Übungen zu Wahrscheinlichkeitsrechnung - Blatt 8

(Abgabe: Donnerstag, 14.12.2006, vor den Übungen)

Aufgabe 1 (2 + 2 + 2 + 2 Punkte)

Die Zufallsvariablen X und Y besitzen die gemeinsame Dichte

$$f_{(X,Y)}(x,y) = \begin{cases} (x + \frac{1}{2})(y + \frac{1}{2}), & 0 \le x, y \le 1, \\ 0, & \text{sonst.} \end{cases}$$

- (a) Bestimmen Sie die Dichte von $X \cdot Y$.
- (b) Bestimmen Sie die Dichte von X/Y.
- (c) Sei U eine auf dem Intervall (0,1) gleichverteilte Zufallsvariable. Bestimmen Sie die Dichten von $Y = -(1/\lambda) \log U$ für $\lambda > 0$ und von U^2 .
- (d) Sei $X \sim N(0,1)$. Bestimmen Sie die Dichte von $Y = e^X$.

Aufgabe 2 (2 + 2 + 1 Punkte)

Das Gewicht leerer Flaschen sei normalverteilt mit den Parametern $\mu=100$ und $\sigma^2=25$. Die Abfüllung wird folgendermaßen durchgeführt: die Flaschen werden auf eine Waage gestellt. Die Zufuhr wird dann abgestellt, wenn das Gesamtgewicht 610 erreicht wird. Die Flaschen seien so groß, dass das Überlaufen praktisch ausgeschlossen werden kann.

- (a) Welche Verteilung besitzt die Zufallsvariable des Füllgewichts, falls das Gesamtgewicht exakt 610 ist?
- (b) Mit welcher Wahrscheinlichkeit beträgt der Inhalt mindestens 500?
- (c) Bei Erreichen des Gesamtgewichts 610 kann im allgemeinen der Zulauf nicht exakt gestoppt werden. Der Fehler des Gesamtgewichts der Flasche sei N(0,2)-verteilt und unabhängig vom Flaschengewicht. Welche Verteilung hat in diesem Fall das Füllgewicht?

Aufgabe 3 (3 + 4 Punkte)

Seien X_1, \ldots, X_n unabhängige Zufallsvariablen. Zeigen Sie, dass die Zufallsvariable $X_1 + \ldots + X_n$

- (a) Erlang-verteilt ist mit den Parametern n und λ , falls $X_i \sim \text{Exp}(\lambda)$.
- (b) Normalverteilt ist mit Parametern $\mu = \mu_1 + \dots + \mu_n$ und $\sigma^2 = \sigma_1^2 + \dots + \sigma_n^2$, falls $X_i \sim N(\mu_i, \sigma_i^2)$.

(Hinweis. Eine absolutstetige Zufallsvariable X mit Dichte

$$f_X(x) = \begin{cases} \frac{\lambda^n}{(n-1)!} x^{n-1} e^{-\lambda x} & \text{, falls } x > 0, \\ 0 & \text{, falls } x \le 0, \end{cases}$$

wobei $\lambda > 0$ und $n \in \mathbb{N}$, heißt Erlang-verteilt mit den Parametern n und λ .)

Aufgabe 4 (2+2+2 Punkte)

Es sei X eine Zufallsvariable. Berechnen Sie den Erwartungswert von X, falls

- (a) X Poisson-verteilt ist mit Parameter $\lambda > 0$.
- (b) X Exponential-verteilt ist mit Parameter $\lambda > 0$.
- (c) X gleichverteilt ist auf dem Intervall (a, b).