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Abstract

The internal microstructure of agglomerates has a great influence on their
stability and breakage characteristics. Therefore, to optimize production pro-
cesses and to improve characteristics of the final product, it is very important
to understand dependencies between structural and mechanical properties of
agglomerates. In this paper, we discuss usage of the discrete element method
(DEM) for understanding the breakage behavior of spherical agglomerates
under uniaxial compression depending on their microstructure. A flexible
stochastic model has been developed to generate agglomerates with various
types of microstructures. As an example, we investigate the effect of the
primary particle size distribution on agglomerate strength and breakage be-
havior. In particular, the size distribution of primary particles is specified by
a mixing of two fixed particle sizes. The model construction ensures that the
size and mass of agglomerates as well as primary particles and binder content
remain constant in all experiments. From the obtained results it can be seen
that the breakage behavior of agglomerates is influenced in different ways.
Breakage energy and the maximum force applied before the primary break
depend on the mixing ratio and the variability inside the microstructure. On
the other hand, the size of fragments is very similar for all mixing ratios.
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1. Introduction

In recent years, more and more powerful computational resources permit
the numerical investigation of bulk properties of particles based on the dis-
crete representation of the material. The discrete element method (DEM) is a
modern method to numerically simulate the detailed behavior of a large num-
ber of particles based on contact models describing their contact mechanics
[1]. For example, DEM has become an important tool for understanding ag-
glomerate breakage. Such knowledge about breakage mechanisms is used to
optimize production processes, e.g., granulation [2] and grinding [3]. There
are still many open questions and unknown relationships. One example is the
relationship of the morphology of agglomerates to their mechanical behav-
ior. Important influencing structural factors are agglomerate shape, the size,
shape, packing structure and coordination number of primary particles as
well as their bonding mechanism. Different aspects have been investigated in
the past. The fracture behavior resulting from impact of agglomerates was
investigated with the focus on the effect of impact velocity, impact angle,
agglomerate size and material parameters [4, 5, 6, 7, 8]. Regarding mor-
phology, it was seen that dense and loose agglomerates behave differently in
terms of the mode of failure [9]. The bond parameters were determined to be
one dominating factor, together with impact velocity [10]. The effect of ag-
glomerate shape was analyzed by performing DEM simulations for spherical,
cuboidal and cylindrical agglomerates [11]. Besides the dynamical behavior
in such impact tests, the behavior under static loading is also important for
understanding materials. A spherically shaped and an irregularly shaped
agglomerate were compared and a vastly different behavior was observed
under compressive load, although structural characteristics like particle size
distribution and coordination number were the same [12]. Cylindrical ag-
glomerates were investigated and the formation of cracks was described [13].
On the other hand, the size and shape of primary particles is also of relevance.
Agglomerates consisting of nanoparticles exhibit much greater strength than
agglomerates made of micron-sized particles [14]. This was known before
from systematic investigations of the strength of agglomerates [15, 16, 17],
an overview is given in [18]. Of course, the microstructure plays a central role



for larger particles, too, e. g., in the crushing of rocks [19] or their mechanical
behavior, which is influenced by the shape of primary particles [20]. In [21],
it is shown that DEM is also suitable to investigate the effect of different
microstructures under bending load. All these studies show that individual
aspects can be explained, but a more general understanding is desirable.

The bonded-particle model (BPM) [22] is a common approach to simulate
the mechanical behavior of agglomerates numerically using DEM, where the
agglomerate microstructure is specified by a dense packing of spheres that
are bonded together. Usually, agglomerate microstructures are generated
such that these packings of (bonded) primary particles have similar prop-
erties as observed experimentally in real agglomerates, see e.g. [13, 23]. A
flexible framework for generating tailored microstructures is a further step to
deepen the understanding of relationships between structural and mechanical
properties on a broad scale.

In this paper, DEM simulations are used to evaluate the mechanical be-
havior of spherical agglomerates whose microstructure is generated accord-
ing to a flexible (parametric) stochastic model. Realizations of the proposed
stochastic microstructure model are suitable as input to the BPM, i.e., pri-
mary particles are spherical, non-overlapping and connected by bonds. Ad-
vantages of the proposed stochastic model are precise control about the mi-
crostructure including its ‘randomness’ and reasonable properties like isotropy
or connectivity of the agglomerate. The stochastic model is used to generate
agglomerates with specific microstructural properties. As an example, two
primary particle sizes are used to generate agglomerates and a mixing ratio
describes the volume fraction of the larger primary particles. This mixing
ratio is then varied, whereas material parameters and all other properties like
agglomerate diameter, primary particle volume and binder volume are kept
fixed. A statistical approach is used to draw conclusions about the breakage
behavior, where a database of a large number of agglomerates with different
mixing ratios is generated. Each of these agglomerates is uniaxially com-
pressed, their evolving microstructure during compression is saved and their
breakage is analyzed.

Note that the stochastic microstructure model considered in the present
paper was not (yet) fitted to experimentally characterized agglomerate mi-
crostructures, although this would be an option for future research. This
kind of fitting (simulated) microstructures to experimental image data has
been done for the stochastic model proposed in [24], which was used in [25]
to determine the mechanical behavior of real and virtually generated alloy



microstructures by help of the finite element method. For more general quan-
titative relationships between microstructure and physical properties see e. g.
[26], where a formula has been derived which expresses effective transport
properties of porous materials by three important structural characteristics.
The stochastic model introduced in the following facilitates the auto-
mated generation of a large number of agglomerate microstructures. These
are random, but nonetheless their structural properties can be controlled eas-
ily. Based on this stochastic microstructure model we investigate the effect
of mixing of two primary particle sizes, where we show that relationships
between microstructure and mechanical behavior can be revealed. These are
partially expected, but also previously unknown behavior is observed.

2. Methods

In this paper spherical glass agglomerates with a diameter of 8 mm have
been investigated. The primary particles have been bonded with a poly-
mer binder, namely hydroxypropyl methylcellulose (HPMC). Main material
parameters are listed in Table 1.

Table 1: Main material parameters of primary particles and bonds

parameter value
primary particles (glass):

density 2500 kg/m?
Young’s modulus 6-10°Pa
Poisson ratio 0.21
binder (HPMC):

Young’s modulus 4-108Pa

normal and tangential strength 5 - 107 Pa

The primary particles are arranged with a packing density of 56 %, which
corresponds to the very loose random packing of spheres. To determine the
influence of primary particle sizes, two different sizes of primary particles are
used: first, a radius of r; = 0.5mm, and second, a radius of ro = 0.25 mm.
Then, a mixing ratio a € [0, 1] specifies the volume fraction contributed by
the larger particles with radius ;. Consequently, particles with radius
contribute the remaining volume (i.e., a fraction of 1 —a). In dependence on
the mixing ratio, the number of primary particles in agglomerates has been
varied between 300 and 2300. The binder volume is held constant at 10 %
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of the total volume of the primary particles. Solid bridges are represented
by cylindrical bonds and the ratio of the bond radius to the radius of the
smallest particle in the contact is 0.4.

The generation of agglomerate microstructures is explained in Section 2.1.
Details of the compression experiment and DEM simulations are given in
Section 2.2, whereas in Section 2.3 automated breakage detection is shortly
discussed.

2.1. Stochastic microstructure model

This section introduces the stochastic model used to generate agglomer-
ate microstructures. Important properties of the random microstructure are
isotropy, non-overlapping primary particles, connectivity and further user-
defined constraints like a random mixing ratio or constant binder volume.

Configurations of primary particles are often obtained by sphere pack-
ing algorithms. One common method to obtain sphere packings is given by
so-called collective-rearrangement algorithms [27], which repeatedly shift a
given set of spheres with the aim to reduce and finally remove sphere over-
lapping. For example, the force-biased algorithm [28, 29] is a frequently used
collective-rearrangement algorithm. Given that the initial configuration of
overlapping spheres is generated homogeneously and isotropically, the re-
sulting set of spheres is homogeneous and isotropic, too. This means that
there is no preferred direction for e.g. contacts between particles and there
is no spatial gradient in the packing density. These are reasonable assump-
tions for spherical agglomerates produced by e. g. spray granulation and we
restrict ourselves to this case. However, non-homogeneous agglomerates oc-
cur in reality, too, e.g., agglomerates with spatially varying packing density
or agglomerates having a core-shell structure—these could be modeled by
extending the present approach.

For most collective-rearrangement algorithms direct contacts between
particles are not guaranteed (or even unlikely) [28], because particles are
shifted apart based on a rule considering all local overlappings. Therefore,
bonds are required to connect the primary particles; this bond network cor-
responds to the solid bridges consisting of binder material. It is clear that all
particles of a single agglomerate should be connected to each other, either
directly or indirectly. One possibility to generate a set of bonds is to connect
two particles if the distance between their surfaces is below a certain thresh-
old. If this threshold is too small, then the system of particles may not be



connected. A further problem with this approach is that the volume of the
bonds is hard to control, especially if it should be small.

In the following, the developed stochastic model for random microstruc-
tures of agglomerates is explained, where these points are addressed. The
positions of primary particles are random, and the sizes of primary particles
follow a given distribution. In this paper, the size distribution of primary par-
ticles is controlled by a (randomly chosen) mixing ratio. Thus, the generation
of primary particles forming an agglomerate is a two-stage procedure. First,
a mixing ratio a € [0, 1] is sampled from the uniform distribution U (0, 1) on
the interval [0, 1]. Then, given the mixing ratio a € [0, 1], the sizes of primary
particles are sampled from a certain (conditional) size distribution. Bonds
between primary particles are generated such that the agglomerate has no
disconnected part, while targeting a given binder volume at the same time.

2.1.1. Parameters of the model

A spherical shape is assumed for agglomerates, where we denote the
agglomerate radius by r. The sampling domain W is therefore a sphere
B(o,r) C R3 located at the origin o with radius r. The primary particles
are also spheres and their radii are drawn from (independent copies of) a
random particle radius R,. The targeted volume fraction of primary parti-
cles simulated in W is given by the packing density 1 € (0, Nmax], where the
maximal possible packing density 1. depends on the radius distribution of
the primary particles (e.g., Nmax =~ 0.71 for equal spheres [29]). The total
volume of bonds is given as a ratio b > 0 with respect to the total volume
of the primary particles. The bonds are cylindric objects connecting two
primary particles. For a bond connecting two particles with radii 7 and r”,
the bond radius ry is given by r, = ky, - min{r’, "} for some factor &, € (0, 1].

In order to look at mixtures of primary particles with two fixed sizes
(i.e., radii r and re, r; > 73), the random particle radius R, mentioned
above is defined as a discrete random variable. It takes the value r; with
some probability p € [0, 1], and o with probability 1 — p. The probabilities
p and 1 — p can be interpreted as the number fractions of larger and smaller
particles, respectively. The mixing ratio a specifies the volume fraction of
the larger particles, i.e., a € [0, 1] is the volume fraction of the particles with
radius ry, namely

p-u
a= ) 1
p-or+ (1 —p)- vy @

where v; = %m’? denotes the volume of a sphere with radius r;, for ¢+ = 1, 2.
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Table 2 provides an overview of the parameters of the stochastic mi-
crostructure model. All parameters except the mixing ratio are fixed. The
mixing ratio a is varied in the interval [0,1]. It is chosen uniformly from
[0, 1] for every sampled agglomerate, i.e., a random variable A ~ U(0, 1) is
considered to generate samples of a. Note that for each given mixing ratio
a, the probability p of larger particles (with radius r1) is determined using

Eq. (1).

Table 2: Parameters of stochastic microstructure model

parameter value
agglomerate:
radius of agglomerate r =4mm

primary particles:
radius of large primary particles  r; = 0.5 mm
radius of small primary particles 7, = 0.25 mm

(random) mixing ratio A~U(0,1)
binder:

binder volume fraction b=0.1
radius factor for bonds k, = 0.4

2.1.2. Random packing of primary particles

Given the sampling domain W = B(o,r) of a spherical agglomerate, the
random variable R, for radii of primary particles and the packing density
n (see Section 2.1.1), the algorithm to obtain a random packing of primary
particles is given by

1. Initialize the set of spheres/particles: P = {}.

2. Choose the center x' of a new sphere candidate uniformly inside the

sampling domain W and sample the radius r’ from the random variable
R,.
3. If the volume fraction 7 of particles is not exceeded, i.e.,

4 4
Z gm’g + 571'(7’/)3 /volW <,

(.’L'p,Tp)GP

then accept the sphere candidate, i.e., P = P U {(2/,7')}, and repeat
step 2, else proceed with step 4.
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4. Apply the force-biased algorithm [28, 29] to the set of spheres P, which
rearranges them iteratively to avoid interparticle overlaps. To obtain an
approximation of the agglomerate shape specified by the boundary of
W, spheres are pushed back into the sampling domain at each iteration
step.

Figure 1 illustrates the results of steps 1-3 and 4 in the two-dimensional case.
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Figure 1: Illustration of initial arrangement of spheres and spheres after collective rear-
rangement by force-biased algorithm.

2.1.3. Bond network model

At this point, the set of sphere centers and radii P = {(x;,1;),i =
1,...,n} is known. These primary particles have to be connected by bonds
such that the union of all bonds has a given volume. This volume is obtained
as a fraction b with respect to the total volume of primary particles. The
idea is to construct an agglomerate where all particles being sufficiently close
together are connected and further bonds are only inserted where necessary
to obtain connectivity. Then, the volume of bonds can be controlled by the
thresholding value used to connect particles. If this threshold is zero, then
only as many bonds as necessary are generated to obtain connectivity. For
larger thresholds, the number of bonds (and their total volume) is increased.

This can be implemented as an algorithm using ideas from graph theory.
For a given distance threshold [ > 0, we will construct a graph G = (V, EW)
that connects the set of vertices (particles) V' = P by the set of edges (bonds)
EW_ A bond between two particles is only put if the smallest distance be-
tween their surfaces is less than or equal to [ or if the bond is required for
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complete connectivity, i.e., every primary particle has be connected directly
or indirectly to all others via the bond system. Such a graph G® can be
obtained by the following algorithm, which is illustrated in Figure 2.

1. Compute the relative-neighborhood graph (RNG) [30] Gg\]G of the pri-
mary particles, using a suitable distance function d : V' x V' — [0, c0)
(see below). In the RNG, an edge is put between two vertices when
there is no third vertex closer to both vertices (with respect to d). Using
this technique, the vertices (primary particles) are always completely
connected by the edges in the RNG [30]. A suitable distance function
d is given by

d((z',r"), (", ")) = max{0, ||a" — 2"|| =" — " =1} .

By this construction, the RNG contains all edges that connect two
particles within a given distance [ and further edges ensuring complete
connectivity. Therefore, Gg\fc fulfills most properties desired for G®,
but it may contain more edges than necessary for connectivity. More
precisely, it is a superset of the graph we are interested in, whose con-
struction is explained in the next step.

2. Compute the minimum spanning tree (MST) [31] Gl(\?ST of G%VG, again
using the same distance function d, now applied to the existing edges.
In the MST, as much edges as possible are deleted while minimizing
the sum of distances and upholding connectivity.

3. The result G is given by the edges of the graph G1(\I4)ST combined with
all edges in G%&G having ‘length’ zero, i.e., their primary particles’
surfaces have at most a distance of [.

Note that the MST of a complete graph (where every pair of vertices is
connected by an edge) is always a subgraph of its RNG [30], therefore we
consider the RNG in the first step and then compute the MST. Obtaining the
MST is the main goal. In principle, it would also be possible to construct the
complete graph and compute the MST directly from it, the result is exactly
the same. But this can be much more expensive from the computational
point of view if the number n of primary particles is large. A further technical
detail is that the MST is only unique if all edges have different lengths. In our
case, there are many edges with length zero (obtained by distance function
d). However, this is not a problem, because step 3 of the algorithm stated
above ensures that all these edges are re-added, i. e., it does not matter which
ones remain in the MST.



Deleted bond

Relative-neighborhood graph Minimum-spanning tree

Figure 2: Tllustration of relative-neighborhood graph (RNG) for [ = 0 (direct contacts are
shown in solid black, further connectivity bonds are gray) and minimum spanning tree
(MST) for the same graph.

Recall that for a given threshold value [ > 0, G is the graph connecting
all particles that are within distance [ to each other, plus further bonds that
are required for connectivity. Detection of the ‘optimal’” threshold value [*
can be formulated as a minimization problem

I* = argrlnzlgl Z vol B(€e) — baps|

ecEWM

where b,ps is the absolute binder volume targeted and vol B(e) denotes the
volume of the bond specified by edge e. Note that this minimization problem
may not have a sufficiently good solution if there are e.g. large spaces be-
tween primary particles, large bond radii or very small targeted total binder
volumes. In these cases it is possible that even for [ = 0 the bonds gener-
ated for connectivity have a total volume that is too large and not within an
acceptable tolerance.

2.1.4. Statistical analysis

Before investigating the breakage behavior of the agglomerates generated
by the proposed stochastic model, it is interesting to look at some charac-
teristics of the simulated microstructures. The agglomerate diameter as well
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as the porosity are always the same, but it is useful to analyze the primary
particle radii, coordination numbers and bond radii in dependence on the
mixing ratio. For an optical impression, three agglomerates with different
mixing ratios are shown in Figure 3. For all evaluations, 300 agglomerates
have been generated according to the stochastic microstructure model. (Note
that the number of realizations has been chosen as high as possible such that
computing time required for generation and DEM simulations is still accept-
able.)

Figure 3: Three realizations of agglomerates for mixing ratios a = 0.0 (top), a = 0.45
(middle), and a = 0.99 (bottom). The larger primary particles are visualized in blue, the
smaller primary particles in yellow. For all three agglomerates one eighth has been cut
out for visualization of the interior microstructure.
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The mean radius of primary particles (unweighted, i.e., not weighted by
their volume or mass) clearly depends on the mixing ratio a, see Figure 4,
because a larger fraction of the large primary particles increases the mean
radius directly. As a consequence, the mean radius of bonds is also increased.
More interesting is the behavior of the coordination numbers, i.e., the num-
ber of bonds per primary particle. A larger value of the mean coordination
number implies that the system of particles is better connected. Figure 5
shows that the mean coordination number is a bit smaller for very small and
very large mixing ratios a than for intermediate ‘mixing’ scenarios. On the
other hand, the standard deviation (SD) is obviously largest in the range of
a € [0.6,0.8], where it achieves a value of almost 4 in comparison to about
2 for very low/high mixing ratios. This can be interpreted as a higher vari-
ability of the microstructure.
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Figure 4: Effect of mixing ratio on the radii of primary particles (black) and bonds (gray):
mean radius (left), standard deviation of radii (right).

2.2. DEM simulations

For all 300 agglomerates discussed in Section 2.1 uniaxial compression
experiments have been simulated with the help of DEM. A wall with the
typical material parameters of steel is lowered with a constant speed, see
Figure 6 for a schematic illustration of the experiment. Displacement of
particles, breakage of bonds and applied forces are recorded. For every DEM
simulation, the result is a force-displacement curve and the time-resolved
agglomerate microstructure.
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Figure 5: Effect of mixing ratio on the coordination numbers of primary particles: mean
coordination number (left), standard deviation of coordination numbers (right).

Figure 6: Schematic illustration of the experiment, forces are visualized using colors (blue,
green and red for low, medium and high forces, respectively).

All DEM simulations were performed with the command line version of
the MUSEN system [32]. To describe particle-particle and particle-wall inter-
actions the soft sphere contact model is employed. The normal component of
the force is calculated according to the Hertz theory [33] and the tangential
component according to the model proposed in [34], see also [35]. The solid-
bridge bond model is based on the BPM [22]. However, modifications have
been implemented. For each bond the unique normal and tangential stiffness
has been calculated depending on material parameters and bond length. As
the breakage criteria the maximum of shear and tensile stresses in the bonds
are used. If one of them reaches the corresponding bond strength, then the
bond breaks and is removed from the calculation procedure. All material pa-
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rameters required for the DEM simulations are given in Table 1 and Table 3.

Table 3: Further material parameters for the DEM simulations

parameter value
interactions between primary particles:

static friction 0.2
rolling friction 0.05
wall (steel):

Young’s modulus 210" Pa
Poisson ratio 0.3
interactions between primary particles and wall:
static friction 0.2
rolling friction 0.05

The DEM simulation time step used is chosen as 10 % of the Rayleigh
time. Usually, in compression experiments the compression velocities in the
order of 0.01 mm/s to 0.1 mm/s are employed. However, to speed-up the com-
putations, the wall velocity in the numerical studies has been chosen equal
to 0.02 m/s. A set of additional simulations was done and it was pointed out
that the proposed increase of the velocity does not have significant influence
on simulation results. The DEM simulations have been performed until a
deformation of 35% of the agglomerate is observed. At this deformation,
all agglomerates were fractured. The force-displacement diagram and the
time-resolved microstructure were saved with a time resolution of 0.4 ms.

2.3. Agglomerate breakage

Agglomerate breakage has to be detected using automated methods to an-
alyze the compression results of all agglomerates statistically. Especially with
varying mixing ratios, it is not useful to aggregate all force-displacement dia-
grams directly. Available data for breakage detection is the force-displacement
curve for every agglomerate, its complete initial microstructure and the dis-
placement of primary particles as well as breakage of bonds over time.

Figure 7 shows the force-displacement curves for agglomerates with differ-
ent mixing ratios, i.e., mixing ratios in the intervals [0.0,0.04], [0.18,0.22],
[0.78,0.82] and [0.96,1.0]. A sudden drop in the force means that one or
more bonds got broken, a large drop occurs at more significant defects. In
most cases these curves show a clear drop in the force when the primary
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break occurs. This seems to be the case for almost the same displacement
values (which is proportional to the time due to constant wall speed), but
the maximum force applied before is different. This will be discussed in
Section 3.
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Figure 7: Force-displacement curves obtained for different mixing ratios a: almost only
small primary particles (top-left), about 80 vol% small primary particles (top-right), about
80 vol% large primary particles (bottom-left) and almost only large primary particles
(bottom-right).

There exist two grades of damages that occur in agglomerates: the micro-
scopic destruction, when the breakage of individual interparticulate contacts
occurs, and the macroscopic, when a granule is detached into two or more
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disjoint parts [36]. In many research works the primary breakage event is
determined based on the analysis of force-displacement curves only, as the
point where the force curve has the first significant drop [13, 37]. However,
it should be noted that such an approach does not allow to distinguish be-
tween the microscopic and macroscopic damages and hence cannot be used
for detection of agglomerates’ fracture. For example, granules with core-shell
structures are often investigated: it is necessary to analyze their microstruc-
ture to determine their breakage mechanisms, i. e., to determine whether only
the shell or both core and shell are fractured, which cannot be decided using
only force-displacement data [38]. For this reason, the breakage detection
by evaluation of the microstructure has been employed in this work. This is
clearly the best method to obtain precise information about the energy re-
quired for fracture and the new specific surface area which is formed during
the fracture [39]. When the total volume of small fragments is negligible,
in many cases the fracture process is considered as attrition. Therefore, the
breakage event in the developed algorithm was detected only when the ini-
tial agglomerate was splitted into two or more disjoint parts and the volume
of the largest part was less than 90% of the initial agglomerate volume.
Moreover, the small fragments consisting of less than four primary particles
were considered as debris and therefore were excluded from the volume-ratio
analysis. Several randomly selected agglomerates are visualized in Figure 8,
where the two largest fragments are highlighted.

3. Results and discussion

Two very important characteristics describing agglomerate strength are
the maximum force applied before breakage and the required breakage energy.
As can be seen in Figure 9 (top-left), the breakage force is smaller for mixing
scenarios (scenarios where both fractions of particle sizes are ‘relevant’; i.e.,
a € [0.2,0.8]) than in the “non-mixing” cases. A possible reason is the higher
variability in agglomerates with both small and large particles (cf. standard
deviation of coordination numbers, Figure 5). This leads to more weak points
in the microstructure, where forces are not evenly spread and individual
bonds are heavily loaded. Therefore, local fracturing occurs before a high
(global) force is applied. This implicates that even for almost only small
primary particles (i.e., a < 0.2) the force is considerably higher, which is
an interesting observation that was unexpected. The (mass-related) primary
breakage energy does not show this behavior, cf. Figure 9 (top-right). It
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Figure 8: Six randomly selected agglomerates (ordered by increasing mixing ratio) at the
time point determined by the breakage criterion ‘at least 10% loss of volume excluding
debris’. The largest fragment is drawn in blue, the second largest fragment is in red, further
fragments are in dark gray, debris is in light gray. (Note that the optical impression of
the size of fragments depends heavily on the point of view, therefore red fragments seem
to be larger in some cases.)

seems to increase almost linearly with the mixing ratio, i.e., agglomerates
consisting of larger primary particles and thicker bonds are more stable. This
means that even though the maximum force is smaller for mixing scenarios,
this does not influence the energy required for breakage. Therefore, the
average force before breakage has to be similar or the related deformation has
to be larger. Figure 9 (bottom) shows the deformation of the agglomerates
relative to their original diameter. It can be seen that the deformation at
the breakage point really tends to be larger for mixing scenarios, but the
fluctuations are in a wide range for all mixing ratios.

A structural characteristic of the agglomerates is the damage ratio, i.e.,
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Figure 9: Effect of mixing ratio on maximum force applied before primary break (top-left),
mass-related primary breakage energy (top-right), and deformation of the agglomerates at
their primary breakage point (bottom). A quadratic function fitted to the data points is
shown in red.

the number of broken bonds divided by the initial number of bonds. Looking
at the damage ratio in dependence on the mixing ratio, cf. Figure 10 (top-
left), the optical impression is similar as for breakage energies. Figure 10 (top-
right) shows that there is an almost linear relationship between the number of
broken bonds and the breakage energy, which is intuitive. Figure 10 (bottom-
left) shows the volume fraction of broken bonds (which one could call “vol-
umetric damage ratio”), which is probably a more accurate characteristic
in the case of bonds with very different volumes. The optical impression is
very similar, but thin bonds are less relevant in scenarios with higher mix-
ing ratios, which leads to smaller values in comparison to the number-based
damage ratio. More interesting is the volume fraction of the broken thin
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and thick bonds individually, see Figure 10 (bottom-right). For a < 0.8,
most broken bonds are thin, but beginning at about a = 0.6 the volumetric
proportion of broken thick bonds increases fast. Of course, this is caused by
the decreasing number of thin bonds. Note that a > 0.6 is about the same
region where the maximum force required for agglomerate breakage increases
clearly, too.
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Figure 10: Effect of mixing ratio on damage ratio (top-left), relationship of damage ratio
and breakage energy (top-right), volume fraction of broken bonds (bottom-left), volume
fraction of broken thin and thick bonds (bottom-right).

Figure 11 shows the volume fraction of the largest and second largest frag-
ments depending on the mixing ratio. In the average, the largest fragments
stands for 48 % of the volume, the second largest fragment corresponds to
34 %. The mean volume of the first and second largest fragments together is
83 %, which means that 17 % of the volume belong to remaining fragments
and debris. (‘Remaining’ fragments are the third, forth etc. largest frag-
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ments, which are not yet considered as debris.) A surprising fact is that the
size of the two largest fragments does not really depend on the mixing ratio.
The volume fraction of debris increases a bit with larger primary particles
— but of course even a small number of large debris particles has a visible
effect on the volume.
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Figure 11: Effect of mixing ratio on volume fraction of largest fragment (top-left), second
largest fragment (top-right) and remaining fragments together with debris (bottom).

4. Conclusions and outlook

In this paper, a stochastic model for agglomerate microstructures is in-
troduced. It is constructed such that the microstructural features can be
controlled easily. The stochastic model is used to vary the mixing ratio of
two sizes of primary particles. Special care is taken to obtain comparable
agglomerate microstructures even for different mixing ratios. For example,
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primary particle volume and binder volume are the same in all cases. A large
number of spherical agglomerates with the same diameter are realized, as-
suming spherical glass primary particles and HPMC as binder. A statistical
analysis of the generated microstructures shows that the mean coordination
number is almost constant, but the standard deviation is considerably larger
for mixing scenarios, which can be interpreted as a higher variability of the
microstructure. All agglomerates have been simulated at the compressive
normal load using the MUSEN software, where the force-displacement curves
and the time-resolved microstructure is obtained for analyses. Finally, eval-
uation of agglomerate breakage based on these data shows that the behavior
of agglomerates is influenced in different ways. Breakage energy depends on
the mixing ratio almost linearly, but the maximum force applied before the
primary break is influenced by the variability of the microstructure. Larger
forces are necessary for agglomerates that are very homogeneous, i.e., con-
sisting almost only of particles of one size. This is not only the case for large
primary particles (where thick bonds are dominating the behavior), but also
for small primary particles and thin bonds. The fracture behavior itself on
the other hand is very similar in all cases and does not depend on the mixing
ratio.

These results show that sophisticated models for random microstructures
with a high control about individual structural features are a promising ap-
proach for revealing previously unknown behavior or confirming existing hy-
potheses. They should be applied in future work to improve the general
understanding of agglomerates and particulate materials. Therefore, this pa-
per is only a first step to further investigations of relationships between mi-
crostructure and mechanical behavior and to usage of obtained data for e. g.
macroscopic flowsheet simulations [40]. For quantitative statements about re-
lationships between microstructure and mechanical stability, a larger range of
scenarios should be investigated, e. g., for other materials, other agglomerate
diameters (and agglomerate shapes), other primary particle size distribu-
tions and other bond networks. Furthermore, an important step is to assess
the accuracy of the predicted behavior. Therefore, experiments are planned
to validate the obtained numerical results. In a forthcoming paper, we will
represent real agglomerate microstructures using our stochastic modeling ap-
proach. Then, the results obtained from DEM simulations will be validated
with experiments that were previously performed for the same agglomerates.
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