Statistische Bildanalyse eines konfokalen mikroskopischen 2-dimensionalen Ausschnitts aus dem Knorpelwachstum

1 – Einführung

- 2 Bayessche Bildanalyse allgemein
- 3 Datengewinnung und a-priori Annahmen
- 4 MCMC Simulation und Reversible Jump Algorithmus
- 5 Modifikationen des Standard-Algorithmus
- 6 Zusammenfassung
- 7 Literaturverzeichnis

1 Einführung

Bildanalyse

- Mathematisches Ziel: Annäherung des echten Bildes mittels Realisierungen aus einem gegebenen mathematischen Modell
- Biologisches Ziel: Beantwortung biologischer Fragen, die die Natur der Zellen und die zeitliche Veränderung ihrer Eigenschaften betreffen

1

2 Bayessche Bildanalyse allgemein

- $y = (y_{ij})$ gestörtes Bild
- Parametervektor X, der ein Bild $\mu(X) = (\mu_{ij}(X))$ induziert (Eindeutigkeit)
- A-priori Verteilung π_X auf einem Raum E
- £(y|x) Prozess, der die Entstehung der Beobachtung y bei einem bestimmten zugrunde liegenden Parametervektor x beschreibt (Störung)
- $\pi(y)$ Randdichte für die Beobachtung y, wird meist nicht berücksichtigt

- Schlussfolgerungen über das Originalbild aufgrund der a-posteriori Verteilung $\pi_{X|Y}(x|y)$

Satz von Bayes (bei gestörten Bildern)

$$\pi_{X|Y}(x|y) = \frac{\mathcal{L}(y|x)\pi_X(x)}{\pi(y)} \propto \mathcal{L}(y|x)\pi_X(x)$$

Störungsarten

Seien Y_i und Y_j $(i \neq j)$ bedingt unabhängige Pixel für ein gegebenes μ , \mathcal{I} die Menge aller Pixel

• Gaußsche additive Störung:

$$Y = \mu(X) + \varepsilon$$
, wobei $\varepsilon \sim N(0, \sigma^2 I)$

Seien ε und X unabhängig, dann ist

$$\mathcal{L}(y_i|\mu_i(x)) \propto \frac{1}{\sigma} \exp(-\frac{(y_i - \mu_i(x))^2}{2\sigma^2})$$

und

$$\mathcal{L}(y|x) = \mathcal{L}(y|\mu(x)) = \prod_{i \in \mathcal{I}} \mathcal{L}(y_i|\mu_i(x)) = K \frac{1}{\sigma} \exp^{\sum_{i \in \mathcal{I}} \left(-\frac{(y_i - \mu_i(x))^2}{2\sigma^2}\right)}$$

• Binäre Störungen: Jedes Einzelpixel wechselt mit Wahrscheinlichkeit p die Farbe

$$\mathcal{L}(y_i|\mu_i(x)) = \begin{cases} 1-p & \text{falls } y_i = \mu_i(x) \\ p & \text{falls } y_i \neq \mu_i(x) \end{cases}$$

Es gilt

$$\mathcal{L}(y|x) = \mathcal{L}(y|\mu(x)) = \prod_{i \in \mathcal{I}} \mathcal{L}(y_i|\mu_i(x)) = (1-p)^{\sum_{i \in \mathcal{I}} \mathbf{1}_{\{y_i = \mu_i(x)\}}} \cdot p^{\sum_{i \in \mathcal{I}} \mathbf{1}_{\{y_i \neq \mu_i(x)\}}}$$

Simulation und Bildanalyse in JAVA Seminar

Schätzung von Bildern

Mehrere Möglichkeiten wie Bilder nach Ablauf der MCMC Simulation geschätzt werden können

- Maximum-a-posteriori (MAP)-Schätzer: Maximierung der a-posteriori Verteilung
- Minimum Mean Square Estimate (MMSE): Bildung des Mittelwerts der Pixel-Werte nach einer bestimmten Anzahl von Schritten; Schätzung für das ganze Bild setzt sich daraus zusammen
- Bild nach *n*-ter Iteration

3 Datengewinnung und a-priori Annahmen

Konfokale fluoreszierende Mikroskopie

- Visualisierung 3-dimensionaler Proben ohne physische Schnitte
- Einstellung eines Laserstrahls auf einen Punkt der mit fluoreszierendem Färbemittel gefärbten Probe
- Messung und Aufzeichnung zurückkommender Fluoreszenz
- Aufnahme des Färbemittels von Gewebeart abhängig
- Scannen über Gitter liefert 2-dimensionalen Schnitt
- Beobachtetes Bild $y = (y_{ij})$: verzerrt durch Hintergrundrauschen

Originaldaten

- Konfokale mikroskopische Bilder von Zellen (Knorpelwachstum)
- Zellen gefärbt, Hintergrund ungefärbt
- Skalierung mit Dark Ground Verfahren: Beobachtungswerte zwischen $\tau_0 > 0$ und 255
- Zellen als elliptische Objekte
- Bild ist Teil einer Zeitfolge, die Veränderungen der Zellengröße und -form zeigt
- Ziel: Erhalt von Schätzungen bestimmter Größen- und Formeigenschaften der Zellpopulation in einem bestimmten Wachstumszustand in verschiedenen Abständen

Figure 1: 2-dimensionaler Ausschnitt aus dem Knorpelwachstum

A-priori Annahmen

- Y_{ij} unabhängig untereinander
 - ⇒ Störung pixelweise (Gaußsche additive Störung)
- Jedes Pixel besitzt zugehörige Intensität
- Forderung an das Bildmodell: Informationen über die geeignete Anzahl von Zellen, Lokalisation, Größe, Orientierung, Form und Intensität (markierte Punktprozesse)
- Vorgehen: Definieren Referenzmaß Γ (enthält Eigenschaften der Zellenverteilung) und schreiben Gesamtmodell als Dichte bzgl. Γ

Aussagen über Objekte und ihre Marken

- Darstellung jedes Objekts als Paar (l,m), wobeil Lokalisation und $m=(a,b,\theta,\lambda)$ Marke
 - Modellieren Zellen als Ellipsen mit Zentrum l, Halb-Achsen der Länge a und b und mit Winkel θ , den Halb-Achse a mit x-Achse einschließt
 - Signalintensitätslevel λ
- $a, b \in M_{axis} = (\min_{axis}, \max_{axis}), \ \theta \in (0, \pi), \ \lambda \in M_{\lambda} = (\min_{\lambda}, \max_{\lambda})$
- $m \in M = M_{axis}^2 \times (0, \pi) \times M_{\lambda}$
- l ist Paar kartesischer Koordinaten im Fenster L mit Fläche A_L

- Für Zelle *i* schreiben wir $X_i = (l_i, m_i) = (l_i, a_i, b_i, \theta_i, \lambda_i)$
- Gesamtvektor $X = (X_1, ..., X_N)$
- Bezeichnen Klasse aller möglichen Objekte mit ihrer Lokalisation mit $U = L \times M$

Annahmen über das Referenzmodell

- Zellen dürfen überlappen
- Zell-Lokalisationen unterliegen homogenen Poissonprozess mit Intensität 1
- Anzahl der Punkte in einem Bereich A besitzt Poissonverteilung mit Erwartungswert $\rho(A)$ mit ρ Lebesgue-Maß
- Annahmen über die Parameterverteilung
 - a, b, θ und λ unabhängig
 - $a \sim N(\mu_a, \xi^2)$ und $b \sim N(\mu_b, \xi^2)$, aber auf M_{axis} beschränkt
 - θ besitzt Dichte $\frac{|\cos \theta| + \pi^{-1}}{3}$ auf $(0, \pi)$
 - $\lambda \sim U(\min_{\lambda}, \max_{\lambda})$

• Dichte der Marke:

$$f_X(a,b,\theta,\lambda) = \frac{c}{2\pi\xi^2} e^{-\frac{1}{2\xi^2}[(a-\mu_a)^2 + (b-\mu_b)^2]} \frac{|\cos\theta| + \pi^{-1}}{3} \frac{1}{\max_\lambda - \min_\lambda}$$

Referenzmaß

- Sei ν Wahrscheinlichkeitsmaß der Markenverteilung
- Referenzmaß als markierter Poissonprozess auf U = L × M mit Intensitätsmaß μ = ρ ⊕ ν
 ⇒ Gesamtanzahl der Objekte N in U besitzt eine Poissonverteilung mit Erwartungswert μ(U) = ρ(L) = A_L, weiter gilt unter der Bedingung N = n, dass X₁,..., X_n unabhängig sind und f_{X_i}(x) = μ(dx_i)/μ(U)
- Definieren Referenzmaß $\Gamma(x,n)$ als Maß dieses Prozesses auf $E = \bigcup_n U^n$

• Unter Γ gilt

$$\mathbb{P}(X \in A) = \frac{e^{-\mu(U)} [\mu(U)]^n}{n!} \int \dots \int_A \frac{\mu(dx_1)}{\mu(U)} \dots \frac{\mu(dx_n)}{\mu(U)}$$
$$= \frac{e^{-\mu(U)}}{n!} \int \dots \int_A \mu(dx_1) \dots \mu(dx_n), \ A \in U^n$$

Das a-priori Bildmodell

• Wir setzen a-priori Bildmodell als Maß mit Dichte $p_X(x,n)$ bzgl. Γ auf E

$$p_X(x,n) = k\beta^n \mathbb{1}[\text{keine } \ddot{\text{U}}\text{berlappung}], \qquad (1)$$

wobei k Konstante und β die Gesamtdichte der Zellen näher bestimmt

Bedingung: Zellen d
ürfen nicht
überlappen (Hardcore interaction model)

 \Rightarrow Marken und Lokalisation nicht mehr unabhängig

- Gesamtanzahl der Zellen meist kleiner als Erwartungswert $\beta\rho(L)$ der Poissonverteilung

• Mit Dichte $p_X(x,n)$ gilt

$$\mathbb{P}(X \in A) = \frac{e^{-\mu(U)}}{n!} \int \dots \int_{A} p_X(x, n) \mu(dx_1) \dots \mu(dx_n), \ A \in U^n$$

Ausdruck der Bildmodelle als Summe von Lebesgue-Dichten

• Dichte $f_X(x_i)$ des Referenzprozesses:

$$f_X(x_i) = \frac{1}{A_L} \frac{c}{2\pi\xi^2} e^{-\frac{1}{2\xi^2} [(a_i - \mu_a)^2 + (b_i - \mu_b)^2]} \frac{|\cos \theta_i| + \pi^{-1}}{3} \frac{1}{\max_\lambda - \min_\lambda} \frac{1}{(2)}$$

für $l_i \in L$ und $(a_i, b_i, \theta_i, \lambda_i) \in M$, ansonsten $f_X(x_i) = 0, x_i \in \mathbb{R}^{6n}$

- Referenzmaß $\Gamma(x,n)$ besteht aus Untermaßen $\Gamma^n(x)$, n = 0, 1, ...,wobei $\Gamma^n(x)$ Bilder betrifft, die n Zellen beinhalten (6n Parameter)
- Unterdichte von $\Gamma^n(x)$ bzgl. Lebesgue-Maß auf \mathbb{R}^{6n} :

$$p_{\Gamma}^{n}(x) = \frac{e^{-A_{L}}A_{L}^{n}}{n!} \prod_{i=1}^{n} f_{X}(x_{i}) \text{ für } x_{i} \in U, \ i = 1, ..., n$$

 A-priori Modell besitzt Dichte aus (1) bzgl. Γ
 ⇒ Summe von Untermaßen πⁿ_X(x), n = 0, 1, ..., wobei πⁿ_X(x)
 folgende Unterdichte bzgl. des Lebesgue-Maßes auf ℝ⁶ⁿ besitzt:

$$p_X^n(x) = p_X(x, n) p_{\Gamma}^n(x)$$

= $k \beta^n \frac{e^{-A_L} A_L^n}{n!} \prod_{i=1}^n f_X(x_i) \mathbb{1}[\text{keine Überlappung}]$

für $x_i \in U, \ i = 1, ..., n$

 Dichte p_{X|Y}((x,n)|y) der a-posteriori Bildverteilung bzgl. Γ ist proportional zum Produkt der a-priori Dichten p_X(x,n) und der Wahrscheinlichkeit der beobachteten Daten L(y|x)
 ⇒ a-posteriori Bildverteilung ist Summe der Untermaße πⁿ_{X|Y}(x|y)

mit Unterdichten

$$p_{X|Y}^n(x|y) \propto p_X(x,n) p_{\Gamma}^n(x) \mathcal{L}(y|x), \ n = 0, 1, \dots$$

bzgl. des Lebesgue-Maß auf \mathbb{R}^{6n}

• Darstellung der *n*-ten Unterdichte:

$$p_{X|Y}^{n}(x|y) \propto \beta^{n} \frac{e^{-A_{L}} A_{L}^{n}}{n!} \prod_{i=1}^{n} f_{X}(x_{i}) \mathbb{1}[\text{keine } \ddot{\text{U}}\text{berlappung}] \mathcal{L}(y|x)$$
(3)
für $x_{i} \in U, \ i = 1, ..., n$

4 MCMC Simulation und Reversible Jump Algorithmus MCMC Simulation

- Durchlaufen einer ergodischer Markov-Kette mit stationärer Verteilung π
 - \Rightarrow Erzeugung von Stichproben
- Verwendete Veränderungsoperationen:
 - Verlagerung (Shift): Translation einer Zelle
 - Veränderung der Zelle (Resize): Modifikation der Halb-Achsen einer Zelle
 - Rotation (Rotate): Änderung der Orientierung einer Zelle
 - Veränderung der Intensität (Intensity Change)

- Geburt (Birth): Hinzufügen einer Zelle
- Tod (Death): Löschen einer Zelle
- Spaltung (Split): Aufteilen einer Zelle in zwei neue
- Verschmelzung (Merge): Vereinigung zweier angrenzender Zellen zu einer
- Simulation mittels Reversible Jump Algorithmus (Green (1995))

Durchführung des Reversible Jump Algorithmus

- Samplen ergodische Markov-Kette mit stationärer Verteilung $\pi_{X|Y}$, die sich aus Untermaßen $\pi_{X|Y}^n$ und Unterdichten $p_{X|Y}^n$ auf dem \mathbb{R}^{6n} , n = 0, 1, ... aus (3) zusammensetzt
- Bezeichnungen:
 - ν Veränderung, die Zelle hinzufügt
 - $j_{\nu}(x)$ Wahrscheinlichkeit, dass diese Veränderung im Zustand x ausgewählt wird
 - ν^\prime entgegengesetzte Veränderung
 - $j_{\nu'}(x')$ Wahrscheinlichkeit, dass diese Veränderung im Zustand x' ausgewählt wird
 - $X \in \mathbb{R}^{6n}$ Bild mit n Zellen

- allgemeine Vorgehensweise
 - 1. Schritt: Auswahl des Verändungsprozesses (Geburt, Tod,...)
 - 2. Schritt: Bestimmung eines möglichen neuen Zustands x^\prime
 - 3. Schritt: Bestimmung der Akzeptanzwahrscheinlichkeit $\alpha_{\nu}(x,x')$
 - 4. Schritt: Annahme oder Ablehnung der Akzeptanzwahrscheinlichkeit $\alpha_{\nu}(x, x')$

26

Herleitung der Akzeptanzwahrscheinlichkeit $\alpha_{\nu}(x, x')$

• Eine Markov-Kette hat eine stationäre Verteilung $\pi_{X|Y}$, falls jede Kombination aus Veränderung und entgegengesetzter Veränderung die Detailed-Balance-Condition bzgl. $\pi_{X|Y}$ erfüllt: Beispiel: Geburt-Tod Für $A \subset \mathbb{R}^{6n}$ und $B \subset \mathbb{R}^{6(n+1)}$ muss gelten

 $\mathbb{P}\{X \in A \text{ gefolgt von Geburt führt zu } X' \in B\} = \mathbb{P}\{X \in B \text{ gefolgt von Tod führt zu } X' \in A\}$

• Sei $C_x = \{u : g(x, u) \in B \text{ und } q(u) > 0\}$, wobei u eine Zufallsvariable ist, die aus der Dichte $q(u) = f_X(u)$ erzeugt wird und $g(x, u) \in \mathbb{R}^{6(n+1)}$

- Betrachten Paare der Mengen A und B, so dass $C_x \neq \oslash$ für alle $x \in A$ und $x' \in B$
 - \Rightarrow Detailed-Balance-Condition ist äquivalent zu

$$\int_{A} \int_{C_x} p_{X|Y}^n(x|y) j_{\nu}(x) q(u) \alpha_{\nu}(x, g(x, u)) \, du \, dx = \\ \int_{B} p_{X|Y}^{n+1}(x'|y) j_{\nu'}(x') \alpha_{\nu'}(x', x(x')) \, dx'$$

Umwandlung des Doppelintegrals durch Substitution $x^\prime = g(x,u)$ in Intregral über B ergibt

$$p_{X|Y}^{n}(x|y)j_{\nu}(x)q(u)\alpha_{\nu}(x,x')| \mid \frac{dx'}{d(x,u)} \mid^{-1} \mid = p_{X|Y}^{n+1}(x'|y)j_{\nu'}(x')\alpha_{\nu'}(x',x)$$
für alle x, u und $x' = g(x,u)$, wobei $\mid \frac{dx'}{d(x,u)} \mid$ Jacobi-Matrix der Transformation $x' = g(x,u)$

• Gleichung ist erfüllt für

$$\alpha_{\nu}(x,x') = \min\{1, R_{\nu}\} \text{ und } \alpha_{\nu'}(x',x) = \min\{1, R_{\nu}^{-1}\},\$$

wobei

$$R_{\nu} = \frac{j_{\nu'}(x')p_{X|Y}^{n+1}(x'|y)}{j_{\nu}(x)p_{X|Y}^{n}(x|y)q(u)} \mid \frac{dx'}{d(u,x)} \mid$$

Simulation und Bildanalyse in JAVA Seminar

Konkretes Vorgehen

• Weisen jeder Veränderung gleiche Wahrscheinlichkeit zu

$$j_{\nu}(x) = \begin{cases} \frac{1}{8} & \text{für jede Veränderung, falls } n \geq 2\\ \frac{1}{7} & \text{für jede Veränderung außer Verschmelzung, falls } n = 1\\ 1 & \text{für eine Geburt, falls } n = 0 \end{cases}$$

- Falls gegenwärtiger Zustand x n Zellen besitzt und eine Veränderung durch Geburt gewählt wird, wird eine Zufallsvariable $u = (l, a, b, \theta, \lambda)$ definiert
 - Erzeugen Wert durch Dichte $q(u) = f_X(u)$ aus (2)
 - Vorschlag $x' = (x_1, ..., x_n, u)$ durch neue Zelle $x_{n+1} = u$
- Veränderung durch Tod löscht letzte Zelle in Liste

• Akzeptanzwahrscheinlichkeiten

$$\alpha_{Geburt}(x, x') = \min\{1, R_{\nu}\} \text{ und } \alpha_{Tod}(x, x') = \min\{1, R_{\nu}^{-1}\}, \text{ wobei}$$
$$R_{\nu} = \frac{j_{Tod}(x') \ p_{X|Y}^{n+1}(x'|y)}{j_{Geburt}(x) \ p_{X|Y}^{n}(x|y) \ q(u)} \times 1$$

Einsetzen und Kürzen ergibt

$$R_{\nu} = \frac{j_{Tod}(x')}{j_{Geburt}(x)} \frac{\beta A_L}{n+1} \frac{\mathcal{L}(y|x')}{\mathcal{L}(y|x)} \mathbb{1}[\text{keine Überlappung in } x']$$

- Bemerkung: Zelle kann an beliebiger Stelle eingefügt/gelöscht werden
- Verlagerung, Veränderung, Rotation, Intensitätsveränderung analog (sogar einfacher, da kein Dimensionswechsel)
- Spaltung und Verschmelzung ähnlich (Al-Awadhi 2001, Rue & Hurn 1999)

Sampler Leistung

Figure 2: Bilder nach 25.000 Iterationen mit drei verschiedenen Keimen

Simulation und Bildanalyse in JAVA Seminar

5 Modifikationen des Standard-Algorithmus

Verbesserung des Geburtsprozesses

- Verbesserung der Akzeptanzrate durch Auswahl von Punkten mit hoher Intensität
- Modifizierter Algorithmus mit pixelweisen Gewichten $p_i, i = 1, .., S$

$$p_i \propto \begin{cases} 1 & \text{falls } Y_i < 30 \\ \frac{Y_i}{3} - 9 & \text{falls } 30 \le Y_i < 90 \\ 21 & \text{falls } 90 \le Y_i \end{cases}$$

 $\Rightarrow p_i$ anstatt $\frac{1}{A_L}$ im Nenner der Akzeptanzwahrscheinlichkeit für eine Geburt

 Starke Gewichtung für einen gut gewählten Geburtsvorschlag, führt oft zu α_{Geburt} = 1 und somit zu automatischer Akzeptanz
 ⇒ Höhere Akzeptanzrate von Geburten, womit der Anteil an Iterationen, die eine Geburt vorschlagen, reduziert werden kann
 ⇒ Erneute Zuteilung der Iterationszahl zwischen den verschiedenen Veränderungen führt zur Erhöhung der Anzahl der anderen Veränderungen

Figure 3: Bilder nach der Verbesserung des Geburtsprozesses nach 25.000 Iterationen

Simulation und Bildanalyse in JAVA Seminar

Relaxierter Modell Sampler

• Bisher:

Vorschläge, in denen sich Zellen überlappen, werden automatisch abgelehnt

 \Rightarrow Einführen von Zwischenschritten in MCMC-Simulation

- Vorgehen
 - Sei E_0 Unterraum von E, in dem keine Zellen überlappen
 - Samplen von der a-posteriori Bildverteilung $\pi_{X|Y}$, deren Träger vollständig in E_0 liegt
 - Definieren Verteilung $\tilde{\pi}$ auf E
 - Legen zweite Markov-Kette auf E fest, die die Detailed-Balance-Condition bzgl. $\tilde{\pi}$ erfüllt

- Definieren modifizierten MCMC Algorithmus mit stationärer Verteilung $\pi_{X|Y}$, der Ausflüge nach $E \setminus E_0$ nutzt, indem er Vorschläge $x' \in E_0$ erzeugt:
 - * Gegenwärtige Zustand $x \in E_0$
 - * Separater Prozess von Haupt-Markov-Kette mit Vorschlägen in *E* bis Zustand $x' \in E_0$
 - * x' Vorschlag für Haupt-Markov-Kette
 - * Bei Ablehnung des Vorschlags bleibt die Kette in x
- Akzeptanzwahrscheinlichkeit, die für die Detailed-Balance-Condition der Haupt-Markov-Kette bzgl. $\pi_{X|Y}$ benötigt wird:

$$\alpha(x, x') = \min\{1, \frac{p_{X|Y}^{n'}(x'|y) \ \tilde{p}^n(x)}{p_{X|Y}^n(x'|y) \ \tilde{p}^{n'}(x')}\},\$$

wobei n und n' Anzahl der Zellen in Bildern x und x' und $\tilde{p}^n(x)$ Unterdichte von $\tilde{\pi}$ bzgl. Lebesgue-Maß auf \mathbb{R}^{6n}

 Unterdichte von π̃ bzgl. des Lebesgue-Maß auf ℝ⁶ⁿ: Schnelles Erreichen des Zustands x' ∈ E₀
 ⇒ Setzen die Dichte von π̃ proportional zu derjenigen von π_{X|Y} im Zustand x ∈ E₀ und bestrafen die Zustände in E\E₀ anhand ihres Zellenüberlappungsgrads

$$\tilde{p}^n(x) = \tilde{K}\beta^n \frac{e^{-A_L}A_L^n}{n!} [\prod_{i=1}^n f_X(x_i)] e^{-\gamma\nu(x)} \tilde{\mathcal{L}}(y|x),$$

wobei

– $\nu(x)$ Anzahl der Pixel in x, die von mehr als einer Zelle bedeckt werden

- $\tilde{\mathcal{L}}(y|x)$ modifizierte Version der Likelihood-Funktion, in der Intensität des Pixels gleich der mittleren Intensität der Pixel ist, die ihn bedecken
- Konstante γ regelt Grad der Bestrafung überlappender Zellen
 - * Falls γ klein gewählt wird, ist die mittlere Dauer der erfolgreichen Ausflüge groß
 - $\ast\,$ Falls $\gamma\,$ groß gewählt wird, ist die mittlere Dauer der Ausflüge dementsprechend klein
- Schutz vor Durchlauf, indem Kette viel Zeit in Zuständen weit von E_0 verbringt: Maximallänge m
- Anwendung des relaxierten Modells auch nur auf ein Unterfenster möglich

Figure 4: Bilder des relaxierten Modells nach 5.000, 15.000 und 30.000 lterationen mit $\gamma=150$

Konstruktion geeigneter Anfangszustände

- Gefahr: Kette arbeitet sich einen Weg durch Gebiete mit extrem niedriger Wahrscheinlichkeit und verbraucht zur Verfügung stehende Rechenzeit
- Lösung: Start der Markov-Kette an einem Punkt nahe des Teils des Bildraums, der gesamplet werden soll:
 - Anwendung von Thresholding und morphologischen Operationen \rightarrow Erzeugung einer Ausgangsapproximation des echten Bildes
 - Umwandlung des Bilds in eine Menge von elliptischen Objekten \rightarrow Bildung eines legitimen Bildes im Bildraum E_0

Mathematische Morphologie

- Thresholding: Pixel mit einem beobachteten Wert größer als eine vorgegebene Schranke als 'Objekt', andere Pixel als 'Hintergrund'
- Opening Operator: Erosion und Dilatation
 - Sei A die Menge aller Objektpixel, B symmetrisches strukturierendes Element, B_p das mit seinem Bezugspunkt zum Pixel p verschobene strukturierende Element
 - Erosion (Abtragung): $A \ominus B = \{p : B_p \subset A\}$
 - Dilatationsschritt (Ausdehnung): $A \oplus B = \{p : B_p \cap A \neq \emptyset\}$

Erzeugung von Ellipsen - Herleitung der Ellipsengleichung

- Menge der 'Objekt'-Mittelpunkte (X,Y) als Stichprobe einer bivariaten Normalverteilung mit Erwartungswertvektor (μ_x, μ_y) , $Var(X) = \sigma_x^2$, $Var(Y) = \sigma_y^2$ und $Cov(X,Y) = \rho \sigma_x^2 \sigma_y^2$
- Schätzung der Parameter mit Standard-Methoden
- Umriss der Ellipse als Normalverteilung der Form

$$\frac{(x-\mu)^2}{\sigma_x^2} + \frac{(y-\mu)^2}{\sigma_y^2} - \frac{2\rho(x-\mu_x)(y-\mu_y)}{\sigma_x\sigma_y} = C$$

Simulation und Bildanalyse in JAVA Seminar

Figure 5: Bild nach (a) Thresholding und Anwendung morphologischer Operationen, (b) Erzeugung von Ellipsen und (c) 20.000 Iterationen

Simulation und Bildanalyse in JAVA Seminar

6 Zusammenfassung

- Ausgangsposition: gestörtes Bild
- Ziel: Erzeugung eines Bilds bzw. zugehörigem Parametervektor, der aus der Modellklasse stammt
- Erzeugung von Bildern mit Hilfe des Reversible Jump Algorithmus, wobei die Akzeptanzwahrscheinlichkeit der Vorschläge von den Beobachtungswerten (Intensitäten) abhängt
- Verbesserung der Konvergenzgeschwindigkeit unter Umständen möglich durch Modifikationen des Algorithmus (Veränderung der Geburtsprozesse, Konstruktion geeigneter Ausgangszustände)

7 Literaturverzeichnis

- AL-AWADHI, F., JENNISON C. UND HURN M.: Statistical Analysis for a Confocal Microscopy 2-D Section of Cartilage Growth. Statistics Group Research Report, University of Bristol, 2002.
- AL-AWADHI, F.: *Statistical Image Analysis and Confocal Microscopy.* Dissertation, University of Bath UK, 2001.
- GREEN, P.J.: Reversible Jump Markov Chain Monte Carlo Computation and Bayesian Model Determination. Biometrika 82:711-732, 1995.
- HURN, M. UND RUE, H.: The Art and Science of Bayesian Image Analysis. High Level Image Priors in Confocal Microscopy Applications 36-43, Leeds University Press, 1997.

