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Abstract The access network displays an important partic-
ularity that the locations of the network components strongly
depend on geometrical features such as road systems and a
city’s architecture. This paper deals with the distributions of
point-to-point connection lengths that play a major role in
current problems in the analysis and planning of networks.
Using the mathematical framework of stochastic geometry
to model both the road system and the locations of network
nodes, we derive analytical formulas for distributions of con-
nection lengths. These formulas depend explicitly on a few
parameters that can be computed easily and fast avoiding
time consuming reconstructions. We validate the approach
by a comparison with actual network data and show its adapt-
ability by considering several policies for nodes location and
examples of use.
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1 Introduction

In order to meet user expectations for quality and security
of their communications in a cost-effective way, the design
of new architecture principles and concepts for future net-
works are currently being investigated by the telecommu-
nication community. To cope with this rapid evolution and

This work was supported by Orange Labs Research agreement
46143714

C. Gloaguen (corresponding author)
Orange Labs, 92794 Issy les Moulineaux Cedex 9, France
E-mail: catherine.gloaguen@orange-ftgroup.com

F. Voss · V. Schmidt
Institute of Stochastics, Ulm University, 89069 Ulm, Germany
E-mail: {florian.voss, volker.schmidt}@uni-ulm.de

diversification of networks, it is necessary for the telecom-
munication operator to be able to select the best available
solutions in terms of cost and efficiency. Accordingly, the
scope of the methodology presented here is to offer easy to
use, reliable and efficient tools to the network operator for
the global analysis of huge networks that explicitly take into
account the geometry of the territory while being able to de-
scribe various technologies and architectures.

Although perhaps not perceived by modern customers
immersed in a world of mobility, the fixed part of the access
network is nevertheless an important and omnipresent entity,
which is based either on traditional (copper) or more recent
(optical fibre) technologies. Due to its complexity in terms
of a variety of equipment types, geographical settings and a
history of successive amendments, this part of the network is
for the network operator a major cost element as well as an
important source of income. A characteristic feature of the
fixed access network is its strong dependency on the geogra-
phy and territory infrastructure, especially on the road sys-
tem that is used as a natural guide for physical telecommuni-
cation lines. Key components of the quality of service or the
technical feasibility of architecture solutions like connection
lengths are thus very sensitive to the geometry of the net-
work implantation and subject to regional and/or scale speci-
ficities. In order to study e.g. the impact of the morphology
of the road system on the performance of a given network
architecture, a natural way is to consider separately the geo-
graphical constraints, the placement of network components
and their connections. Thus, we propose a geographically
based analysis for fixed access networks accounting for re-
gional specificities which is based on three distinct building
blocks:

1. the geometrical support, i.e. the underlying road system,
2. the locations of network nodes along the roads,
3. the connection topology, i.e. the physical connection

paths.
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This methodology allows us to deal with a variety of real-
istic situations. Pertinent quantities relevant to network per-
formance evaluation or planning are usually estimated ei-
ther by extraction from databases or by reconstruction. Each
method has its own advantages and drawbacks. Databases
are snapshots of network and offer in principle a true picture
of reality. But they do not always describe all network parts,
are not available for non–existent networks, do not contain
equally reliable data and are huge and not easy to handle.
Moreover, they are only descriptive by nature and thus do
not give any straightforward interpretation of the actual net-
work state. Exhaustive reconstruction of a given network
implementation scenario provides precise and local infor-
mation. However, network reconstructions are not suitable
for application such as e.g. network planning. Due to large
computation times the analysis based on reconstructions is
restricted to a few cases that may not be representative for
all possible network scenarios.

How to deal with these seemingly contradictory require-
ments: being able to provide rapid answers and estimation
at global scale while being at the same time able to keep
information on geographical features? A solution is to turn
the intrinsic variability and the complexity of the whole net-
work into an advantage. This is possible in the framework
of stochastic modelling. The choice of random models and
parameters allows to deal directly with the desired statistical
information while taking into account the geographical fea-
tures and offering an explicit relationship between the net-
work and the morphology of the underlying territory.

The ”Stochastic Subscriber Line Model” (SSLM) [1] is
a stochastic–geometric model for fixed access networks us-
ing the three building blocks introduced above. Since the
first applications of spatial stochastic models to global net-
work modelling [2,3], specific mathematical tools have been
developed [4–6] in order describe the underlying road sys-
tem as a whole or as a support for network nodes and con-
nections. In [7] we showed that real road systems can be
replaced by simulations of random models in order to esti-
mate the distribution of point–to–point connection lengths.
This representation of the road system by stochastic models
defined by their type and parameters is the key point of the
SSLM. Using a mixture of mathematical considerations and
numerical simulations, it allows to derive parametric formu-
las that describe the relationship between the statistical dis-
tributions of the geometric network characteristics and the
morphology of the road system. This is presented in [8] that
validates the approach on the case of Paris access network.

This paper is an extended version of [8] and aims to em-
phasize that the SSLM is an open methodology both for its
potential generalizations and applications. New policies for
positioning of network nodes can easily be introduced in or-
der to describe e.g. the network on the scale of the terri-
tory (see Section 4.3). It is also straightforward to describe

and quantify the impact of network architecture and/or tech-
nology choices on geometry-dependent quantities that them-
selves play a major role in a number of current problems in
the realm of analysis and planning of networks.

Section 2 briefly presents the access network and the
SSLM principles. The mathematical aspects of spatial stoch-
astic modelling are introduced in Sections 3 and 4. Section 5
validates the SSLM on the Paris example and demonstrates
the adaptability of the model by taking into account geo-
graphical specifics and coping with some problems created
by the introduction of optical fiber technology. Note that
although other geometrical quantities could be considered,
we focus on the analysis of connection lengths since they
are highly sensitive to the geometry of the network and are
therefore a good indicator to validate the proposed method-
ology.

2 Stochastic models for access networks

2.1 Technical overview of the access network

The purpose of a network is to allow connections and data
transfer between customers. In this paper we mainly focus
on the access network (or local loop) which is the lower part
of the network, connecting a subscriber (the phone or the
computer at home) by a physical link to its corresponding
Wire Center Station (WCS) via intermediate network com-
ponents. Connections between WCS nodes are assured by
core network not considered here. The different types of ac-
cess nodes play a concentration role, allowing the merging
of low capacities cables to a single cable of higher capacity.

In a given area, the road system is built or planned in or-
der to offer communication ways and/or access to the whole
area. It is pre-existent to the telecommunication network: ei-
ther in time or during the territory planning process. The un-
derlying road system is itself a very complicated object. Its
morphology depends on the scale of analysis, on the popula-
tion density, the geographical constraints, the economic ac-
tivity, etc. Since national roads and motorways are designed
to connect major towns and small streets or dead ends are
designed to reach every location inside the city, their over-
all shape and properties are very diverse (Fig. 1). Note that
detailed road data is available in coordinate form, but sim-
ilar to network databases, it is only descriptive and needs
dedicated software to be handled.

Since both kinds of networks, i.e., road and telecommu-
nication networks, have the goal to connect people, it is nat-
ural for the telecommunication network to use the road sys-
tem that itself reaches the customers. Then access network
nodes as well as connections strongly depend on the mor-
phology of the road system. The cables run under pavements
in trenches forming the civil engineering part of the whole
telecommunication network. Thus, the fixed access network
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(a) (b) (c)
Fig. 1 The morphology of road systems depends on the scale of analysis. a Nationwide scale (width 950 km) motorways, national and some
secondary roads in France. b Major city scale (width 12km) inner city and suburbs of Lyon. c Amiens (width 9 km) with transition to rural areas.

Fig. 2 The access network (cables in grey) merges in the urban road
system.

can be considered as the place, where the telecommunica-
tion network merges into civil engineering (Fig. 2). Because
the setup of a network with hierarchical architecture aims
to decrease its costs with economy of scale induced by the
merging of cables, a delicate trade-off has to be found be-
tween the costs of individual nodes and the costs of the ca-
bles depending on their capacities, while ensuring the tech-
nical feasibility of the solution: node capacities vs. demand
and length of connections vs. path loss requirements. It is
then of extreme importance to be able to take into account
the spatial structure of the road system in the process of net-
work analysis or planning.

2.2 Stochastic modelling principles

The power of stochastic modelling is to take advantage of
the complexity of the system. It is particularly suited to our
purpose which is to develop pertinent and reliable tools to
analyse the network at global scale in order to compare var-
ious architectures and technologies.

Let us consider an example: knowing the exact connec-
tion length from a customer to its corresponding WCS may
be of importance locally. However, it is difficult or even
impossible to determine the connection lengths of all cus-
tomers since the whole network has to be reconstructed. In
particular, if future network designs have to be analysed, it
is only possible to investigate a few possible scenarios due
to limited computation time.

On the contrary, if one considers the whole set of cus-
tomers and their connection distances to WCS, one observes
a variability that can be interpreted in a statistical way as
a distance distribution. This distribution contains important
global information for the network operator like the percent-
age of customers that can be reached within a length thresh-
old imposed by the technology.

However, at a macroscopic scale, global rules for con-
nections or locations are more relevant than minute details
annihilating each other. The main goal of stochastic mod-
elling is to describe the spatial variability of each of the
three blocks defined in Section 1 (geometrical support, loca-
tions of network nodes and connection topology) by random
processes. Then the distributions of important network char-
acteristics like connection lengths can be directly linked to
parameters of the model which can be estimated from real
data. Possible models in order to represent e.g. the geometri-
cal support or the locations of network nodes are systems of
randomly located points and lines which can be described
in the framework of spatial stochastic processes. They are
defined by a small number of parameters, but can reproduce
geometrical and statistical features of real data and are there-
fore ideal components for the SSLM blocks.

2.2.1 Geometrical support

Objects (lines, points) are thrown in a random way to gener-
ate a paving of the plane (a ”tessellation”) whose edges can
be used as a model for road systems. Several simple mod-
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(a) (b) (c)

Fig. 3 Realizations of simple tessellations of the plane. a PLT. b PVT.
c PDT .

(a) (b)

Fig. 4 a A real road system: 528 crossings, 324 quarters, 849 street
segments and 97 km total street length. b The best statistically equiva-
lent PVT with in average: 585 crossings, 293 quarters, 878 street seg-
ments and 82 km total street length.

els (Fig. 3) are available: tessellations constructed from lines
(Poisson line tessellation (PLT)), from links between points
(Poisson-Delaunay tessellation (PDT)) or from areas around
points (Poisson-Voronoi tessellation (PVT)). Iterated tessel-
lations obtained by combinations, and the possibility to in-
clude a fraction of empty areas, provide even more realis-
tic models. Under the Poisson assumption of maximum ran-
domness (the objects are located independently from each
other and their number follows a Poissonian law), a sim-
ple homogeneous random tessellation is fully defined by a
single parameter: its intensity. Then, mathematical develop-
ments can lead to exact analytical formulas relating statisti-
cal features of the tessellation to its type and intensity [9,10].

The vector T = (number of crossings, number of quar-
ters, total length of streets, number of streets segments) av-
eraged per unit area statistically describes the morphology
of the road system. One can define the distance between a
theoretical random model and the real road system by com-
paring the theoretical T to the vector of corresponding em-
pirical quantities using, for example, the relative Euclidean
norm. From the explicit dependence of T = T (type,γ) on
the type of model and its intensity γ , it is possible to choose
the best model among a given set of candidates by minimiz-
ing the distance. This fitting procedure is described in [4].
Then the best model statistically reproduces the morphol-
ogy of the real road system, but is described only by its type
and intensity, see Fig. 4.

(a) (b)

Fig. 5 HLC with their serving zones (black), some LLCs (grey with
black boundary) and shortest paths (dashed) located along the edge set
(grey). a Street model PVT. b Street model PLT.

2.2.2 Locations of network nodes

Since we are interested in point-to-point distances, it is suffi-
cient to consider sub-networks involving two types of nodes:
low-level components (LLC) and high-level components
(HLC). Both types of nodes are randomly located along the
road system. This reflects the variability of situations en-
countered in real networks.
In the simplest model, network nodes are positioned along
the streets under the homogeneous Poisson assumption which
will be used in Section 3 and most of Section 4. Then given a
model for the street system, the intensity (the mean number
of nodes per unit length of the street) is the only parame-
ter required to fully determine the mathematical model for
each node type. For rural networks this basic model has to
be slightly adapted: the main nodes are located at the centre
of villages, themselves located at crossroads (see Fig. 1 (a)).
This location policy can be described by modelling the HLC
set as a subset of road crossings (Fig. 10) and corresponding
results are presented in Section 4.3.

2.2.3 Connection topology

We assume that LLC are logically connected to their nearest
HLC, in the straight-line sense. This defines the serving zone
of each HLC as the set of those points in the plane that are
closest to it. Note that the serving zones are non-overlapping
polygons and cover the whole plane, see Fig. 5. Further-
more, we assume that the physical connection from LLC to
HLC is established as the shortest path following the streets.
From analysis of available data, this appears to be a realistic
assumption for the fixed access network. Thus, in the SSLM
point-to-point distances are computed as lengths of shortest
paths along the street system, linking two sets of nodes lo-
cated randomly on the streets (Figs. 5 and 10). Using this
framework we can derive analytical formulas for the distri-
bution of distances between network nodes which explicitly
depend on the topology of the underlying road system. More
details on the mathematical methods are given below.
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3 Mathematical methods and results

3.1 The Stochastic Subscriber Line Model

In this section we briefly describe the mathematical back-
ground of the stochastic network model which is considered
in the present paper. The model is based on (marked) point
processes and random tessellations, see [9,11,12] for details
on these topics.

3.1.1 Random tessellations

A random tessellation T is a partition {Ξn} of R2 into ran-
dom (compact and convex) polygons Ξ n which are locally
finite. The polygons Ξn are called the cells of T . A random
tessellation is called stationary if its distribution is invariant
with respect to shifts of the origin o. We can identify T with
its edge set T (1) =

⋃
∂Ξn, i.e., the boundaries of the cells of

T . Now suppose that T is stationary. Then we define the in-
tensity γ of T as γ = Eν1(T (1)∩ [0,1]2), i.e. the mean length
of T (1) per unit area. In the following, we assume that T is
either a PLT, a PVT or a PDT, see Fig. 3.

3.1.2 Typical shortest path length

For any T with intensity γ , we model the locations of HLC
and LLC by linear Poisson processes XH = {XH,n} and XL =
{XL,n} on the edges T (1) of T . Let λ� and λ ′

� denote the lin-
ear intensities of XH and XL, respectively. Then the planar
intensities, i.e., the mean number of points per unit area,
λ and λ ′ are given by λ = λ�γ and λ ′ = λ ′

�γ . To each lo-
cation XH,n of XH we associate its Voronoi cell ΞH,n with
respect to XH as its serving zone and define the segment
systems LH,n = ΞH,n ∩ T (1) inside ΞH,n. All LLC are as-
sumed to be connected to the HLC in whose serving zone
they are located, i.e., XL,n is connected to XH, j if and only
if XL,n ∈ LH, j ⊂ ΞH, j. In this way we can associate to each
LLC a length Cn, namely the length of shortest path from
XL,n to its closest HLC along T (1) (Fig. 5). Thus, we obtain
the marked point process XC = {(XL,n,Cn)}. In the follow-
ing we investigate the distribution of the typical shortest path
length C∗ which is defined as the typical mark of XC. For-
mally, the distribution of C∗ is defined as the Palm mark dis-
tribution ([11], Chapter 13.4) of XC, but it can be regarded
as the limit of empirical distributions of the shortest path
lengths of all LLC in a sequence of unboundedly increas-
ing sampling windows. Suppose e.g. that Wn = [−n,n]2 and
h : R+ �−→ R+ is some function, then

Eh(C∗) = lim
n→∞

1
#{ j : XL, j ∈Wn} ∑

XL, j∈Wn

h(Cj) (1)

almost surely. Equation (1) motivates why we are interested
in C∗, see also Section 2.2. Note that we can regard C∗ as

the shortest path length from the origin o to its nearest HLC
under the condition that there is a LLC at o.

3.1.3 Typical serving zone

In the next section we show how the density fC∗ of C∗ can be
estimated based on simulations of the typical serving zone
Ξ ∗

H and the typical segment system L∗
H inside Ξ ∗

H . The dis-
tribution of the typical serving zone can be regarded again
as the limit of empirical distributions of the serving zones
in a sequence of unboundedly increasing sampling windows
or as the (conditional) distribution of the Voronoi cell at o
given that there is a HLC located at o.

3.2 Density of shortest path length and its estimation

We now state a representation formula for the density fC∗ of
C∗ which depends only on the typical segment system L∗

H
inside the typical serving zone Ξ ∗

H . This formula is suitable
to construct estimators for fC∗ based on i.i.d. samples of L∗

H
which can be obtained from Monte Carlo simulation. If T
is a PLT, PVT and PDT, respectively, then simulation algo-
rithms for L∗

H are known, see [6, 13, 14].

3.2.1 Density of shortest path length

In the following, we derive a formula which allows us to
compute the probability density of the typical shortest path
length C∗. But we first state a formula which represents the
quantity Eh(C∗) in terms of L∗

H .

Lemma 1 Let c(y) denote the shortest path length from y to
o. Then, for any measurable h : R+ �−→ R+, it holds that

Eh(C∗) = λ� E

∫
L∗H

h(c(y))ν1(dy) . (2)

Eq. (2) follows from Neveu’s exchange formula for station-
ary marked point processes, see [15].

An important fact is that Eh(C∗) does not depend on XL

and its linear intensity λ ′
�. We can rewrite (2) as

Eh(C∗) = λ� E

M

∑
i=1

∫ c(Bi)

c(Ai)
h(c(u))du , (3)

where the segment system L∗
H is divided into line segments

S1, . . . ,SM with endpoints A1,B1, . . . ,AM,BM such that L∗
H =⋃M

i=1 Si and ν1(Si ∩S j) = 0 for i �= j, where c(Ai) < c(Bi) =
c(Ai) + ν1(Si), see Fig. 6. Some segments of L∗

H are split
in this way at so–called distance peaks. A point z on L∗

H is
called distance peak if there are two different shortest paths
with the same length from z to o.

With the notation introduced above we can derive a rep-
resentation for the probability density fC∗ of C∗ which can
be used in order to estimate this density.
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(a) (b)

Fig. 6 L∗
H split into segments S1, . . .,SM (left) and single segment with

distance peak B8 (right)

Corollary 1 The density fC∗ of the typical shortest path
length C∗ is given by fC∗(0) = 2λ� and

fC∗(x) =


λ� E

M
∑

i=1
1I[c(Ai),c(Bi))(x) if x ≥ 0 ,

0 otherwise .

(4)

Formula (4) easily follows from (3), see [15].

3.2.2 Estimation of the density of shortest path length

In order to construct an estimator f̂C∗(x) for fC∗(x), we can
use eq. (4). We are especially interested in the estimation of
fC∗ from synthetic data obtained by simulations. The con-
cept is then to simulate the typical serving zone Ξ ∗

H together
with the (typical) line segment system L∗

H in Ξ ∗
H . Using Di-

jkstra’s algorithm, the shortest path lengths c(Ai) and c(Bi)
from all endpoints A1,B1, . . . , AM,BM to o can then be com-
puted. This procedure is repeated n times, so we obtain for

each j = 1, . . . ,n the shortest path lengths c(A( j)
1 ),c(B( j)

1 ),
. . . , c(A( j)

Mj
),c(B( j)

Mj
) from the endpoints of the line segments.

Finally, we can construct the estimator

f̂C∗(x;n) = λ�
1
n

n

∑
j=1

Mj

∑
i=1

1I
[c(A( j)

i ),c(B( j)
i ))

(x) . (5)

Note that f̂C∗(x;n) is a step function with respect to x. For

each pair c(A( j)
i ),c(B( j)

i ) we add the value λ�/n for all x ∈
[c(A( j)

i ),c(B( j)
i )) to f̂C∗(x;n). Thus, each additional segment

with endpoints A( j)
i and B( j)

i yields new jumps at the points

c(A( j)
i ) and c(B( j)

i ), see also Fig. 7.
The estimator f̂C∗ possesses good statistical properties.

For instance, f̂C∗ (x;n) is unbiased for every x ∈ [0,∞) and
the expectation Eh(C∗) for some measurable function h :
[0,∞) �→ [0,∞) can be estimated unbiasedly by the estimator

ĥ(C∗) =
∫

R
h(x) f̂C∗(x;n)dx .

Furthermore, it can be shown that the maximal deviation
supx∈[0,∞) | f̂C∗(x;n)− fC∗(x)| of f̂C∗(x;n) from the true den-
sity fC∗(x) converges to 0 with probability one as n → ∞.
For proofs of these results and further statistical properties
of f̂C∗ see [15].

' 'c(A) c(B)

Fig. 7 f̂C∗ is a step function. A segment with endpoints A and B with
shortest path lengths c(A) and c(B) is added to f̂C∗ .

4 Parametric distance distributions

Now we present some numerical results obtained from a
simulation study, where the road model T (1) is the edge
set of a PDT, PLT and PVT, respectively, with intensity γ .
Note that the considered models are scaling invariant, i.e.,
for all λ�,γ > 0 with fixed quotient κ = γ/λ� we get the
same model up to a scaling. Thus, for each κ , it is sufficient
to compute numerical results for a single pair (γ ,λ �) with
γ/λ� = κ . For further pairs (γ̃ , λ̃�) with γ̃/λ̃� = κ the corre-
sponding results can then be obtained by a suitable scaling,
see [5]. Large κ yield a dense network inside the serving
zones, whereas for small κ only a small number of segments
intersect each serving zone.

To apply the model in a realistic setting, first an opti-
mal tessellation T has to be fitted to the road system (Sec-
tion 2.2.1). This step is fast and has to be done once. Each κ
in then simply deduced from the wished intensity of nodes.
Then the density fC∗ of the typical shortest path length C∗

can be estimated by f̂C∗(x;n). But this estimation proce-
dure for fC∗ is time-consuming especially for large κ and
means, variances and quantiles have to be calculated numer-
ically. Moreover, this requires the use of specialised simula-
tion software.

For applications it would be of great benefit if the den-
sities were given as parametric functions, with parameters
only depending on κ and the type of the underlying road
model T . Then, the distribution of C∗ would be immedi-
ately available and time-consuming simulations and compu-
tations could be avoided. Therefore, the aim of this section
is the construction of a whole library of parametric distance
distributions for PDT, PLT and PVT as road models and a
large range of κ . In the following we always consider the
case that γ = 1 and values of κ between 1 and 2000 that
cover realistic network scenarios.
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Fig. 8 Empirical density for linear Poisson processes of nodes with
γ = 1 and PVT (grey), PDT (black), PLT (broken). Plot of 100*density
as a function of length. a κ = 10. b κ = 250. c κ = 750.

4.1 Empirical densities estimated by simulations

We estimated the density fC∗ of the typical shortest path
length C∗ by simulating n = 50000 cells for values of κ be-
tween 1 and 2000 using the estimator f̂C∗(x;n) as explained
in Section 3.2 for PDT, PLT and PVT. Some empirical densi-
ties obtained in this manner are displayed in Fig. 8. One can
see that there is a clear difference between the shapes of the
densities for small and large κ as well as for the different
considered models. The differences between the densities
for different models seem to decrease for increasing κ , but
are still noticeable. In [16] it is shown that the typical short-
est path length C∗ converges in distribution to ξX as κ →∞,
where X ∼Wei(λπ ,2) and ξ ≥ 1 is some constant depend-
ing on the tessellation model. For PLT we have ξ = 1, but
ξ > 1 for PDT and PVT. So there will always remain some
difference between the densities. Based on the estimated
densities we computed means EC∗, variances VarC∗ and co-
efficients of variation cvC∗ = 100

√
VarC∗/EC∗. In Table 1

the means and cv’s are displayed together with the corre-
sponding results for the parametric densities fitted in Sec-
tion 4.2 below to the estimated ones.

4.2 Fitting of parametric densities

In order to accurately represent empirical densities by an-
alytical functions, we have to choose an appropriate para-
metric family of densities { f (x;θ ),θ = (θ1, . . . ,θk) ∈ Θ},
where Θ ⊂ Rk for some k ≥ 1. Recall that C∗ converges in
distribution to the parametric limit distributions
Wei(λπ/ξ 2,2) and Exp(2λ�) for κ →∞ and κ → 0, respec-
tively, where ξ ≥ 1 is some constant depending on the road
model T , see [16]. So it is reasonable to choose a paramet-

ric family which contains exponential and Weibull distribu-
tions as limiting cases. Furthermore, the parametric family
{ f (x;θ ),θ = (θ1, . . . ,θk)∈Θ} should possess the following
properties.

1. The dimension k of θ = (θ1, . . . ,θk) is small.
2. The parametric density f (x;θ ) fits well for PDT, PLT

and PVT and for a large range of κ , especially with re-
spect to expectation and variance.

3. For each θ ∈Θ , it holds that f (0;θ ) = 2λ� = 2/κ .
4. The densities of Wei(α ,2),α > 0 and Exp(λ ),λ > 0 are

contained in { f (x;θ ),θ ∈Θ} as limiting cases.

It is not easy to choose a family of densities which fulfills all
these conditions. The limit distributions Wei(λπ/ξ 2,2) and
Exp(2λ�) are both special cases of a Wei(α ,β )–distribution.
Since condition 3 can not be fulfilled in general by
Wei(α ,β )–distributions, we shift their densities to the left
and truncate them at zero such that condition 3 is fulfilled.
In this way we get as one possible type of candidates the
truncated Weibull distribution with density

f (x;α ,β ) = C
(
x+

( 2
αβκ

) 1
β−1

)β−1
e
−α

(
x+

(
2

αβκ

) 1
β−1

)β
(6)

for x≥ 0, where C =αβ exp((α−1(2/(βκ))β )1/(β−1)). This
density has two parameters. Another candidate is a mix-
ture p f1(x)+ (1− p) f2(x), p ∈ (0,1) of the densities f1 of
Exp(λ ) and f2 of Wei(α ,β ),β > 1. Again, condition 3
should be fulfilled, so we get

f (x;α ,β ,λ ) = 2e−λx/κ+(1−2/(λκ))αβxβ−1e−αxβ , (7)

which has three parameters. We used Matlab to perform a
weighted least squares fit of these parametric densities to the
data ( f̂C∗(x1), . . . , f̂C∗(xn)) obtained from the empirical den-
sities for a vector (x1, . . . ,xn) with equidistant components.
As weights we chose the reciprocals 1/ f̂C∗(x1), . . . ,1/ f̂C∗(xn)
in order to get a better fit at the tails of the densities. Then
the optical fit of the densities is worse than without weight-
ing, but the means and variances fit much better. Both re-
garded types of parametric densities fit optically quite well
for all models and a large range of κ . Some estimated den-
sities together with the fitted ones are displayed in Fig. 9
for truncated Weibull distributions. Similar results are ob-
tained for mixtures of exponential and Weibull distributions.
If we compare the expectations and variances of the fitted
truncated Weibull distribution with the ones estimated from
simulations, we can see that they match almost perfectly for
all models and a large range of κ , see Table 1. Similarly, for
mixtures of exponential and Weibull distributions the expec-
tations fit quite good. However, the variances of the paramet-
ric densities differ clearly from the variances obtained from
the estimated densities, although the optical fit between esti-
mated and parametric densities is good. The reason might be
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Fig. 9 Empirical density (line) with fitted truncated Weibull distribution (dots). Plot of 100*density as a function of length (unit=1/γ). a PLT. b
PVT. c PDT.

Table 1 Mean and cv of C∗ for empirical, fitted truncated Weibull and
mixed exponential-Weibull distributions

PLT EC∗ cvC∗
κ emp. trunc. mix. emp. trunc. mix.

5 1.510 1.450 1.511 95.4 93.8 120.8
10 2.181 2.111 2.175 83.9 78.0 103.6
50 4.505 4.469 4.450 60.2 59.7 70.8
500 12.69 12.71 12.72 51.8 51.4 57.5
1000 17.68 17.60 17.61 51.2 50.8 55.7
2000 24.24 24.30 24.31 51.1 50.7 54.3

PVT EC∗ cvC∗
κ emp. trunc. mix. emp. trunc. mix.

5 1.397 1.391 1.387 73.5 73.7 83.7
10 2.054 2.055 2.059 63.5 63.3 80.3
50 4.552 4.511 4.540 52.0 52.9 69.6
500 13.46 13.49 13.51 50.9 50.6 61.2
1000 18.89 18.86 18.87 50.7 50.7 56.0
2000 26.34 26.34 26.36 51.0 50.9 54.7

PDT EC∗ cvC∗
κ emp. trunc. mix. emp. trunc. mix.

5 1.744 1.723 1.712 92.5 91.8 80.5
10 2.367 2.378 2.373 76.6 76.1 77.9
50 4.780 4.757 4.768 54.1 54.6 69.0
500 13.05 13.06 13.08 49.3 49.1 57.7
1000 17.89 17.95 17.97 49.9 49.4 55.5
2000 24.72 24.64 24.85 50.4 50.8 54.0

that the exponential term in the mixture dominates the tails
of this distribution yielding too large variances.

So the truncated Weibull distribution was chosen for the
library. We calculated the parameters α and β for all three
considered models and a large range of κ , where functions
α(κ),β (κ) depending on κ were fitted to the estimated pa-
rameters for γ = 1. Thus, for all three model types, the dis-
tribution of C∗ is now directly available up to a scaling via

ftype(x;κ) = f (x;αtype(κ),βtype(κ)) . (8)

Probability theory and stochastic processes thus provide an-
alytical formulas that are formally equivalent to statistical
results computed on some reconstruction scheme, consider-
ing all the possibilities compatible with the geometrical set-
ting. The hard work of listing and analyzing all those pos-
sibilities, with appropriate coefficients depending on their
probability of occurrence is done by considering stochastic
integrals, Palm probabilities, and the notion of the typical
cell. Any reconstruction by hand, e.g. regarding the loca-
tions of nodes, would produce a configuration already con-
sidered.

4.3 Shortest path length for other point processes

The approach developed above in order to obtain paramet-
ric densities for the typical shortest path length C∗ can also
be used if the locations of HLC are modeled by point pro-
cesses different from linear Poisson processes on the edge
set T (1). For instance, XH can be modeled by a thinned ver-
tex set of T , where each vertex survives independently of the
other vertices with some probability p ∈ (0,1), see Fig. 10.
If this model is considered, then Lemma 1 and Corollary 1
remain in principle true. However, the typical segment sys-
tem L∗

H now corresponds to the point process XH obtained
from a thinning of the vertices of T and λ � is defined in this
context by λ� = pλ (0)/γ . Here, λ (0) is the intensity of the
point process of vertices of T . That means

fC∗(x) =




pλ (0)

γ E
M
∑

i=1
1I[c(Ai),c(Bi))(x) if x ≥ 0 ,

0 otherwise ,

(9)

and it holds that fC∗(0) = pλ (0)/γEK∗, where K∗ is the
number of edges emanating from the typical vertex. Thus,
we can generate samples of L∗

H for thinnings of the ver-
tices of T using simulation algorithms introduced in [15]
and then compute the estimator f̂C∗ for fC∗ introduced in
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(a) (b)

Fig. 10 HLC with their serving zones (black) and some LLCs (grey
with black boundary) with shortest paths (dashed) along the edge set
(grey). HLC are randomly chosen vertices from the underlying street
model. a PVT. b PLT.
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Fig. 11 Empirical density for thinned nodes with γ = 1 and PVT
(grey), PDT (black), PLT (broken). Plot of 100*density as a function
of length. a κ = 20. b κ = 50. c κ = 250.

eq. (5). In this way we obtain densities for the typical short-
est path length of further network models which are differ-
ent from the ones considered in the preceding section. For
details we refer to [15]. Some densities estimated for thin-
nings are shown in Fig. 11, where the scaling factor κ is
defined as κ = γ/λ� with λ� = pλ (0)/γ . Note that for given
κ the survival probability p is given by p = γ 2/(λ (0)κ) with
γ2/λ (0) = π ,2 and (32/(3π))2 for PLT, PVT and PDT, re-
spectively. As for linear Poisson processes, κ defines the
structure of the model and hence the distribution of C ∗ up
to a scaling. Note that especially for small values of κ there
is a clear difference between the densities for linear Poisson
processes and thinnings, compare Figs. 8 and 11.

Based on empirical densities for thinnings estimated by
Monte Carlo simulations, we can again obtain parametric
densities using the methodology developed above. This
yields new classes of parametric distance distributions, see
Fig. 12. Thus, the approach developed in this paper is very
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Fig. 12 Empirical density (line) with parametric distribution (dots) for
thinned nodes on PDT. Plot of 100*density as a function of length
(unit=1/γ)

flexible and can be easily generalized to further classes of
models.

5 Application to real network analysis

In [7] we have shown that real road systems can be replaced
by best fitted models as support for nodes by successfully
comparing the histograms of shortest path connection lengths
in the two settings of nodes: randomly located on the real
road system or on the best fitted model. This validated the
first building block of the SSLM. In the present paper, we
go further by comparing real distance distributions obtained
from databases for fixed access networks with the fitted para-
metric distributions that we developed above in the frame-
work of the SSLM. In this Section we explain the method-
ology used in order to obtain real and parametric distance
distributions. We then validate the model for the access net-
work in Paris and in a smaller city i.e., we show that the
parametric distributions are good approximations of real dis-
tance distributions. Finally, we discuss how the SSLM can
be used to study the impact of new technologies or help at
network planning.

5.1 Dealing with real data sets

The first step is to extract from the whole complexity of
the database (being the result of a long history of modifi-
cations and changes) a synthetic view of the network not
taking into account marginal situations. Again, the philos-
ophy of stochastic models is to provide a global vision of
a very complex situation that involves a huge number of
equipments of various types, where the main features of the
current network state have to be extracted from the amount
of real data. The difficulty is to think ”stochastic geome-
try” while analyzing data so that they can be matched by the
SSLM building blocks. Equipments or connections should
not only be sorted according to their usual names or obvious
functions, but by their geographical range and connection
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Table 2 Comparison of characteristics of real data and fitted PVT
model for Paris.

real data model

number of crossings 15462 17692
number of quarters 10613 8846
number of street segments 26056 26537
total length (km) 2146 1931

required input database 2 parameters

principles. Let us briefly review these steps that have been
done for the area of Paris.

5.1.1 Geometrical support and node location

In this paper, we shall consider only three simple tessel-
lation models (PVT, PDT, PLT) that provide a sufficiently
good description of the road system. In dense areas inside
cities, dead ends only represent a small percentage of the
total length of roads and can be ignored. Moreover the char-
acteristics of the road system can be assumed to be homo-
geneous in the whole area of Paris. The fitting procedure
applied to the road data, restricted to a possible choice from
these simple tessellations, proposes a PVT model of inten-
sity γ = 18 km−1. The theoretical values of the relevant four
characteristics of the fitted PVT model are very close to the
measured ones as shown in Table 2.

All the network equipments referred in the databases to
a common address are considered as geographical sites for
node equipments located along the streets.

5.1.2 Structure in sub-networks

Data analysis shows that the total area A covered by the net-
work can be divided into a set of non-overlapping zones on
which distinct two-levels sub-networks are deployed. Each
of these (large scale) zones contains only one highest WCS
node. This division process of the total area A is repeated
a second and a third time, yielding disjoint two-level sub-
networks which are deployed at middle scale and lower scale
zones, respectively. The zones arising at each of these three
steps are non-overlapping and their union covers A. Some
variability in shape and size can be observed, but the ranges
of their average areas are well distinct.

This structure can be visualized by plotting the locations
of the nodes using their geographical coordinates, where it
must be kept in mind that the ”frontiers” of the zones be-
come more and more fuzzy from steps 1 to 3. Still, it re-
mains possible to assume that the LLC considered at each
step are logically connected to their closest HLC in flybird
sense. Apart from A and the road-system characteristics, the
only parameter required to describe a typical serving zone
at a given step i is the number of HLC ni from which the
parameter κi can be computed; i = 1,2,3.

5.1.3 Histograms of connection lengths

Histograms of connection lengths are recovered from
databases with respect to the above division into sub–
networks. They concern the overall lengths of the telecom-
munication lines from any LLC to its respective HLC, but
no information is available about their real physical path.
The SSLM model proposes a global analysis in the most
simple (idealized) setting that is compatible with the con-
clusion inferred from the analysis of databases: homoge-
neous random street system which captures the most impor-
tant structural properties of the real street system, homoge-
neous random Poisson repartition of nodes along the streets,
logical connection to the closest HLC in straight-line sense,
physical connection as shortest path along the street system.
All the geometrical objects are idealized points or line seg-
ments, whereas real cables possess physical constraints such
as a minimum curvature radius as well as necessary cable-
joining in chambers. Then the theoretical prediction for con-
nection lengths from SSLM should naturally be lower than
the observed ones.

5.2 Validation of the model for Paris

In order to describe the global statistical behavior of point-
to-point connection lengths in the real access network of
Paris, structured in three distinct two-level sub-networks, the
SSLM only requires the knowledge of six global parameters:

– the size |A| of network area A, the type of the road sys-
tem inside A and its intensity (type=PVT,γ = 18 km−1),

– the numbers n1, n2 and n3 of higher-level nodes for each
sub-network, where for steps 2 and 3, a HLC node may
be part of the set of corresponding LLC nodes.

From the above values we directly deduce the parameters κ 1,
κ2 and κ3 for the distance distributions. In all three examples
considered below, the same family of parametric functions
was used in eq. (8). The whole model is proposed under the
form of an Excel sheet with functions encoded in Visual Ba-
sic, thus giving an instantaneous answer and also avoiding
the need of specialized computing languages not easily ac-
cessible for managers.

Note that a few features of the real network were not
mentioned above in order to simplify the presentation. Nev-
ertheless, the figures presented here integrate all the reality
of the network including some connections that arise in a
non-purely hierarchical architecture as well as exclusion ar-
eas. This does not change the number of required parameters
and analytical formulas, but only asks for the right combi-
nation of length distributions.

At step 1 the typical serving zone is relatively large com-
pared to the scale of the road system since it contains in the
average up to 200 quarters. This corresponds to a large value
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Fig. 13 a Typical serving zone of the large scale sub-network κ1 =
1000. b Parametric densities of connection lengths compared with his-
togram of real data, showing that the assumption of physical connec-
tions as straight-line shortest paths is incorrect.
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Fig. 14 a Typical serving zone of the middle scale sub-network κ2 =
35. b Rescaled parametric density of connection lengths compared
with histogram of real data.

of κ1 � 1000 as illustrated in Fig. 13.a. The theoretical prob-
ability density fits extremely well with the histogram com-
puted from real network data (see Fig. 13.b), in shape as
well as length scale. Here D1 denotes a reference distance to
enable comparisons between results at different scales.

The typical serving zone at step 2 is much smaller since
it contains approximately 10 quarters in the average, where
κ2 � 35 (see Fig. 14.a). Note that the results obtained at this
scale are based on connection lengths between various types
of lower-level nodes which are all connected to the same
type of HLC. In this case, the SSLM underestimates the av-
erage connection length by a factor c = 1.15. Thus, the the-
oretical distance density f has been rescaled in order to re-
cover the measured average, i.e. f (x) → f (x/c)/c, where it
is assumed that the underestimation is due to an effect pro-
portional to the distance. Model and real data are still close
(see Fig. 14.b), whereas the distance scale (with unit dis-
tance D2) is very different from the previous one (given by
D1).

Finally, the typical serving zone at step 3 is comparable
in size with the area covered by a group of buildings. It con-
tains only a few street segments and κ3 � 4 (see Fig. 15.a).
The average connection length obtained from the SSLM un-
derestimates the measured one by some value l > 0. This can
be explained by the fact that real connection lengths include
a part that goes from the building to the end customer not
taken into account by the SSLM. Since this distance simply
adds to the predicted length, the parametric density f has
been shifted in order to recover the measured average, i.e.

lower level subnetwork
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Fig. 15 a Typical serving zone of the lower-scale sub-network κ3 =
4. b Shifted parametric density of connection lengths compared with
histogram of real data.

f (x) → f (x− l) for x > l. This leads to a very good fit be-
tween model and real data (see Fig. 15.c). Note that l thus
determined from the comparison of model and real data is
compatible with the value currently admitted in the network
community. Again, the distance scale is rather different from
the previous ones (given by D1 and D2, respectively).

We also remark that Fig. 13 illustrates the necessity to
take into account the underlying road system. The theoreti-
cal distance distribution computed under the assumption that
the physical connections are straight lines (dashed graph)
does not fit to the histogram for real data and clearly un-
derestimates the real average connection length. Classical
studies introduce an estimated correction factor for the av-
erage length, but the SSLM explicitly relates it to the geom-
etry of the underlying road system. Note that single WCS
sub-networks have also been satisfactory addressed by the
SSLM provided that one deals with a sufficiently large or
diversified set of connections.

5.3 Analysis of smaller cities

The road system of Paris can be considered as homogeneous
in the whole area of the city and thus the SSLM can be
applied. On the contrary, smaller cities generally display a
spatial variability of their road systems which is not homo-
geneous (Fig. 16.a). They can be divided into a few homo-
geneous parts that reflect their inner structure (city centers,
suburbs, etc.). These parts can be modelled by a simple tes-
sellation and its intensity. But a formal model of an access
network that covers the whole city area should use mathe-
matical methods which incorporate spatial inhomogeneity.
However, the organization of the network in two-level sub-
networks allows to propose a simpler approach by applying
specifically the SSLM to each part of the city.

In the lower and middle scale sub–networks, the number
of HLC is in general huge and thus the serving zones are
small. Therefore, the part of the road system and the network
inside the area of influence of each HLC can be regarded
as (locally) homogeneous which allows to apply the SSLM.
On the other hand, the network has a function of aggregation
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Fig. 16 a Road system in a middle sized French city. b Distribution
of connection lengths from the customer to the higher level node of a
3 levels access network using copper technology deployed on the city
area. c Impact of architecture, engineering rules and technology on the
distribution of end–to–end connection lengths on the city area.

which results in a homogeneous distribution of the HLC of
the large scale sub–network. We can then consider e.g. the
main roads of the city as a homogeneous road system and,
in this way, apply the SSLM also to the large scale sub–
network.

For each part of the city, the distribution of the connec-
tion lengths from the customers to their corresponding high-
est level nodes is then obtained by convolving the length
distributions of the relevant two-level sub–networks. Finally,
the global distribution of the connection lengths for the
whole network is estimated as the weighted average of the
length distributions for each part of the city, where the
weights depend on the number of customers in the respective
part. This methodology provides sufficiently accurate results
for length distributions to be used in global cost models (Fig.
16.b).

5.4 Some examples of the use of the SSLM

Given the parameters of the optimal road model in a given
geographical area, the SSLM methodology allows us to anal-
yse performance characteristics of any network deployed in
this area. Due to the analytical formulas for lengths distri-
butions developed in this paper, the computational time to
analyse possible network scenarios (defined by its architec-
ture, technology, number of nodes) does not depend on the
size of the considered network and is almost zero.
The price to pay is the conceptual work needed to describe
the desired scenario in terms of the SSLM building blocks
(see Section 5.1). Architectures differ by the number and or-
ganization of the two-level sub-networks that share the area.
Technology is taken into account by providing specific pa-
rameters to each type of nodes and connexions. For exam-

ple optical lines are subject to losses due to coupling devices
and specific attenuation proportional to their length; optical
nodes are characterised by the maximum number of opti-
cal fibres they can manage. It remains to provide the num-
ber of nodes in order to estimate the parameters κ i. Then a
large number of scenarios can be efficiently investigated for
the purpose at hand, ensuring that every conclusion takes
into account all possible spatial configurations of nodes lo-
cations.
We choose two examples of current problems in the analysis
of telecommunication networks to illustrate the adaptability
of the SSLM. . The first example is the analysis of the im-
pact of architecture and technology on the distribution of
end–to–end connection lengths. It seems natural that con-
nection lengths will differ for different scenarios, but how
can we calculate this difference? On the same partitioning
of the city as in Section 5.3, we described an optical net-
work in the framework of the SSLM, i.e.we choose a spe-
cific architecture and deduce the number of optical nodes
from population density and type of lodging, following re-
quirements specific to optical equipments. Fig. 16.c displays
the difference between the distribution of connection lengths
for the actual copper network and for a possible (theoretical)
optical network. Note that a full reconstruction is computa-
tionally impossible even in the case of this small city. This
optical architecture can thereafter be used straightforwardly
to analyse any other city for which road model, population
and lodging type are known.
The second example concerns the planning of optical net-
works. Since the network architecture and the length (ex-
pressed in kilometres) distribution of lines are fully described
by the SSLM, it is a simple matter to derive the probability
density for the optical gain of the lines (expressed in deci-
bels). The problem is to define which scenarios ensure that
a given percentage of the lines (say 85 %) have total losses
less than a fixed threshold. This offers a solution to the el-
igibility problem, i.e., to estimate the fraction of customers
that can benefit of a new technology. To obtain Fig. 17, we
considered the same optical architecture and city than above,
two technology choices and varied the number of higher net-
work nodes.

6 Conclusions and Outlook

The road system is the physical support that embeds the net-
work nodes and connection cables of the fixed access net-
work. Its geometrical characteristics have thus a strong im-
pact on the overall characteristics and performance of the
network. This paper shows that the SSLM, based on meth-
ods from stochastic geometry, is an excellent model to anal-
yse huge access networks since it explicitly describes the
morphology of the underlying road system in the expression
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Fig. 17 The SSLM applied to planning. Choice of the number of nodes
depending on the technologies under the constraint of eligibility thresh-
old.

of geometrical network characteristics. Parametric distribu-
tions for connection lengths are derived and are successfully
compared to distance distributions estimated from data of
real access as in the very complex Paris network. The range
of the model is far from being limited to this particular case.
By construction, the SSLM consists of the components: geo-
metrical support, locations of network nodes and connection
topology. It is a toolbox that offers the possibility to address
a wide range of potential applications by suitable combina-
tion of specific models for each component.

The simplest variation concerns the values of the entry
parameters and/or the imbrications of the sub networks in
the network description. For example, the results displayed
in Fig. 16(b) for a small city are obtained by simply using the
right parameters for their road systems. The impact of any
new technology associated with an architecture for which
no data are available can also be easily analysed as shown in
Fig. 16(c). Further additions can be provided to the SSLM,
like new policies for locating the nodes or modeling the road
systems. The adaptation of the SSLM to regional scales is
a current research topic for which automatized segmenta-
tion of road systems and new or more accurate road models
are needed. For instance, in [17] we extend simulation pro-
cedures for the typical Voronoi cell of linear Poisson pro-
cesses on simple tessellations to linear Poisson processes on
iterated tessellations from which analytical formulas for dis-
tance distributions can be obtained. In this context, the thin-
ning model for location of nodes introduced in Section 4.3
will be useful, since at this scale it is more realistic to as-
sume that the higher level nodes are located in the centers of
towns, i.e. in a subset of the crossings of the road system.

What is done of the SSLM output also offers a lot of pos-
sibilities. As mentioned above, we focused on the distribu-
tion of connection lengths because this quantity can be used
for planning purpose. Since SSLM is fast, it can produce
charts such as Fig. 17 without any computational time and
help the operator to decide which possible scenarios should
be investigated by detailed optimization procedures before
their implementation. Other outputs such as distributions of

degrees of nodes or areas of influence are simple to derive
and can be part of realistic macroscopic cost functions, with
explicit regional dependencies. A very important extension
of the SSLM would be the description of random cabling
trees (point–to–multipoint connections) for which the im-
pact of the underlying road system cannot be neglected since
it is impossible to build trees from straight-line connections
that never share a common path. In addition, the morphol-
ogy of the road system, especially the number of streets in-
coming in crossings, greatly influences the capacities of the
cables to be installed.
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1. Gloaguen C, Coupé P, Maier R, Schmidt V (2002) Stochastic mod-
elling of urban access networks. In: Proc. 10th Internat. Telecom-
mun. Network Strategy Planning Symp. VDE, Berlin, pp. 99–104.

2. Baccelli F, Klein M, Lebourges M, Zuyev S (1996) Géométrie
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