Wiederholung	Bildentrauschung mit Masken	Zum Informationgehalt von Kanten	A priori Verteilungen	Weitere Bildmodelle	
00	000	0000	00000000 000 0000 00000	00	

Bildentrauschung und Kantenextrakion Seminar: Bayessche Ansätze in der Bildanalyse

Peter Straka

Fakultät für Mathematik und Wirtschaftswissenschaften Universität Ulm

29.05.06

< □ > < 同 >

Universität Ulm

Peter Straka

Wiederholung	Bildentrauschung mit Masken	Zum Informationgehalt von Kanten	A priori Verteilungen	Weitere Bildmodelle	
	000 0	0000	00000000 000 0000		
			00000		

< 口 > < 同

Universität Ulm

Outline

- Bildmodell
- Bayes
- 2 Bildentrauschung mit Masken
 - Masken
 - Beispiele
 - Fazit
- 3 Zum Informationgehalt von Kanten
 - Beispiel KEK
 - Entrauschung und Kantenerhaltung

Wiederholung	Bildentrauschung mit Masken	Zum Informationgehalt von Kanten	A priori Verteilungen	Weitere Bildmodelle	
	000	0000	00000000 000 0000 00000		

Outline

- glättend
- glättend und kantenerhaltend
- glättend, kantenerhaltend und kantenorganisierend

< 17 >

Universität Ulm

- Glätten höherer Ordnung
- reine Kantenextraktion

5 Weitere Bildmodelle

- diskretes Bild, stetige Intensitäten
- stetiges Bild, stetige Intensitäten

Wiederholung	Bildentrauschung mit Masken	Zum Informationgehalt von Kanten	A priori Verteilungen	Weitere Bildmodelle	Schl
00	0 000 0	0000	00 00000000 000 0000 0000	00 00	

Bildmodell

diskretes Bildmodell

- S endliche Pixelmenge
- *I* ⊆ ℝ⁺ endliche Menge von Pixelintensitäten (hier: Grauwerte)
- Pixel $t \in S$ habe Grauwert $g_t \in I$
- $\mathbf{G} = I^{S}$ ist die Menge aller möglichen Bilder
- $g := \{g_t, t \in S\} \in \mathbf{G}$ ist ein Bild
- $t, s \in S, t \sim s$ bedeutet: Pixel s und Pixel t sind benachbart

Wiederholung	Bildentrauschung mit Masken	Zum Informationgehalt von Kanten	A priori Verteilungen	Weitere Bildmodelle	Schl
		0000	00	00	
•0	000 0		00000000 000 0000 00000		

Bayes

a priori Verteilung in Gibbsscher Form

• definiere Energiefunktion $K : \mathbf{G} \longrightarrow \mathbb{R}$

•
$$Z := \sum_{g \in \mathbf{G}} exp(-K(g))$$

- (a priori) Wahrscheinlichkeitsverteilung $\Pi(g) = Z^{-1}exp(-K(g))$
- *K* ist so gewählt, dass erwünschte Bilder niedrigere Energie haben als unerwünschte.

(日) (同) (三) (

Wiederholung	Bildentrauschung mit Masken	Zum Informationgehalt von Kanten	A priori Verteilungen	Weitere Bildmodelle	
0 0•	0 000 0	0000		00 00	

Bayes

a posteriori Verteilung

Problem: Wiederherstellung des Originalbildes g aus dem stochastisch verrauschten Bild Y = y. Modellannahmen:

- Verteilung von Y gegeben g, $P_Y(\cdot|g)$ bekannt
- bedingte Verteilung $P_Y(\cdot|g)$ hat Gibbssche Darstellung mit Energiefunktion $D(g, \cdot)$

Nach einer einfachen Rechnung sieht man dass die a posteriori Verteilung $P(\cdot|y)$ auch Gibbssch ist mit Energiefunktion $K(\cdot) + D(\cdot, y)$.

(日) (同) (三) (

Wiederholung 0 00	Bildentrauschung mit Masken	Zum Informationgehalt von Kanten 0000 0000	A priori Verteilungen 00 00000000 0000 0000 0000	Weitere Bildmodelle 00 00	Schlu
Masken					
Filtorn	asken				

Entrauschen oder Glätten geschieht oft durch gewichtete Mittelung der Grauwerte mittels Masken.

• z.B. gleichmäßige und binomiale Filtermasken:

$$M = \frac{1}{9} \left(\begin{array}{rrr} 1 & 1 & 1 \\ 1 & 1 & 1 \\ 1 & 1 & 1 \end{array} \right), M = \frac{1}{16} \left(\begin{array}{rrr} 1 & 2 & 1 \\ 2 & 4 & 2 \\ 1 & 2 & 1 \end{array} \right)$$

・ロッ ・回 ・ ・ ヨ ・ ・

Universität Ulm

• Der Grauwert $g_{(k,l)}$ im Pixel (k, l) des geglätteten Bilds beträgt dann $g_{(k,l)} = \sum_{i,j=-1}^{1} M_{ij}g_{(k+i,l+j)}$ Hier sind die Zeilen- und Spaltenindizes aus $\{-1, 0, +1\}$

Wiederholung	Bildentrauschung mit Masken	Zum Informationgehalt von Kanten	A priori Verteilungen	Weitere Bildmodelle	Schl
0 00	• •••• •	0000	00 00000000 000 0000 0000	00 00	

Beispiele

Universität Ulm

Abbildung: links: gaußsches Rauschen; rechts: nach Binomialfilter

Peter Straka

Wiederholung	Bildentrauschung mit Masken	Zum Informationgehalt von Kanten	A priori Verteilungen	Weitere Bildmodelle	Schl
0 00		0000	00 00000000 000 0000 0000	00 00	

Beispiele

・ロト ・回ト ・ヨト

Universität Ulm

Abbildung: links: gaußsches Rauschen; rechts: nach Binomialfilter

Peter Straka

Wiederholung	Bildentrauschung mit Masken	Zum Informationgehalt von Kanten	A priori Verteilungen	Weitere Bildmodelle	Schl
000		0000	00 00000000 000 0000 0000	00 00	

Beispiele

・ロト ・回 ト ・ ヨト ・

Universität Ulm

Abbildung: links: gaußsches Rauschen; rechts: nach Binomialfilter

Peter Straka

Wiederholung Bildentrauschung mit Masken	Zum Informationgehalt von Kanten	A priori Verteilungen	Weitere Bildmodelle	Schl
	0000	00 00000000 000 0000 00000	00 00	

Fazit

Vor- und Nachteile von Filtermasken

Vorteile:

- relativ geringer Rechenaufwand
- Rauschen wird verringert

Nachteile:

- Kantenkontrast wird verringert
- \Rightarrow Informationsverlust!

< □ > < 同 >

Peter Straka

Wiederholung 0 00	Bildentrauschung mit Masken 0 000 0	Zum Informationgehalt von Kanten • 000 • 000	A priori Verteilungen 00 00000000 0000 0000 00000	Weitere Bildmodelle 00 00	Schlı
Beispiel KEK					
Kanter	L				

- Kanten sind Stellen im Bild an denen benachbarte Pixel stark unterschiedliche Grauwerte haben.
- An diesen Stellen enthält das Bild die meisten Informationen!

Image: A math the second se

Universität Ulm

• Beispiel KEK:

Wiederholung	Bildentrauschung mit Masken	Zum Informationgehalt von Kanten	A priori Verteilungen	Weitere Bildmodelle	Schl
		0000			
00	000	0000	00000000	00	
			000		
			0000		

Beispiel KEK

Kantenerhaltende Kompression

Verfahren bei KEK:

I Kanten extrahieren und separat abspeichern

Speichere Pixelwerte aus einem dünnen Teilgitter des Originalbildes

Die gespeicherte Datenmenge aus Kanten und Teilgitter kann je nach Komplexität des Bildes weniger als 3% betragen.

A B > A
 A
 B > A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A

Wiederholung	Bildentrauschung mit Masken	Zum Informationgehalt von Kanten	A priori Verteilungen	Weitere Bildmodelle	
		0000			
		0000	0000000		
			000		
			0000		
			00000		

Beispiel KEK

Wiederherstellung des Bildes

Aus dieser kleinen Datenmenge wird das Bild nun wiederhergestellt:

- Man interpoliert alle nichtgespeicherten Grauwerte mit den gespeicherten Grauwerten
- Dabei verwendet man aber für jeden Pixel nur diejenigen gepeicherten Pixelwerte die nicht von einer Kante verdeckt und "sichtbar" sind

Man erzielt ansehnliche Ergebnisse trotz hoher Kompressionsrate:

Wiederholung	Bildentrauschung mit Masken	Zum Informationgehalt von Kanten	A priori Verteilungen	Weitere Bildmodelle	
000	0 000 0	0000 0000		00 00	

Beispiel KEK

A D > A D > A

Universität Ulm

Abbildung: links: Original; rechts: Nachbildung von KEK

Peter Straka

Wiederholung	Bildentrauschung mit Masken	Zum Informationgehalt von Kanten	A priori Verteilungen	Weitere Bildmodelle	Schl
		0000	0000000		
			000		
			0000		
			00000		

Bsp: selektiver Gaußscher Weichzeichner

Der "selektive Gaußsche Weichzeichner" ist ein Algorithmus der Filtermasken variabler Größe verwendet. Als Parameter übergibt man

- die maximale Maskengröße R und
- 2 einen Schwellenwert Δ der die Kanten im Bild definiert.

Nun wird auf jeden einzelnen Pixel eine Filtermaske angewendet. Die Größe r der Maske wird dabei so gewählt dass

< ロ > < 同 > < 回 > < 回

- *r* ≤ *R* und
- die Maske gerade noch keinen Kantenpixel überdeckt.

Wiederholung	g Bildentrauschung mit Masken	Zum Informationgehalt von Kanten	A priori Verteilungen	Weitere Bildmodelle	
000	0 000 0	0000 0 00		00 00	

A B > 4
 B > 4
 B
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A

∃ >

Universität Ulm

Abbildung: Binomialfilter vs. selektiver Gaußscher Weichzeichner (implementiert im Open Source Programm GIMP 2.2)

Wiederholung	Bildentrauschung mit Masken	Zum Informationgehalt von Kanten	A priori Verteilungen	Weitere Bildmodelle	
0 00	0 000 0	0000 00 0 0		00 00	

・ロト ・回ト ・ モト

Universität Ulm

Abbildung: Binomialfilter vs. selektiver Gaußscher Weichzeichner (implementiert im Open Source Programm GIMP 2.2)

Wiederholung	Bildentrauschung mit Masken	Zum Informationgehalt von Kanten	A priori Verteilungen	Weitere Bildmodelle	Schli
		0000	00	00	
	000	000•	00000000 000 0000 00000		

A B > 4
 B > 4
 B

Universität Ulm

Abbildung: Binomialfilter vs. selektiver Gaußscher Weichzeichner (implementiert im Open Source Programm GIMP 2.2)

Wiederholung	Bildentrauschung mit Masken	Zum Informationgehalt von Kanten	A priori Verteilungen	Weitere Bildmodelle	Schl
	000	0000	00000000		
			00000		

zurück zu Bayesschem Ansatz

• Ziel: Bayessches Modell das verrauschte Bilder glättet und möglichst viel Informationen aus den Kanten in die a posteriori Verteilung übernimmt

< □ > < 同 >

∃ >

Universität Ulm

• Dabei ist die Wahl der a priori Verteilung entscheidend.

Wiederholung	Bildentrauschung mit Masken	Zum Informationgehalt von Kanten	A priori Verteilungen	Weitere Bildmodelle	Schl
000	0 000 0	0000	•0 00000000 000 0000 0000	00	

glättend

glättende a priori Verteilung

Situation: verrauschtes Graustufenbild. Von allen Bildern $g \in G$ suchen wir eines das

- möglichst glatt ist und
- dennoch dem verrauschten Bild y möglichst ähnlich ist.

Zu diesem Zweck bildet man den Gesamtenergieterm $H(g, y) = \beta K(g) + D(g, y)$, wobei

• $K(g) = \sum_{s \sim t} (g_s - g_t)^2$ die Glattheit des Bildes beschreibt und

•
$$D(g, y) = \sum_{s \in S} (g_s - y_s)^2$$
 die Ähnlichkeit zum verrauschten
Bild y beschreibt

Universität Ulm

Peter Straka

Wiederholung	Bildentrauschung mit Masken	Zum Informationgehalt von Kanten	A priori Verteilungen	Weitere Bildmodelle	Schli
000	0 000 0	0000	0 00000000 000 0000 0000	00 00	

glättend

glättende a priori Verteilung (2)

Bestimme nun ein Bild g das die Gesamtenergie

$$H^{\beta}(g,y) = \beta K(g) + D(g,y)$$

möglichst minimiert.

Ergebnis: Kanten gehen nicht ins Modell ein und werden geglättet, daher starker Informationsverlust etwa wie bei Filtermasken. Für die Glättung mit Kantenerhaltung erweitert man Bildmodell:

Wiederholung	Bildentrauschung mit Masken	Zum Informationgehalt von Kanten	A priori Verteilungen	Weitere Bildmodelle	Schli
		0000	●0000000		
			000		
			0000		
			00000		

Modell mit Mikrokanten

0	0	0	0
—	—	—	
0	0	0	0
—	—	—	—
0	0	0	0
	—	—	—
0	0	0	0
—	—	—	—
0	0	0	0

Abbildung: Modell mit Pixeln (o) und Mikrokanten (| und —)

イロン イヨン イヨン イヨン

Wiederholung 0 00	Bildentrauschung mit Masken 0 000 0	Zum Informationgehalt von Kanten 0000 0000	A priori Verteilungen 00 0000000 0000 0000 0000	Weitere Bildmodelle 00 00	Schlı
glättend und k	antenerhaltend				

Mikrokanten dienen als Schaltvariablen:

• $e_{st} :=$ Mikrokante zwischen den benachbarten Pixeln $s \sim t$. • $e_{st} = \begin{cases} 1, \text{ Mikrokante ein} \\ 0, \text{ Mikrokante aus} \end{cases}$

In diesem Bildmodell sind die Variablen einerseits die Grauwerte $g_t, t \in S$ der einzelnen Pixel und andererseits die Mikrokanten $e_{st}, s, t \in S, s \sim t$. Ein Bild wird nun beschrieben durch (g, e), wobei $g := \{g_t, t \in S\}$ und $e := \{e_{st}, s \sim t\}$.

(日) (同) (三) (三)

Universität Ulm

Peter Straka

Mikrokanten

Wiederholung	Bildentrauschung mit Masken	Zum Informationgehalt von Kanten	A priori Verteilungen	Weitere Bildmodelle	
0 00	0 000 0	0000	00 00000000 000 0000 00000	00 00	

a priori Energieterm

Mikrokanten lassen sich nun wie folgt in den a priori Energieterm einbeziehen:

• ohne Mikrokanten:
$$\mathcal{K}^{\beta}(g) = \beta \sum_{s \sim t} (g_s - g_t)^2$$

• jetzt: $\mathcal{K}^{\alpha,\lambda}(g,e) = \sum_{s \sim t} (\lambda^2 (g_s - g_t)^2 (1 - e_{st}) + \alpha e_{st})$

Lässt man zunächst g außer Acht und minimiert $K^{\alpha,\lambda}(g,e)$ nur in e, so wird $e_{st} = 1$ wenn $\lambda^2(g_s - g_t)^2 > \alpha$, d.h. bei großem Pixelkontrast.

(日) (同) (日) (日)

Wiederholung	Bildentrauschung mit Masken	Zum Informationgehalt von Kanten	A priori Verteilungen	Weitere Bildmodelle	
00	000	0000	0000000	00	
			000		
			00000		

Gesamtenergie

n der Praxis versucht man, den Gesamtenergieterm

$$\begin{array}{l} \mathcal{K}((g, e), y) \\ = & \mathcal{K}^{\alpha, \lambda}(g, e) & + & D(g, y) \\ = & \sum_{s \sim t} (\lambda^2 (g_s - g_t)^2 (1 - e_{st}) + \alpha e_{st}) & + & \sum_{s \in S} (g_s - y_s)^2 \end{array}$$

in g und e zu minimieren.

Dabei erhält man ein Bild (g, e) das dem verrauschten Bild yähnlich ist und das geglättet wurde wo keine zu hohen Kantenkontraste auftreten.

イロト イ団ト イヨト イヨト

Wiederholung	Bildentrauschung mit Masken	Zum Informationgehalt von Kanten	A priori Verteilungen	Weitere Bildmodelle	Schli
		0000	00	00	
			0000000		
			000		
			0000		
			00000		

"physikalische" Veranschaulichung

Abbildung: 2D-Intensitätsdiagramm ("Graustufengebirge")

Die a priori Verteilung ist wie eine Membran die auf das Diagramm gelegt wird. Sie kann sich zwischen zwei Pixeln bis zu einer bestimmten potentiellen Energie dehnen, oder sie reisst und es entsteht eine Mikrokante.

Universität Ulm

Peter Straka

Wiederholung	Bildentrauschung mit Masken	Zum Informationgehalt von Kanten	A priori Verteilungen	Weitere Bildmodelle	
000	0 000 0	0000	00 000000000 000	00 00	
			0000		

Robustheit

Vergleiche nun
$$\mathcal{K}^{\alpha,\lambda}(g,e) = \sum_{s \sim t} (\lambda^2 (g_s - g_t)^2 (1 - e_{st}) + \alpha e_{st})$$
 mit
 $\mathcal{H}^{\alpha,\lambda}(g) := \sum_{s \sim t} \phi^{\alpha,\lambda}(g_s - g_t), \qquad \phi^{\lambda,\alpha}(x) := \min\{\lambda^2 x^2, \alpha\}$

Eine einfache Rechnung zeigt: $\min_{g,e} K^{\alpha,\lambda}(g,e) = \min_{g} H^{\alpha,\lambda}(g)$, und die minimierenden Argumente g stimmen überein. ϕ ist beschränkt durch $\alpha \Rightarrow$ einzelne Ausreisser g_t erzeugen einen Energieanstieg von höchstens 4α ("Robustheit").

Wiederholung	Bildentrauschung mit Masken	Zum Informationgehalt von Kanten	A priori Verteilungen	Weitere Bildmodelle	
0 00	0 000 0	0000	00 00000000 0000 0000 00000	00 00	
alättand und k	م سعم م م م م م م م م م م				

Nachteile

Abbildung: Ausreisser in Position (3,3) wird nicht erkannt. Kante wird unnötigerweise verschnörkelt.

・ロト ・回ト ・ モト

Universität Ulm

Peter Straka

Wiederholung	Bildentrauschung mit Masken	Zum Informationgehalt von Kanten	A priori Verteilungen	Weitere Bildmodelle	Schl
0 00	0 000 0	0000	00 00000000 000 0000 00000	00 00	
glättend und k	antenerhaltend				

10	5	9	13
12	15	63	17
 117	 114	109	 111
120	121	111	125

Abbildung: z.B. bei Schwellenhöhe 70: Kante wird wegen Ausreißer (nach oben) "63" unterbrochen.

0 00 000 00 00	Wiederholung	Bildentrauschung mit Masken	Zum Informationgehalt von Kanten	A priori Verteilungen	Weitere Bildmodelle	Schl
00 <u>000</u> 0000 00		000	0000	00000000		
0000				0000		
				00000		

glättend, kantenerhaltend und kantenorganisierend

lokale Konfiguration der Kanten

In einer quadratischen 4-er Clique können (nach Rotation um 90 Grad) folgende Kantenkonfigurationen vorkommen:

0	0	0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0	0	0
(a)	(b)	(c)	(d)	(e)	(f)

Abbildung: Kantenkonfigurationen in absteigender Erwünschtheit

イロト イポト イヨト イヨト

Universität Ulm

Wiederholung	Bildentrauschung mit Masken	Zum Informationgehalt von Kanten	A priori Verteilungen	Weitere Bildmodelle	Schl
		0000	0000000		
			000		
			0000		
			00000		

glättend, kantenerhaltend und kantenorganisierend

lokale Konfiguration der Kanten

Unerwünschte Kantenkonfigurationen wie (f) können mit einer höheren Energie bestraft werden:

- Versehe Konfigurationen (a) bis (f) mit aufsteigenden Gewichten
- $\mathfrak{N} :=$ System aller quadratischen 4-er Cliquen
- Bei gegebener Kantenkonfiguration e sei W(N, e) das Gewicht der 4-er Clique N ∈ 𝔅
- Definiere nun den Energieterm $K_E(e) := \sum_{N \in \mathfrak{N}} W(N, e)$, der

die Kantenkonfiguration e bewertet.

Peter Straka

<ロ> (四) (四) (三) (三)

Wiederholung	Bildentrauschung mit Masken	Zum Informationgehalt von Kanten	A priori Verteilungen	Weitere Bildmodelle	Schl
		0000	00	00	
			000		
			0000		
			00000		

glättend, kantenerhaltend und kantenorganisierend

a priori Energie

Benutzt man im Gesamtenergieterm $K^{\alpha,\lambda}(g,e) + D(g,y)$ die a priori Energie

$$\mathcal{K}^{lpha,\lambda}(g,e) = \sum_{s\sim t} \left(\lambda^2 (g_s - g_t)^2 (1 - e_{st}) + lpha e_{st}\right) + \gamma \mathcal{K}_{E}(e)$$

so werden nun bei der Minimierung der Gesamtenergie

- verrauschte Bilder geglättet
- Kanten erhalten
- Kanten räumlich konfiguriert

Mit dieser Methode erzielt man nun sehr gute Ergebnisse bei der Bildentrauschung.

Wiederholung	Bildentrauschung mit Masken	Zum Informationgehalt von Kanten	A priori Verteilungen	Weitere Bildmodelle	
		0000	00	00	
			000		
			0000		
			00000		

unerwünschte Stufenbildung

- A priori Term $\sum_{s \sim t} \phi(g_s g_t)$ bevorzugt möglichst konstante Bilder
- Bei fließendem Übergang von weiß nach Schwarz können nach Minimierung der Gesamtenergie unerwünschte Stufen auftreten:

イロト 不同 トイヨト イヨト

Universität Ulm

 9
 8
 7
 6
 5
 4
 3
 2
 1
 könnte zu

 8
 8
 8
 5
 5
 5
 2
 2
 werden

Wiederholung	Bildentrauschung mit Masken	Zum Informationgehalt von Kanten	A priori Verteilungen	Weitere Bildmodelle	Schl
		0000	0000000		
			000		
			0000		
			00000		

Diskrete Ableitungen

Diskretisierung der 1. Ableitung:

- $D^{1,0}g_{s_1,s_2} \approx g_{s_1+1,s_2} g_{s_1,s_2}$
- $D^{0,1}g_{s_1,s_2} \approx g_{s_1,s_2+1} g_{s_1,s_2}$

Diskretisierung der 2. Ableitung:

•
$$D^{2,0}g_{s_1,s_2} \approx g_{s_1+1,s_2} - 2g_{s_1,s_2} + g_{s_1-1,s_2}$$

• $D^{1,1}g_{s_1,s_2} \approx g_{s_1+1,s_2+1} - g_{s_1+1,s_2} - g_{s_1,s_2+1} + g_{s_1,s_2}$
• $D^{0,2}g_{s_1,s_2} \approx g_{s_1,s_2+1} - 2g_{s_1,s_2} + g_{s_1,s_2-1}$

Universität Ulm

Peter Straka

Wiederholung	Bildentrauschung mit Masken	Zum Informationgehalt von Kanten	A priori Verteilungen	Weitere Bildmodelle	Schl
		0000	0000000		
			000		
			0000		
			00000		

a priori Energieterm für Glättung 2. Ordnung

• In der Diskretisierung der 2.Ableitung kommen Pixelwerte aus

den 3er-Cliquen $\circ \circ \circ \circ$ und \circ sowie aus der 4er-Clique

0

- • vor.
- Fasse alle diese Cliquen zusammen unter C_2 .
- Für alle 3er-Cliquen c ∈ C₂ sei weiter D²(c) diejenige diskrete
 2.Ableitung die sich aus c berechnen lässt. Für 4er-Cliquen sei D²(c) das doppelte dieser Ableitung.

(日) (同) (日) (日)

Wiederholung	Bildentrauschung mit Masken	Zum Informationgehalt von Kanten	A priori Verteilungen	Weitere Bildmodelle	
		0000	00	00	
			000		
			0000		
			00000		

a priori Energieterm für Glättung 2. Ordnung

Dann definiert man den a priori Energieterm der Glättung 2.Ordnung durch

$$\sum_{c\in C_2} D^2(c)$$

Bringt man diesen Term noch mit einem bestimmten Gewicht in die a priori Verteilung ein so lassen sich bei der Minimierung der Gesamtenergie unerwünschte Stufen vermeiden.

(日) (同) (三) (三)

Wiederholung	Bildentrauschung mit Masken	Zum Informationgehalt von Kanten	A priori Verteilungen	Weitere Bildmodelle	Schli
			000		
			0000		
			00000		

reine Kantenextraktion

Kantenextraktion nach Geman und Geman (1987)

< ロ > < 回 > < 回 > < 回 > < 回 >

Universität Ulm

Abbildung: Modell mit Pixeln (\circ), Mikrokanten (| und —) und Mikroecken (\star)

Peter Straka

Wiederholung	Bildentrauschung mit Masken	Zum Informationgehalt von Kanten	A priori Verteilungen	Weitere Bildmodelle	Schl
0 00	o 000 0	0000	00 00000000 000 0000 0000	00 00	
reine Kantene>	traktion				

Definitionen:

• B := Menge aller Mikroecken \star

• Für
$$u \in B$$
 sei $b_u := \begin{cases} 1, \text{ u aktiv} \\ 0, \text{ u inaktiv} \end{cases}$

• Zustandsraum:
$$\mathbf{X} = \mathbf{G} \times \{0,1\}^B$$

u, *v* ∈ *B*, *u* ∼ *v* heißt: Die Mikroecken *u* und *v* sind benachbart

Mikrokanten liegen nun zwischen 2 benachbarten Mikroecken und sind aktiv genau dann wenn die beiden Mikroecken aktiv sind.

< □ > < 同 >

Wiederholung	Bildentrauschung mit Masken	Zum Informationgehalt von Kanten	A priori Verteilungen	Weitere Bildmodelle	
0 00	0 000 0	0000	00 00000000 000 0000 0000	00 00	
reine Kantenex	traktion				

a priori Verteilung

Definiere nun die gemeinsame a priori Verteilung der Intensitäten:

 $\Pi(g,b) \varpropto exp(-K(g,b)), \quad K(g,b) = K_S(g,b) + K_B(b)$

<ロ> <同> <同> < 回> < 回>

Universität Ulm

 $K_S(g, b)$ "sät" Mikroecken, $K_B(b)$ ordnet sie an.

Wiederholung	Bildentrauschung mit Masken	Zum Informationgehalt von Kanten	A priori Verteilungen	Weitere Bildmodelle	
0 00	o 000 0	0000	00 00000000 000 0000 0000	00 00	

reine Kantenextraktion

säen der Mikroecken

Säen der Mikroecken basiert auf Pixelkontrast und Kantenfluss:

$$\mathcal{K}_{\mathcal{S}}(g,b) = \vartheta_1 \sum_{u \sim v} \phi(\delta_{u,v})(1 - b_u b_v) + \vartheta_2 \sum_{u \in B} (b_u - \zeta_u(g))^2,$$

- Für u, v ∈ B, u ∼ v ist δ_{u,v} der Pixelkontrast der von u und v separierten Pixel
- abgeschnittene Parabelfunktion ϕ
- ζ_u(g) = 1 wenn u ∈ B in einem String von z.B. mindestens 4 Mikrokanten liegt (Kantenfluss).

Peter Straka

イロト イボト イヨト イヨト

Wiederholung	Bildentrauschung mit Masken	Zum Informationgehalt von Kanten	A priori Verteilungen	Weitere Bildmodelle	
000	0 000 0	0000	00 00000000 000 0000 0000	00 00	

reine Kantenextraktion

Anordnung der Kanten

Zusätzlich zu den bereits erwähnten lokalen Kantenkonfigurationen sollen noch folgende "Doppelkanten" gemieden werden:

* *	* 0 *	*00*
* *	* 0 *	*00*

Abbildung: * bedeutet Mikrokante an, o bedeutet Mikrokante aus

Der Energieterm $K_B(b)$ bestraft nun die oben genannten lokalen Kantenkonfigurationen in quadratischen 4-er Cliquen und auch diese Konfigurationen mit doppelten Kanten.

・ロト ・同ト ・ヨト

Wiederholung	Bildentrauschung mit Masken	Zum Informationgehalt von Kanten	A priori Verteilungen	Weitere Bildmodelle	Schli
		0000	00	0	
			000		
			0000		
			00000		

diskretes Bild, stetige Intensitäten

Bildmodell mit stetigen Intensitäten

- Endliche Pixelmenge S
- Offenes Intervall $I \subset \mathbb{R}$ für Intesitäten
- (Überabzählbarer) Zustandsraum $\mathbf{G} = I^S$
- Gibbssche Darstellung einer a priori Verteilung existiert im vorher definierten Sinne nicht, da man nun keine endlichen Summen mehr hat.

Peter Straka

∃ >

Wiederholung	Bildentrauschung mit Masken	Zum Informationgehalt von Kanten	A priori Verteilungen	Weitere Bildmodelle	Schl
				00	
	000	0000	00000000 000 0000 00000		

diskretes Bild, stetige Intensitäten

pseudo-a posteriori Verteilung

Obwohl die Gibbssche a priori Verteilung möglicherweise nicht existiert lässt sich eine pseudo-a posteriori Verteilung definieren:

•
$$D(g, y) = \sum_{s \in S} (g_s - y_s)^2$$
 üblicher Datenterm
• $K(g) = \sum_{s \sim t} (g_s - g_t)^2$ üblicher Glattheitsterm
 $\Pi(dg|y) \propto exp(-K(g) - D(g, y))dg$

Satz: In diesem Modell sind pseudo-MAP-Schätzer konvexe Filter.

Wiederholung 0 00	Bildentrauschung mit Masken 0 000 0	Zum Informationgehalt von Kanten 0000 0000	A priori Verteilungen 00 00000000 000 0000 0000	Weitere Bildmodelle ○○ ●○	Schlu
stetiges Bild, s	tetige Intensitäten				
stetige	Bilder				

Das bisherige diskrete Bildmodell ist eigentlich eine Diskretisierung des folgenden stetigen Bildmodells:

- Gebiet $D \subset \mathbb{R}^d$
- Intensitäten $I \subset \mathbb{R}$ (offenes Intervall)
- Intensitätsfunktionen $g, y : D \longrightarrow I$
- $K \subset D$ Kurve in D, stellt Kanten dar
- g, y sind hinreichend glatt auf $D \setminus K$

Wiederholung	Bildentrauschung mit Masken	Zum Informationgehalt von Kanten	A priori Verteilungen	Weitere Bildmodelle	
	000	0000	00000000 000 0000 00000	0	

stetiges Bild, stetige Intensitäten

Mumford-Shah Energiefunktional

Die stetige Version der bisherigen a posteriori- Gesamtenergie ist das folgende Funktional:

$$\mathbf{E}(g, K) = \lambda^2 \int_{D \setminus K} \|\nabla g(u)\|_2^2 du + \alpha \cdot L(K) + \int_D |g(u) - y(u)|^2 du$$

- Der erste Term entspricht dem Energieterm für Glattheit,
- der zweite Term bevorzugt kurze, nicht verschnörkelte Kanten,
- der dritte Term bewertet die Ähnlichkeit des Bildes g mit dem verzerrten Bild y

Peter Straka

Wiederholung	Bildentrauschung mit Masken	Zum Informationgehalt von Kanten	A priori Verteilungen	Weitere Bildmodelle	Schl
000	0 000 0	0000		00 00	

- Bislang existieren keine effizienten Algorithmen die einen MAP(maximum a posteriori)-Schätzer für komplexe Bilder finden.
- Aber: "Computational Power develops faster than mathematical theories!"

Peter Straka

< □ > < 同 >

Niederholung	Bildentrauschung mit Masken	Zum Informationgehalt von Kanten	A priori Verteilungen	Weitere Bildmodelle	Schl
00		0000	0000000		
			000		
			0000		

Literaturverzeichnis

- B. Chalmond. *Modelling and Inverse Problems in Image Analysis* Springer, 2003
- G. Winkler. *Image Analysis, Random Fields and Markov Chain Monte Carlo Methods.* Springer, 2nd ed., 2003

Image: Image:

Universität Ulm

• Der Open Source Bildeditor GIMP

Wiederholung	Bildentrauschung mit Masken	Zum Informationgehalt von Kanten	A priori Verteilungen	Weitere Bildmodelle	Schl
0 00	0 000 0	0000 0000	00 00000000 000 0000 00000	00	

Vielen Dank für Ihre Aufmerksamkeit!

Peter Straka

Bildentrauschung und Kantenextrakion

Universität Ulm

< □ > < 同 >