 ... X immediately implies xP=...=x¥
for all n > 7.

o It is left to show that P(7 < oo) = 1. We notice that it suffices to show that for arbitrary i # i’

lim P(max{n X0 2 Xg’)} < r): 1.

T—>00

P(max{n X0 £ ngl)} < r) 1- P(max{n (X0 £ Xgl)} > r)

- 1- P(xgﬂ ” ng’))
this is equivalent to

lim P(xgﬂ # x,@")): 0.

T—00
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— Let now ng > 1 be a natural number such that

min pio)—c>0

)y =
X
xxe

and consider the decomposition r = m(r)ng + k for some m(r) € {0,1,...} and
ke {0,1,...,”0—1}.
— The independence of the innovation sequences U™, ..., UW® yields for r — oo

P(XP £ X)= P(X{) # X, X0 £ X))

£
= Y Y P(XY =%, X =x;) P(XP # X | X =x;, X =%y

J=15'#j
- fj S P(x@ =x;) P(XD =x;) P(X2,, X))

J'—l J'#j
= zp;";> Sp), P(XP,, #x9),)

i J #J ,
<

< (1-¢ m;)xP(anj)no # ng )no)
< gm0 0.

Remarks
e Under additional assumptions about the irreducible and periodic transition matrix P = (pxx’) it can
be shown that the coupling time 7 is finite even if
— only a single sequence U = (U, Us, . ..) innovations is considered, i.e. U=U® =...=U®,
— and if for all x € E the update function ¢ : E x (0,1] - E is given by

j—1
p(x, u) = X5, if > pxx, <u < Z Dxx,. - (88)
r=1 r=1

e Such an additional condition imposed on P will be discussed in the following theorem, see also the
monotonicity condition in Section 3.5.3.

Theorem 3.22

o Let UV = ... =UW® = U and let the update function ¢ : E x (0,1] — E be given by (88). Furthermore,
for some x;, € E, let
io—1
r){lea]%c ; DPxx, < m1n Z Dxx,. - (89)

e Then T < oo with probability 1 and for alln > T X(nl) =...= x%).
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Proof

e Similar to the proof of Theorem 3.21 it suffices to show that for arbitrary 7 # 4’

lim P(X(’) £ X ) 0.

7—00

Observe that

P(xgi) 4 x,@')) - P(Xgi) £ X" X0 2 ng”>)
= g}; (X(n —x;, X" = x; ) (Xu) £ X0 | X0 =x;, X =x; )
— iZP(X(l)_ X(’)_x )P(X(J)175X£] )1)
J=13§'#5
< (1-P(x{? =x{")) max P(x?, £ X))
>d>0

< (1-4d)" —0,
where we use that (87) — (89) imply

i0—1

0<d= max Z Pxx, — mmprx < P(Xgi) - Xgi) - Xzo)< P(X(l) x% )) .

Remarks

e In general P(r < 00) = 1 does not imply X'V ~

— i.e., at the coupling time 7 the distribution of the Markov chain X® does in general not coincide
with the stationary limit distribution 7 although this could be a conjecture.

e The following counterezample illustrates this paradox.

— Consider the state space E = {1,2} and the irreducible and aperiodic transition matrix

05 0.5
1 0

whose stationary limit distribution is = = (2/3, 1/3)T.
— If X(l)1 # X( )| we necessarily obtain X( ), =2or X(Z) =2 and therefore X" = X{? =

3.5.2 Propp—Wilson Algorithm; Coupling from the Past

e Recall that
— the procedure of coupling to the future discussed in Section 3.5.1 starts at a deterministic time 0
whereas the final state, i.e. the coupling time 7 of the simulation is random.

— Moreover, the state distribution of the Markov chain X at the coupling time 7 is in general not equal
to the stationary limit distribution 7.
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e Therefore, we will now consider a different coupling method,

— which is called Coupling from the Past (CFTP).

— It was developed in the mid 90s by Propp and Wilson at the Massachusetts Institute of Technology
(MIT).

e The procedure is similar to coupling to the future (see Section 3.5.1) but now the initial ,time” of the
simulation will be chosen randomly whereas the final ,time” is deterministic.

— In other words, the Markov chains X", ... X are not started at ,time” 0,

— but sufficiently far away in the ,past” such that by time 0 at the latest all paths will have merged.

For the precise mathematical modeling of this procedure we need the following notation.
e For each potential ,initial time” m € {—1,-2,...} and for all ¢ € {1,...,¢} let

X = (X0, X9, )
— be a homogenous Markov chain with finite state space E = {x1,...,%¢},

— with the (deterministic) initial state X%n A = x; and with the irreducible and aperiodic transition
matrix P = (pxx),

— such that m = (7, x € E) is the ergodic limit distribution of X (™%,

e For every k € {1,...,£} we consider
— a sequence UK = (Uék), W . .) of independent and (0, 1]-uniformly distributed random variables.
— Like in Section 3.5.1 we call U(jz an innovation in step —n if the current state is x; € E.

e We consider two cases:

— The innovation sequences UM ..., U® are either independent
—or UM =... =U® =U.

e Let the Markov chain X% be defined recursively via the update function ¢ : E x (0,1] = E, i.e.

XD = p(xg, UR) it XD = xy. (90)
Definition The random variable ( = min{-m > 1 : X(()m’l) =...= X((,m’e)} is called CFTP coupling time
where we define ¢ = oo if there is no integer —m such that X{™ = ... = x{™*

Theorem 3.23 Let P({ < o0) = 1. Then, for all m < —(,
x{mt = =x{m™Y

Moreover, for arbitrary m < —( and i,j € {1,...,4},

X(()miz) e X(()_Caj) ~ .
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Proof

e Directly by the recursive definition (90) of the Markov chains X (™) . X(™9) we get that X((,m’l) =
= X(()m’e) and X[()m’z) = X((fc’]) for arbitrary m < —C and 4,j € {1,...,£}.
e As by hypothesis P({ < o0) = 1, we obtain for arbitrary k € {1,...,£} that

PG =) = i 5 )

j— 1 (m,i)_ _

R

= lim P(xgm"'):xk)— lim P(xg’””'):xk,c>—m)

m——0Q m——00
-0
= e PO =)
. 0,7
- i (X ) <

where the last but one equality is a consequence of the homogeneity of the Markov chain X(™% [

Remarks

o If the number £ of elements in the state space E = {x1,...,x,} is large,
— the MCMC simulation of 7 based on the CFTP algorithm by Propp and Wilson can be computa-
tionally inefficient
— as for every initial state xi,...,Xy a complete path needs to be generated.

e However, in some cases the computational complexity can be reduced. Examples will be discussed in
Sections 3.5.3 and 3.5.4.

— In these special situations the state space E = {x1, ..., X} and the update function ¢ : Ex(0,1] —
FE possess certain monotonicity properties.

— As a consequence it suffices to consider a single sequence U = (Uo, U_4,.. ) of independent and
(0, 1]-uniformly distributed innovations.

— Moreover, only two different paths need to be generated.

3.5.3 Monotone Coupling Algorithms

e We additionally assume that the state space E = {xi,...,%x,} is partially ordered and has a maximal
element 1 € E and a minimal element 0 € E, i.e., there is a relation < on E such that

(a) x <x, VxeE,

(b) x<yandy <z =x=<z, Vx,y,z€ E,
(¢) x<yandy<x=>x=Yy, Vx,y € E,
(d 0=<xx=<1, Vx € E.

e Furthermore, we impose the condition

— that the update function ¢ : E x (0,1] — E is monotonously nondecreasing with respect to the partial
order <, i.e., for arbitrary x,y € E such that x <y we have

e(xu) 2o(y,u),  Yue(0,1]. (91)
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e Let the innovations UM, ... U® be identical with probability 1,

— i.e., we merely consider a single sequence U = (UO,U_l,...) of independent and (0, 1]-uniformly
distributed random variables and define UM = ... =U® =U

— For arbitrary m € {~1,-2,...} and i € {1,...,£} the Markov chain X(™% is recursively defined by

Remarks

e If x; < x;, then by (91) and (92) we get that for all n > m

XD < X(med) (93)
e In particular, for arbitrary n > m and i € {1,...,¢},
Xslm,min) < XSLm’i) < Xglm,max) , (94)

— where X (mmin) and X (mmax) denote the Markov chains
X(m,min) — ()(%/n,min)7 )(%n_{irlnin)7 B ) und X(m,max) — (X%n,max)j Xg;n—i:rlna)()7 . )
— that are recursively defined by (92) with X{™™® = 0 and X (™™ =
e Due to (94) it suffices to choose an initial ,time” that lies far enough in the past

— such that the paths of X{mmin) anq X (mmax) wil] have merged by ,time” 0,
— i.e., we consider the CFTP coupling time

¢ =min{-m >1: XJ™™) = x{mme] (95)

Theorem 3.24 Let the update function ¢ : E x (0,1] = E satisfy the monotonicity condition (91).

e Then, for the CFTP coupling time defined by (95), it holds that ( < oo with probability 1.

e Moreover, for arbitrarym < —C and i,j € {1,...,£}, X(m ) = X( GI) o

Proof
e As the argument showing that X(()m’i) = Xé_c’j) ~ 7 for arbitrary m < —( and i,j € {1,...,¢} if
P(¢ < 00) =1, is similar to the proof of Theorem 3.23 this part of the proof is omitted.
e We merely show that P(¢ < o0) = 1.

— First of all, we observe that for all r > 1

> {xEnm 2 1, X 2, (96)
as (94) implies
(C>r} = {X(fr,min) #X(fr,max)}
_ { (r:?m) #X( rmax) L X(()—r,min) #X(()—r,max)}

B X 41X 1),
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— As in the proof of Theorem 3.21 let ng > 1 be a natural number such that

min p"Y) =¢ >0, (97)

’
XX
x,x'€F

and decompose r such that r = m(r)ng + k for some m(r) € {0,1,...} and k € {0,1,...,n9 — 1}.
— By (96) and (97) we obtain

P(Czoo) = TIEI;OP(C>T)
(96) . .
. (—r,min) (—7,min)
< ,,lggoP(Xfril £1,..., X o 1)
i (no) (no) . . (no)
S Tllg)lo Z pOxlpxlgcg R px,,?(r)_lxm(r)

x1,...,xm(r)7é1
(97)
< lim (1—¢)™™ =0.

r—00 D

Remarks

e Sometimes the update function ¢ : Ex(0,1] — E is not monotonously nondecreasing but nonincreasing
with respect to the partial order <, i.e., for arbitrary x,y € E such that x <y we have

ox,u) = o(y,u),  Vue(0,1]. (98)

e In this case the following cross-over technigue turns out to be useful.

— Based on the update function ¢ : Ex(0,1] — E we construct a new nondecreasing update function
¢': E x (0,1]> = E which is given as

¢ (x;u1,u2) = @(p(x,u1),u2), VX € Ejug,uz € (0,1]. (99)
— This function has the desired property as by (98) and (99) we obtain for arbitrary x,y € E such
that x <y
@' (x5u1,u2) = @(P(x,u1), u2) 2 (¥, u1),u2) = ¢ (yu1,u2),  Vur,up € (0,1],

ie., ¢' : E x (0,1]> — E is nondecreasing if ¢ : E x (0,1] — E is nonincreasing.
e Let now ¢ : E x (0,1] — E be an update function with respect to the irreducible and aperiodic
transition matrix P = (pxxr) with ergodic limit distribution 7 = (7x, x € E).
— Then the map ¢' : E x (0,1]?> — E defined by (99) is a valid update function with respect to the
irreducible and aperiodic two-step transition matrix P() = (pgz,) and it has the same ergodic
limit distribution @ = (7, x € E).
— In the same way that was used to prove Theorem 3.24 one can show that the coupling time
¢ = min{-m > 1: X(()2m’min) = X(()2m’max)} is finite with probability 1, i.e., ¢’ < oc and
X(()_ch’i) ~mforallie{l,...,4}if p: Ex(0,1] — E is nonincreasing.

3.5.4 Examples: Birth—and—Death Processes; Ising Model

1. Birth—and—-Death Processes

e The update function ¢ : E x (0,1] — E defined in (88) satisfies the monotonicity condition (91)
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— if the state space can identified with the set E = {1,..., ¢} equipped with the natural order < of
the numbers 1,...,¢

— and if the simulation matrix P = (p;;) is monotonously nondecreasing with respect to the order
<, i.e., for arbitrary i, € E such that i < j we have

¢ ¢
S <Y pp,  Yhk=1,...1.
r=k r=k

e A whole class of transition matrices P = (p;;) satisfying the monotonicity condition (100) is given by
the tridiagonal matrices of birth—and—death processes which are of the type

(100)

1—pi2 P12 0 0
P21 1 —po1 —pas D23 0
P 0 P32 1—p32 —pss 0
0 0 0 Pe—1,¢
0 0 0 coo 1—poe

where 0 < p; 41 <1/2foralli=1,...,0—1and 0 <p;;—1 <1/2foralli=2,...,L

Zeit Zeit
0

Zeit

O
O

Figure 7: Monotonic coupling to the past for monotonously nondecreasing death—and-birth processes

e On the other hand, the update function ¢ : E x (0,1] — E defined in (88) is monotonously nonincreas-
ing, see (98),
— if P = (p;;) is monotonously nonincreasing with respect to <,
— i.e., if for arbitrary ¢,j € E such that ¢ < j we have

J2 £
Y pir 2> pir,  VE=1,...,L. (101)
r=k r=k
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e It is easy to show that there is no tridiagonal transition matrix P = (p;;) satisfying the condition
(101), i.e., birth—and—death processes are never monotonously nonincreasing.

e However, condition (101) holds for example for the following matrix:

0 ... 0 0 1
0 ... 0 1/2 1/2
0 ... 1/3 1/3 1/3

0 ... 1/(t—1) 1/(t—1) 1/(t—1)
16 ... 1/t 1/¢ 1/¢

2. Ising Model

e Like for the hard—core model discussed in Section 3.3.1

— we consider a connected graph G = (V, K) with finitely many vertices V' = {vy,..., vy}
— and a certain set K C V2 of edges e = (v;,v;), each of them connecting two vertices v;, v;.

e One of the values —1 and 1 is assigned to each vertex,
— and we consider the state space E = {—1,1}/V! of all configurations x = (z(v), v € V), i.e. for
each v € V either z(v) = —1 or z(v) = 1.

— If this is interpreted as an image, x(v) = —1 is regarded as a white pixel and z(v) = 1 as a black
pixel.

e For each x € E let the probability 7y of the configuration x be given by

Tx = 1 exp (J Z m(vi)x(vj)> (102)

z
G.J e=(vi,w;)EK

for a certain parameter J > 0, which is interpreted as ,jinverse temperature” in physics:

— For J = 0 (infinite temperature) the distribution @ = (7, x € E) given by (102) is the discrete
uniform distribution.

— For J > 0 (low temperature) those configurations possess a large probability that have a small
number of connected pairs of vertices being differently colored.

— For J — oo (zero temperature) the distribution 7 = (7%, x € E) given by (102) converges to the
»two point uniform distribution” (5o + d1)/2,

— where 0 and 1 denote the (extreme) configurations consisting either only of white or only of black
pixels, i.e. either O(v) = —lor 1(v) =1forallv e V.

e Notice that zg,7 > 0 is an (in general unknown) normalizing constant where
2G,0 = Z exp (—J Z x(vi)x(vj)> .
x€E e=(vi,v; ) EK

e The following figure was taken from O. Héggstrom (2002) Finite Markov Chains and Algorithmic
Applications, CU Press, Cambridge.
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Figure 8: Typical configuration of the Ising model for J = 0 (upper left corner), J = 0.15 (upper right corner),
J = 0.3 (lower left corner) and J = 0.5 (lower right corner)

— It illustrates the role of the parameter J,
— i.e., an increase of J results in a more pronounced clumping tendency of identically colored pixels.

e Let the simulation matrix P = (pxx/) be given by the Gibbs sampler, i.e., assume that (36) holds,
namely

Pxx = Z QuTy! (v)| x(—v) ][(X(_U) = XI(_U)) ) Vx,x' € E.
veV

— where for arbitrary x,x’ € E such that x(—v) = x'(—v)

LY, z'(v) =1,
Txy T Tx_

Tz (v) x(—v) =
e g z'(v) = -1,
Txy + Tx_

using the notation z_(v) = —1 and x_(—v) = x(—v) and similarly z, (v) = 1 and x,(—v) =
x(—v).
— By (102) we obtain for z'(v) =1 that

xp (J (ks (x(~v)) = k- (x(~v))) )
exp (I (k- (x(~v)) = by (x(=v))) ) + exp (T (ky (x(—0)) — b (x(~v))) )

Tz (v)| x(—v) =
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and in the same way for z'(v) = —1 that

exp (7 (k- (x(~v)) ~ ki (x(~v))) )
exp (I (ks (x(~v)) = k- (x(=v))) ) + exp (T (k- (x(=0)) — ky (x(-v))) )

! (v)| x(=v) =

Thus, we can summarize
1

if #'(v) =1,
1+ exp (=27 (ks (x(=0)) — b (x(~v)))

(103)

Tar (v)| x(-v) =

1
if 2’ (v) = -1,
1+ exp(—Z J (b (x(—v)) — k+(X(—U))))

where k4 (x(—v)) and k_(x(—v)) denote the number of vertices connected to v having the values
1 and —1, respectively.

e For the state space E = {—1,1}Vl we define the partial order <

—byx<yifz(v) <y(v) for all v € V such that 0 <x < 1 for all x € E,

— where we assume the elements of the state space E = {x1,...,X¢} to be indexed in a way ensuring
i < jif x; < x; (this is e.g. the case if E is ordered lexicographically).

e Then (103) implies for arbitrary x,y € E such that x <y
Tix(—0) S Mjy(—o)  and Tqix(—o) 2 To1]y(-0) 5 (104)

because 1/(1 +e ) <1/(1 + e °) for arbitrary a,b € R such that a < b.

e Let the update function ¢ : E x (0,1]> — E be given by ¢(x;u1,u2) = x', where x' = (x'(v), v € V)
and foralli=1,...,|V|

1 if 23;11 q(v;) <wr £ 22:1 q(v;) and uz < 71| x(—v;)>
x'(v;) = ¢ -1 if Y071 q(v;) <w < 5y q(v;) and uy > 7| x(—,)
x(v;), else.
— By (104), for arbitrary x,y € E such that x <y we have
p(x;u1,u2) < O(¥;u1,Uu2) , Vug,uz € (0,1],
— i.e., condition (91) with respect to < is satisfied.
3.5.5 Read—Once Modification of the CFTP Algorithm

e A problem of the ,monotone” CFTP algorithm discussed in Sections 3.5.3 and 3.5.4 is

— the necessity to save all innovations Uy, U_1,...,U_¢ where ( denotes the coupling time defined in
(95), i.e.
C = mln{—m > 1: X((]m,mln) — X(()m,max)} )

— Therefore, in the year 2000, David Wilson suggested the following modifications of the CFTP algorithm
aiming at a reduction of the necessary memory allocation.

e The main idea of the modification is to realize coupling to the past (see Sections 3.5.2 — 3.5.4)
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— based on a sequence of independent and identically distributed blocks of ,forward simulation”, where

— the (potential) ,initial times” m € {—1,—2,...} of the Markov chain X ("% = (x%”’i),xm?, ...) can
be picked at random.

e The innovation sequences UM, ... U are chosen identical with probability 1,

— i.e., we merely consider a single sequence U = (...,U_1,Uy,Uy,...) of independent and uniformly
distributed random variables and define UM = ... =UW® = U.

— Furthermore, we assume that the Markov chains X", ... X and XD Xm0 defined by (87)
and (90) have finite forward and backward coupling times

r=min{n>1: XM =...=X¥} bzw. (=min{-m>1: x{m = = X(()m’[)}
with probability 1.
e Now we consider blocks of forward simulation of (at first deterministic) length T for some T" > 1.
— For arbitrary k > 0 and i =1, ..., ¢, let XSJ}T’Z.) = x; and
XD = oX*LD 17y Y =kT + 1,kT +2,....

— Furthermore, for each k > 0 we consider the event

kT,i kT,j . .
Crr = {x§k+1>)T =X( e, Vitje{y, ...,z}} ,

where the length T of the blocks is chosen such that
0 < P(Cr) (: P(Cir), Vk> o) . (105)

e Starting at k£ = 0 the read—once modification of the CFTP algorithm is given as follows.
1. Simulate X579 via pand Uforn=kT +1,...,(k+ 1)T.
2. Set m = k and k = k+ 1. If the event C),r has occurred proceed with step 3, otherwise return to step

1.
3. Repeat steps 1 and 2 until the event Cp,r1 occurs for some m' > m and return the value of XS:,];J) for

an arbitrary ¢ € {1,...,1} as a realization of .

Example

e For ¢ = 3 states we consider the irreducible and aperiodic transition matrix

/2 0 1/2
P=| 1/3 1/3 1/3
0 1 0

e For block length 7' = 2 and the (0, 1]-uniformly distributes pseudo-random numbers
u = (0.01,0.60,0.82,0.47,0.36, 0.59,0.34,0.89, ...)

we obtain the simulation run shown in Fig. 9.
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Output

Figure 9: Read once algorithm

Remarks

e As the simulation blocks and hence the events Cr, Car, ... are independent and as P(Cr) = P(Car) =
— the first m' blocks of forward simulation of the algorithm described above in particular yield the
coupling from the past discussed in Section 3.5.2 if they are considered in reversed order.
— Therefore, ng'};‘") ~ for all i € {1,...,1}.
— The last, i.e. the (m' + 1)st block of forward simulation serves only to define a stopping rule.

e The read—once modification of the CFTP algorithm terminates with probability 1
— if condition (105) is satisfied, i.e. if P(Cr) > 0.
— For monotonously nondecreasing update functions this holds if 7' > ng where ng > 1 is a natural

number such that

: (m0)
min =c>0
x,x'eprx' ’

see the proof of Theorem 3.24.

e If T' is a random variable
— having the same distribution as the forward coupling time 7 and which is independent of the
innovation sequence U = (Up,U_1,...),

— then by the following elementary but useful properties of the coupling times 7 and { we obtain
P(Cr) >1/2.

Theorem 3.25 The random variables T and ¢ have the same distribution, i.e. T < (. Moreover, if the coupling
times T and ¢ are independent and almost surely finite, then

1
P<T) 2 5. (106)
Proof
e By the homogeneity of the Markov chains X, ..., X(® and X(m1) . X(m.4) for any natural number
k > 1 we have
Pir=k) = P(min{n >1: XV = .. =Xg)} = k)
= P(min{-m>1: X{™) = =X{""} =)

= P(C=k).
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e Let now the coupling times 7 and ¢ be independent and finite with probability 1.
— This implies

P((<T) = ZP(C§T|T:k)P(T=k)=ZP(<§k|T:k)P(T:k)
k=1 k=1
= Y P <kP(r=k =) P(r<kP((=k
k=1 k=1
= P(CZT)a

— where the last equality follows from 7 4 ¢ which has been shown in the first part of the proof.

e Thus,
2P((<7) = P((<7)+P((2>7)
= 1-P((>7)+1-P(<T1)
= 2-P((#7)
> 2-1=1.



