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Abstract

Lithium-ion batteries can be considered as one of the most important energy storing devices. To
satisfy the rapidly growing demand for higher energy densities, as for example required by auto-
motive applications, the optimization of the electrode morphology is an important goal in battery
research since it is well known that the 3D microstructure of anodes and cathodes has a signifi-
cant impact on the resulting performance of the battery. A promising approach is called virtual
materials testing, where stochastic 3D microstructure models are used to generate a wide range
of virtual but realistic electrode morphologies as structural input for spatially-resolved numerical
simulations of effective electrochemical properties. This beneficial combination allows to derive
microstructure-property relationships just at the cost of computer simulations. The present pa-
per introduces a novel parametric stochastic 3D microstructure model based on random fields
that is calibrated to tomographic image data of six graphite anodes. The model is validated by
comparing geometrical characteristics and effective tortuosity, which significantly influences the
electrochemical behaviour of battery electrodes, computed for tomographic and simulated image
data, respectively. A particular focus is put on local heterogeneity, which is quantitatively accessed
by computing local distributions of certain microstructure-dependent descriptors.

Keywords: Stochastic microstructure modeling, Anode, Lithium-ion battery, Effective
tortuosity, Local heterogeneity

1. Introduction

Due to their low self discharge rate, outstanding energy density and high power density, lithium-
ion batteries are widely used in a broad spectrum of applications ranging from a variety of mobile
electronic devices to electric vehicles. Thus, they can be considered as the most important tech-
nology for storing electrical energy currently used on an industrial scale [1, 2, 3]. Nevertheless,5

due to the fast growing demand for lithium-ion batteries, this promising technology has to fulfill
permanently growing requirements, which is one of the reasons why the development of batteries
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with optimized electrochemical performance is an essential objective of state of the art battery
research [4, 5, 6, 7]. Further improvements of energy density, cycling stability and other key elec-
trochemical characteristics can be achieved by the development of new materials as well as by
enhancing electrodes consisting of materials which already exist [8, 9]. The latter can be realized,
for example, by adapting the three-dimensional microstructure since it is well known that the5

3D morphology of anodes as well cathodes is crucial for the resulting functionality of the battery
[10, 11, 12, 13, 14, 15]. More precisely, the 3D microstructure of battery electrodes and thus their
performance is significantly influenced by the underlying manufacturing process [16], which among
others consists of mixing [17, 18], drying [17] and calendering [19, 20, 21].

10

Theoretical models of electrochemical cells enable quantitative insights into the nature of such in-
terdependencies. In particular, these models allow a physics-based description of transport in each
phase of the system [22]. This includes the solid phase of each electrode and the corresponding
pores that are filled with liquid electrolyte. However, microstructure resolved battery simulations
are computationally expensive and, therefore, require representative 3D structures. Such structures15

can be provided by tomographic 3D imaging of of real electrodes. Alternatively, they can also be
generated with computational and analytical methods. However, in each case, the computational
complexity of electrochemical simulations necessitates the use of a relatively small simulation do-
main. This forces the question, whether a given sample of this size, real or virtually generated,
is representative to the required degree. The structures of typical electrode materials, especially20

graphite anodes, exhibit local heterogeneities which further complicate this issue. Nonetheless,
virtually generated structures must exhibit heterogeneities similar to their real counterparts. Oth-
erwise, electrochemical simulations will not predict comparable performance between the real and
virtually generated structures in a statistically consistent way. Besides the overall morphology of
battery electrodes, their local heterogeneity is an important influencing factor and can lead to cell25

overpotential, capacity fade and even complete failure of the cell [23, 24, 25]. These effects are
especially pronounced at large overall current densities. Among others, effective tortuosity [26],
degradation mechanisms [27], lithium-plating [28], electronic impedance [29] can strongly vary on
local scale. In [30] it has been shown that 24 identically appearing cells show a very different be-
haviour after 600 cycles. This is in agreement with the results obtained in [31], where two cathodes30

with the same material composition and manufacturing process exhibited different microstructures
after cyclic aging. Thus, a deeper understanding of the 3D morphology - both, on global and local
scales, of anodes and cathodes and its dependency on manufacturing parameters is an important
step for the design of battery electrodes with optimized properties.

35

Using parametric stochastic 3D microstructure models, the complex morphology of battery elec-
trodes can be represented by a small number of model parameters, see [32, 33] for models calibrated
to tomographic image data of cathodes and [34, 35] for anode models. Furthermore, they allow
for an approach called virtual materials testing where a large number of virtual but realistic 3D
microstructures is generated by systematic variations of the model parameters. In combination40

with spatially-resolved numerical simulations of effective properties, microstructure-property rela-
tionships can be derived just at the cost of computer simulations [36, 37, 38, 39, 40].
In addition, stochastic 3D microstructure models can be used to accelerate the design of battery
electrodes made of a given electrode material by optimizing the effective properties of the electrode.
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To this aim, only few electrodes with different manufacturing parameters need to be produced, e.g.
with different levels of compaction. After calibrating one and the same type of a parametric model
to these samples, the relationship between the manufacturing parameters and the parameters of the
model can be revealed by regression analysis [32, 36, 41]. This relationship can be used to generate
numerous 3D microstructures, which correspond to samples produced with further specifications5

of the manufacturing parameters. In this way, the number of samples that has to be manufactured
can be reduced significantly. At the same time, manufacturing parameters, which optimize the
effective properties of the electrode can be identified computationally.
The rest of this paper is organized as follows. In Section 2, we describe six graphite anodes,
their preparation as well as the tomographic imaging procedure. Afterwards, several quantities10

for characterizing 3D microstructures are described in Section 3. They are used in Section 4
which deals with two different random set models based on χ2-random fields, their calibration to
tomographic image data and the validation of those models, where a particular focus is put on
local heterogeneities and effective tortuosity. Section 5 concludes the paper with a short summary
of the results as well as an outlook to possible future research.15

2. Materials and imaging

2.1. Materials

Graphite anode electrodes were prepared at room temperature by mixing of at least 97 weight per
cent of graphite powder with binder and further additives in water. Three different graphites were
used (some commercially available as well as produced by SGL Carbon GmbH) further denoted as20

A, B and C types. The slurry was prepared by mixing the above-mentioned materials with distilled
water in ratio 1:1 in weight. The process took place in a Speedmixer (DAC 250 SP, produced by
Hausschild Engineering) in four steps, each taking about 2.5 minutes. The homogeneous slurry
was coated on approximately 75 µm thick polyester film (Hostaphan RN, produced by Mitsubishi
Polyester Film GmbH) with a table coater Coatmaster 510 D (produced by Erichsen) and dried25

at ambient conditions over a time of 30 minutes. The dry specimens were calendered to achieve
two different densification degrees: electrodes with density of about 1.43 g cm−3 (indexed with 1,
e.g. A1) and 1.63 g cm−3 (indexed with 2, e.g. A2) and an average layer thickness of about 80 µm.
Thus, six different graphite anodes, denoted by A1, A2, B1, B2, C1, and C2 in total are considered
in this paper.30

2.2. Tomographic imaging procedure

The synchrotron tomography measurements have been conducted at the imaging beamline P05
which is operated by the Helmholtz-Zentrum Geesthacht (HZG) at the PETRA III storage ring
(DESY) [42, 43]. The synchrotron beam was generated with an undulator (2 m in length) and
monochromatized with a double crystal monochromator to an energy of 10 keV. After transmit-35

ting the sample, the monochromatic X-rays were transformed into visible light with a CdWO4

scintillator. The optical set-up provided a 10 times magnification and the image was detected
with a CMOS camera “CMOSIS CMV 20000” with 5120 × 3840 pixels. A 3.29 × 2.47 mm2 field
of view was captured with a pixel size of 642 nm. For each tomography, 2001 radiograms over an
angular range of 180◦ were captured with an exposure time of 600 ms. For the data processing and40

reconstruction Matlab based routines were used. The tomographic reconstruction was performed
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with the ASTRA toolbox [44, 45]. The voxel size of the reconstructed 3D image data is given by
642 nm. The resulting 3D grayscale images have been binarized using a global threshold [46], which
has been determined such that the volume fraction of the solid phase computed from tomographic
image data matches the volume fraction of the solid phase, which can be computed from material
composition. The size of the sampling window is given by 1400×1400×79 voxels for each sample.5

3. Microstructure descriptors

This section deals with the description of characteristics that are used in Section 4 to quantify the
goodness of fit of the stochastic 3D microstructure models proposed in the present paper. Namely,
the 3D microstructure of the solid phase consisting of active material, binder and conductive
additives will be modeled by a stationary and isotropic random closed set Ξ1 ⊂ R3 [47]. The10

complement of the solid phase is given by the pore space, which is modeled by Ξ0 = cl(Ξ{
1), where

cl(Ξ) and Ξ{ denote the topological closure and the complement of a subset Ξ ⊂ R3, respectively.

3.1. Volume fraction

To begin with, we consider the volume fraction of the solid phase, denoted by ε1 ∈ [0, 1], which is
defined as the mean value ε1 = Eν3(Ξ1 ∩ [0, 1]3), where ν3 denotes the three-dimensional Lebesgue15

measure. This quantity can be easily estimated from 3D image data by the point-count method,
which is described in [48]. Obviously, the porosity ε0, i.e. the volume fraction of the pore space
Ξ0, is given by ε0 = 1− ε1.

3.2. Specific surface area

Next, we consider the specific surface area A of the solid phase, which equals the specific surface20

area of the pore space. Specific surface area is obtained by dividing the total surface area by the
volume of the sampling window. The surface area has been estimated from 3D image data by
differently weighted local 2× 2× 2 voxel configurations using the weights proposed in [49].

3.3. Mean geodesic tortuosity

A further characteristic, which has turned out to influence transport properties [37], is the mean25

geodesic tortuosity, denoted by τ geo. It is a purely geometrical quantity in contrast to effective
tortuosity, which will be defined later on, see Section 3.7. For a comprehensive overview of different
concepts of tortuosity, the reader is referred to [50, 51, 52]. The quantity τ geo is the mean value
of the distribution of minimal path lengths through a predefined phase from a starting plane to a
target plane, divided by the distance of both planes. In the present paper, this quantity will be30

computed in z-direction, which in our case corresponds to the main direction of electrical and ionic
transport. This direction is also known as through-plane direction. More precisely, the separator
is chosen as starting plane and the current collector as target plane. The computation of shortest
paths is carried out by means of Dijkstra’s algorithm [53]. A formal definition of mean geodesic
tortuosity within the framework of random closed sets can be found in [54].35
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3.4. Chord length distribution

Another important microstructure descriptor is the so-called chord length distribution [55, 56].
For simplicity, we do not consider chord lengths with respect to arbitrary directions, but only in
z−direction, since we are restricting ourselves to isotropic random closed sets. The chord length
distribution of a random closed set Ξ in z-direction can now be defined as the distribution of length5

of a line segment chosen at random in Ξ ∩ ` where ` denotes the z-axis. The mean chord length
of the random closed set Ξi is denoted by Cli. For further information regarding chord length
distributions, the reader is referred to [48, 57, 58].

3.5. Two-point coverage probability function

Moreover, a further possibility to quantify the morphology of porous media is given by the so-called10

two-point coverage probability function Ci,j : [0,∞)→ [0, 1] with i, j ∈ {0, 1}, which is defined by

Ci,j(r) = P(t ∈ Ξi, t+ h ∈ Ξj) , (1)

where ‖h‖ = r and ‖h‖ denotes the length of vector h ∈ R3 [48, 59]. In the present paper, the two-
point coverage probability functions considered in (1) only depend on the distance r between the
two points t and t+ h since Ξ0 and Ξ1 are both stationary and isotropic random closed sets. Note15

that Ci,i(0) = εi for i ∈ {0, 1} and Ci,i(r) = 1−2εj +Cj,j(r) for i 6= j. In order to estimate Ci,j from
3D tomographic image data, we use the Fourier-based method described in [58]. Furthermore, note
that sometimes the notion covariance function is used for Ci,j [55, 56]. In the case of estimating
this characteristic from tomographic image data, one can typically observe that the value of Ci,j(r)
approaches εi ·εj for large distances r, which implies that there is no correlation between two points20

far apart from each other. This quantity will play a major role in Section 4, when calibrating the
random set models to tomographic image data.

3.6. Constrictivity

Last, but not least, a transport-relevant geometrical quantity is the constrictivity β ∈ [0, 1], intro-
duced in [60]. This characteristic allows us to quantify the strength of bottleneck effects, which25

turned out to strongly influence effective properties [39, 61]. In order to formally define constric-
tivity, we first have to introduce the notions of the continuous phase size distribution (CPSD)
and the concept of simulated mercury intrusion porosimetry (MIP), where both characteristics are
computed with respect to a predefined phase. The normalized continuous phase size distribution
is a function CPSD : [0,∞) → [0, 1], where the value CPSD(r) is defined as the volume fraction30

of that part of the predefined phase, which can be filled using potentially overlapping balls with a
given radius r such that these balls are completely contained in considered phase. Since CPSD(r)
can also be expressed by a morphological opening using a ball with radius r as structuring element,
this characteristic is also called opening size distribution [55, 56]. The radius for which the nor-
malized continuous phase size distribution equals 0.5 is denoted by rmax. In contrast to the CPSD,35

simulated mercury intrusion porosimetry MIP : [0,∞) → [0, 1] is a direction-dependent function
that contains additional information on the presence of bottlenecks and the connectedness of the
considered phase. More precisely, the value MIP(r) is defined as the volume fraction of that part of
the predefined phase which can be covered by an intrusion from a certain direction of (potentially
overlapping) spheres with radius r, being completely contained in that phase. Analogously to rmax,40

the radius rmin is given by the radius for which the normalized MIP equals 0.5. By intruding the
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phase under consideration from a certain direction, MIP is decreasing faster compared to CPSD,
which implies that rmin ≤ rmax. Constrictivity is now defined as β = ( rmin

rmax
)2, where a value of β

close to one indicates that there are almost no constrictions within the predefined phase. If β
is close to zero, strong bottlenecks occur, which significantly hinder transport along the specified
direction. Estimating CPSD and MIP from 3D image data is carried out by using morphological5

openings [62] and - in case of MIP - the Hoshen-Kopelman algorithm [63]. For a formal definition
of constrictivity within the framework of random closed sets, we refer to [54].

3.7. Effective tortuosity

Apart from the purely geometrical characteristics that have been introduced so far in Section 3, we
additionally consider effective tortuosity. This quantity is an important microstructure-dependent10

property of battery electrodes. Effective tortuosity is defined as τ eff = D ε
Deff

, where D is the intrinsic
diffusivity of the phase under consideration (also denoted as “conducting phase”) and Deff the
effective diffusivity of that phase restricted by a second phase [64]. Note that ε ∈ [0, 1] denotes
the volume fraction of the “conducting phase”, which will be the pore space in our case since due
to the high volume fraction of the solid phase in graphite anodes, the limiting factor for battery15

capacity is frequently the diffusion of lithium ions through the electrolyte [65]. Furthermore, it
holds τ eff ≥ 1, see Equation 21.14 in [59]. Effective tortuosity is one of the most influencing
characteristics with regard to electrochemical performance of battery electrodes and quantifies
the extent to which transport through a porous medium is limited [66, 67]. Therefore, a lot
of effort is made to quantitatively access effective tortuosity by impedance spectroscopy [68] or20

tomographic imaging [69, 70]. With regard to the present paper, it is crucial that the simulated
3D microstructures of the considered graphite anodes adequately reflect the behaviour of effective
tortuosity. Since it has been shown in [26] that effective tortuosity can strongly vary locally, we
will put a particular focus on the distribution of local effective tortuosity during model fitting, see
Section 4.2. Similar to mean geodesic tortuosity, we compute effective tortuosity τ eff in z-direction,25

where we use the TauFactor application [64].

3.8. Local characteristics

Until now, we only considered “global” characteristics in the sense that we estimate each quantity
once using the entire sampling window with a size of 1400× 1400× 79 voxels. However, as already
pointed out in Section 1, local heterogeneity also significantly influences the performance of lithium-30

ion batteries. Thus, we compute the empirical distributions of local characteristics by splitting the
sampling window into 400 non-overlapping cutouts each with a size of 70 × 70 × 79 voxels. In
particular, the distribution of certain quantity q, which arises from computing the quantity q on
the above-mentioned 400 cutouts, will be denoted by q. In addition, we will often refer to the
mean µ(q), variance σ2(q) and standard deviation σ(q) of the distribution q. Note that, when35

computing local mean geodesic tortuosity on a cutout, one has to consider only shortest paths
starting within the cutout. However, these paths are allowed to leave the cutout since otherwise a
systematic bias would be introduced, see [71] for further details.

4. Stochastic 3D microstructure modeling

In this section, we describe two stochastic 3D microstructure models, so-called random set models,40

which will be used for generating virtual but realistic 3D microstructures of anodes. The models are
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fitted to tomographic image data by minimizing a cost function that is based on the distribution
of local effective tortuosity. Moreover, the fitted models are validated by comparing structural
characteristics, which have not been used for model fitting, computed on tomographic image data
as well as on model realizations.

4.1. Description of random set models5

The starting point in the construction of both random set models are Gaussian random fields
[48, 72, 73]. In particular, we will consider standardized Gaussian random fields {X(t), t ∈ R3},
i.e., we assume that EX(t) = 0 and VarX(t) = 1 for all t ∈ R3. Furthermore, we restrict ourselves
to stationary and isotropic Gaussian random fields. This directly implies that the distribution of
this kind of random fields is uniquely determined by their covariance function kX : [0,∞)→ [−1, 1],10

where the value kX(r) equals the covariance of X(t) and X(t+ h) with ‖h‖ = r.

Stationary and isotropic Gaussian random fields have been used, among others, as versatile tool for
modeling the microstructure of three-phase materials. More precisely, pluri-Gaussian models have
been applied to gas-diffusion electrodes [74] as well as anodes in solid-oxid fuel cells [75, 76]. With15

regard to two-phase materials, Gaussian random fields can be used to model the phase of interest
by a so-called excursion set Ξ = {t ∈ R3 : X(t) ≥ λ} for a fixed, deterministic threshold λ ∈ R.
This approach has been successfully applied to solid oxide fuel cell electrodes [77]. However, we
remark that it is not directly capable of capturing the 3D microstructure of the graphite anodes
considered in the present paper. It turns out that using so-called χ2-random fields is more suitable20

for this purpose, see also [78]. Mathematically spoken, a χ2-random field {Y (t), t ∈ R3} with n ≥ 1
degrees of freedom is given by Y (t) =

∑n
i=1X

2
i (t), where {X1(t)}, . . . , {Xn(t)} are independent

standardized Gaussian random fields with one and the same covariance function kX : R→ [−1, 1]
[48, 72]. Thus, the distribution of a χ2-random field is uniquely determined by the degree of freedom
n and the covariance function kX of the underlying Gaussian random fields. In the following, we25

call
Ξ1,b = {t ∈ R3 : Y (t) ≥ λb} (2)

the basic model, where λb > 0 is some threshold. As will be later discussed in Section 4.3, this
basic model is able to capture most of the microstructural features of graphite anodes, whereas in
particular the goodness of fit with respect to the distribution of local effective tortuosity has to be
further improved. It turns out that neither changing the value of n nor the choice of kX is capable of30

doing so since the choice of n does not significantly influence the morphology of the corresponding
model realizations and kX can be chosen such that the two-point coverage probability function can
be almost perfectly matched, see Sections 4.2.2 and 4.3. This motivates to extend the basic model
by modifying the character of the threshold λb. More precisely, we consider the extended model

Ξ1,e = {t ∈ R3 : Y (t) ≥ λe + Z(t)} , (3)

where {Z(t), t ∈ R3} is a standardized Gaussian random field with a certain covariance function35

kZ , which is independent of the random fields {X1(t)}, . . . , {Xn(t)}. Note that the quantity λe ∈ R
in Eq. (3) will play the same role as λb ∈ R in the basic model, i.e., to ensure that the volume
fraction of Ξ1,e matches the volume fraction of the solid phase observed in tomographic image data.
By considering a spatially varying random threshold {Λ(t), t ∈ R3} given by Λ(t) = λe + Z(t) for
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all t ∈ R3 instead of a global deterministic threshold, the distribution of local effective tortuosity
can be matched better which will be shown in Section 4.3. The calibration of both, the basic and
the extended models to tomographic image data, is described in Section 4.2.

4.2. Model calibration

The calibration of the basic and extended χ2-models to tomographic image data is a multi-step5

procedure. To begin with, we start with the basic model, which has the four parameters n, λb, a
and b, where a and b are given in Eq. (4) below. It turned out that the specific choice of n, i.e.
the number of Gaussian random fields considered in the definition of {Y (t)}, has little influence
on the goodness of fit. Therefore, to minimize the computational complexity, we put n = 2. Thus,
the first step of the fitting procedure concerns the choice of the fixed threshold λb considered in10

Eq. (2). The second step involves the two-point coverage probability function introduced in Eq. (1),
where the phase of interest is the solid phase consisting of active material, binder and conductive
additives.

4.2.1. Calibration of the basic model

The threshold λb > 0 is chosen such that P(Y (0) ≥ λb) = Eν3(Ξ1,b ∩ [0, 1]3) = ε1. Because the15

random variable Y (0) follows a χ2-distribution with two degrees of freedom, this can be easily
achieved by putting λb equal to the ε0-quantile of the χ2-distribution with two degrees of freedom,
which is computed using the Matlab“chi2inv”function. In order to compute the covariance function
kX , we first estimate the two-point coverage probability function C1,1(r) of the solid phase for each
distance r ∈ {0, ..., 30}, where at a distance of at most 30 voxels (corresponding to 19.62 µm) the20

value of C1,1 approaches ε21 for all six samples. Next, by means of Monte Carlo estimation, we
estimate the probability P(X2

1,0 + X2
2,0 ≥ λb, X

2
1,r + X2

2,r ≥ λb) using ` = 106 realizations, where
(X1,0, X1,r) and (X2,0, X2,r) are two stochastically independent random vectors that follow a two-
dimensional standardized Gaussian distribution with Cov(X1,0, X1,r) = Cov(X2,0, X2,r) = ρ for
some ρ ≥ 0 [79]. Let p(ρ) denote the above mentioned Monte Carlo estimate of P(X2

1,0 + X2
2,0 ≥25

λb, X
2
1,r + X2

2,r ≥ λb), which should be equal to C1,1(r) in order to ensure that the two-point
coverage probability function computed from tomographic image data is matched. Thus, for each
distance ri with ri ∈ {0, ..., 30} the value of ρi is chosen such that we minimize the cost function
ζ(ρi) = |p(ρi) − C1,1(ri)| using the “fminbnd” command in Matlab, see [80, 81]. Note that we
assume that kX(r) ≥ 0 for all r ≥ 0. In order to obtain a parametric representation of ρ0, ..., ρ30,30

the covariance function kX is then fitted with a Cauchy template function, i.e., we assume that

kX(r) = (1 + (ar)2)−b (4)

for some parameters a, b > 0, which are determined by the least-squares method implemented in
Matlab [82, 83, 84]. This type of covariance function as well as further frequently used parametric
families of covariance functions can be found e.g. in [48, 85]. At this point, the fitting of the basic
model is complete. In order to simulate the excursion set Ξ1,b of the calibrated basic model, the35

simulation of the Gaussian random fields {X1(t)} and {X2(t)} is carried out using the algorithm
described in [86].

Note that various global morphological properties of simulated 3D microstructures drawn from the
calibrated basic model are comparable to corresponding properties of tomographic image data, see40
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Section 4.3 for details. However, important local morphological properties do diverge significantly,
which motivates the replacement of the basic model Ξ1,b by the extended model Ξ1,e given in
Eq. (3), considering a spatially varying random threshold.

4.2.2. Calibration of the extended model

The fitting procedure for the extended model is similar compared to that of the basic model. First,5

the parameter λe > 0 is chosen such that P(Y (0) + Z(0) ≥ λe) = Eν3(Ξ1,e ∩ [0, 1]3) = ε1. This
can be achieved by setting λe equal to the ε0-quantile of the distribution of Y (0) + Z(0), where
Y (0) follows a χ2-distribution with n = 2 degrees of freedom and Z(0) is a random variable with
standard normal distribution that is stochastically independent of Y (0). In order to estimate this
quantile, we use a Monte Carlo approach and draw 106 realizations from Y (0) and Z(0), respec-10

tively. This allows us to estimate the empirical cumulative distribution function of Y (0) + Z(0)
from which the above mentioned quantile can be computed.

Furthermore, the fitting of the covariance function kX is done in exactly the same way as it is
described for the basic model, see Section 4.2.1. Note that this step assumes that the additional15

introduction of a spatially varying field {Z(t)} does not affect the fitting of kX , which will be
discussed later on, based on the plot on the left-hand side of Figure 2 in Section 4.3. In addition,
we now have to choose the covariance function kZ of the spatially-varying level-set field {Λ(t)}
in a meaningful way. As covariance function for this field, the following parametric family given
by kZ(r) = exp (−c · r) with c > 0 as fitting parameter was chosen to keep the number of model20

parameters and thus the complexity of the model low.
In order to determine the value of c, we define a cost function based on the distribution of local
effective tortuosity of the pore phase. More precisely, the cost function ζ : (0,∞)→ [0,∞) is given
by

ζ(c) =
|µ(τ eff

0,d)− µ(τ eff
0,e)|

µ(τ eff
0,d)

+
|σ2(τ eff

0,d)− σ2(τ eff
0,e)|

σ2(τ eff
0,d)

. (5)

The index k of τ eff
0,k corresponds to tomographic image data (k = d) and the extended model25

(k = e), respectively. In order to keep the computational complexity low, we used one model
realization for estimating µ(τ eff

0,e) and σ2(τ eff
0,e), respectively. The numerical optimization using the

cost function given in Equation (5) has been carried out by the Matlab surrogate optimizer [87].
Thus, the parameters a and b allow us to match a geometrical descriptor of 3D microstructure,
namely the two-point coverage probability function, whereas the introduction of the parameter30

c in the extended model allows us to significantly improve the goodness of fit with regard to a
functional characteristic, namely effective tortuosity, at the same time.

Furthermore, a final smoothing step has been applied to the realizations of the extended model
in order to obtain even more realistic microstructures. This post-processing step, among others,35

reduces isolated voxels of the solid phase. For this purpose, a Gaussian filter with σx = σy = σz = 1
[46, 88] and subsequent global thresholding has been used, where the global threshold has been
chosen in such a way that the volume fraction of the solid phase is matched. Note that this kind
of smoothing is frequently used in the literature [32, 75, 89].

40
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A1 A2 B1 B2 C1 C2

λb 0.95 0.68 0.77 0.52 0.89 0.57
a 0.0036 0.0038 0.0048 0.0041 0.1295 0.1751
b 1598.29 1135.09 1083.2 1141.24 1.11 0.74
λe 1.05 0.67 0.81 0.4 0.98 0.49
c 0.41 0.31 0.34 0.38 0.22 0.5

Table 1: Model parameters of the calibrated random set models for each of the six samples. Note that the value of
c is only used in the extended model, whereas the parameters a and b are used in the basic as well as the extended
model.

The resulting model parameters a, b, c and λb, λe of the calibrated random set models are listed in
Table 1. In addition, a first visual impression of the goodness of fit is shown in Figure 1, where
two-dimensional cutouts of simulated microstructures created with the basic and extended model
are shown together with their tomographic counterparts. A formal model validation is carried out
in Section 4.3.5

4.3. Model validation

In this section, the basic model and the extended model are validated by comparing several mi-
crostructure characteristics of tomographic and simulated image data. Thus, tomographic image
data is used as ground truth in order to quantify the goodness of fit of both 3D microstructure
models. Note that all direction-dependent characteristics have been computed with regard to the10

z-direction, which corresponds to the main direction of electrical and ionic transport. This direc-
tion is also known as through-plane direction. All results shown in this section are averaged over
ten model realizations, where the size of the sampling window equals the size of tomographic image
data. For the sake of clarity, model validation is described in detail with regard to the samples A1
and A2, whereas the results of the model validation with regard to the other four samples are just15

shown in Table 2. At first, we discuss the two point coverage probability function C1,1 as well as
the distribution of local effective tortuosity, which have been used for model fitting.

4.3.1. Characteristics used for model fitting

As shown in Figure 2, the centered two-point coverage probability function (i.e. C1,1 − ε21)) is20

nicely matched by both random set models. In particular, the introduction of the spatially-varying
threshold field {λe + Z(t)} together with the final smoothing step does not change the two-point
coverage probability function significantly. Thus, it is reasonable to compute the covariance func-
tion kX for the fitting of the extended model in the same way as for the calibration of the basic
model. On the other hand, the distributions of local effective tortuosity are considerably closer25

to the one of the tomographic data when considering the extended model compared to the basic
model, both, with regard to samples A1 and A2, see Figure 2. This significant improvement is of
central importance with regard to the simulation of electrochemical properties as already discussed
in Section 3.7. As it can be seen in Table 2, similar results are obtained with regard to the other
samples as well.30

10



Figure 1: Two-dimensional cutouts (160.5 µm × 160.5 µm) of tomographic image data (top) and simulated mi-
crostructures created by the basic model (middle) and extended model (bottom). The solid phase consisting of
active material, binder and conductive additives is depicted in white, whereas the black phase corresponds to
the pore space. The respective structures of sample A1 and sample A2 are shown in the left and right column,
respectively.
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Figure 2: Centered two-point coverage probability function C1,1 (left) and distribution of local effective tortuosity
(right) of samples A1 (blue curves) and A2 (red curves). The results for tomographic image data and the extended
as well as the basic model are represented by the solid, dashed and dotted lines, respectively.

4.3.2. Characteristics not used for model fitting

Next, model validation is carried out with regard to microstructure characteristics that have not
been used for model fitting. At first, geodesic tortuosity is discussed, which allows us to quantify
the length of shortest transportation paths. As can be seen in Figure 3, the improvement with
respect to this characteristic is comparable to the one achieved with regard to effective tortuosity5

when considering the pore phase, i.e., the peaks are closer together and the widths of the distribu-
tions are more similar. This does not only hold for samples A1 and A2, see Table 2. With regard
to shortest paths within the solid phase, the basic model seems to match this quantity better.
However, the scale of the x-axis in the plot on the right-hand side of Figure 3 indicates that due
to the large volume fraction of the solid phase, the values of geodesic tortuosity are close to one10

such that the relative error of the extended model is rather small.

In addition to the previously discussed global geodesic tortuosity, we now consider the distribution
of local mean geodesic tortuosity, which emerges by computing mean geodesic tortuosity on each
each of the 400 non-overlapping cutouts described in Section 3.8. Figure 4 shows a similar pattern15

compared to the plot on the left-hand side of Figure 3, i.e., the extended model is preferable in
comparison to the basic model since the location and the shape of the distribution of local mean
geodesic tortuosity is then much closer to the distribution corresponding to tomographic image
data.
Next, we consider the distribution of local volume fraction of the solid phase, see the plot on the20

left-hand side of Figure 5. Since the fixed threshold λb as well as the threshold λe corresponding
to the extended model are chosen such that the volume fraction of the solid phase ε1 matches on
average the volume fraction observed in tomographic image data, it is no surprise that µ(ε1), which
equals the overall volume fraction ε1, is matched by both random set models. As can be seen in
Table 2, this statement is also true with regard to the other samples. In addition, both models are25

capable of matching the standard deviation σ(ε1), too. Table 2 shows that the extended model

12



1 1.05 1.1 1.15 1.2 1.25 1.3 1.35 1.4

Geodesic tortuosity

0

2

4

6

8

10

12

14

D
en

si
ty

A1 tomography
A1 extended model
A1 basic model
A2 tomography
A2 extended model
A2 basic model

1 1.05 1.1 1.15 1.2 1.25

Geodesic tortuosity

0

5

10

15

20

25

D
en

si
ty

A1 tomography
A1 extended model
A1 basic model
A2 tomography
A2 extended model
A2 basic model

Figure 3: Distribution of geodesic tortuosity of the pore space (left) and the solid phase (right) of samples A1 (blue
curves) and A2 (red curves). The tomographic data and the extended as well as the basic model are represented
by the solid, dashed and dotted lines, respectively.
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Figure 4: Distribution of local mean geodesic tortuosity of samples A1 (blue curves) and A2 (red curves). The
results for tomographic image data and the extended as well as the basic model are represented by the solid, dashed
and dotted lines, respectively.
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improves the goodness of fit with respect to σ(ε1) in four of six cases. With regard to samples A1
and C1, the basic model leads to slightly better results.
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Figure 5: Distribution of local volume fraction of the solid phase consisting of active material, binder and conductive
additives (left) and local specific surface area (right) of samples A1 (blue curves) and A2 (red curves). The results
for tomographic image data and the extended as well as the basic model are represented by the solid, dashed and
dotted lines, respectively.

Next, model validation is carried out with respect to the distribution of local specific surface area,
see the plot on the right-hand side of Figure 5. With regard to sample A1, both random set models5

slightly overestimate the mean value of this distribution. In case of sample A2, both models lead
to almost the same goodness of fit.

With regard to continuous phase size distribution of the pore phase, the extended model again
seems to match the tomographic data better than the basic model, see the plot on the left-hand10

side of Figure 6. In particular, the extended model leads to a significant improvement compared
to the model with a fixed threshold λb when considering sample A2. Furthermore, the plot on the
right-hand side of Figure 6 shows that both random set models lead to a good accordance between
simulated 3D microstructures and tomographic image data with regard to the continuous phase
distribution computed on the solid phase.15

The plots corresponding to MIP of the pore phase show the same pattern compared to the contin-
uous pore size distribution, which can be seen in the plot on the left-hand side of Figure 7. When
considering the solid phase, there is a slight disagreement in the range between 2 and 3 µm (sample
A1) and between 3 and 4 µm (sample A2), respectively.20

Based on the continuous phase size distribution and the results of simulated mercury intrusion,
constrictivity is computed for both phases. As shown in Table 2, the extended model leads to lower
or approximately equal mean absolute percentage errors compared to the basic model, where B1
is the only sample, for which the random set model with a fixed threshold leads to a noticeable25
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Figure 6: Continuous phase size distribution of the pore phase (left) and the solid phase (right) of samples A1 (blue
curves) and A2 (red curves). The results for tomographic image data and the extended as well as the basic model
are represented by the solid, dashed and dotted lines, respectively.
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Figure 7: Simulated mercury intrusion porosimetry of the pore phase (left) and the solid phase (right) of samples
A1 (blue curves) and A2 (red curves). The results for tomographic image data and the extended as well as the
basic model are represented by the solid, dashed and dotted lines, respectively.

better fit with regard to constrictivity.

As can be seen in Figure 8, the distribution of chord lengths of both phases of samples A1 and A2
is matched by both models equally well, where minor differences can be detected for short chord
lengths. With regard to the other samples, one can observe a general improvement when using the5

extended model compared to the basic model, see Table 2.

Hence, it can be concluded that using a spatially varying threshold field {Λ(t)} instead of a global

15
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Figure 8: Chord length distribution of the pore phase (left) and the solid phase (right) of samples A1 (blue curves)
and A2 (red curves). The results for tomographic image data and the extended as well as the basic model are
represented by the solid, dashed and dotted lines, respectively.

threshold λb improves the goodness of fit with regard to most characteristics under consideration.
In particular, the dramatic improvement with regard to the local distribution of effective tortuos-
ity by the introduction of an additional model parameter corresponding to the spatially varying
threshold field is of great importance when using simulated 3D microstructures as structural input
for spatially resolved numerical simulations of electrochemical properties.5

5. Conclusion and outlook

In this paper, we considered two random set models based on χ2-random fields for modelling the
3D microstructure of six differently manufactured graphite anodes, where 3D image data has been
obtained by synchrotron tomography. The basic model describes the solid phase by an excursion10

set of a χ2-random field using a fixed threshold, whereas the extended model is based on a spa-
tially varying threshold. Both models have been validated by comparing microstructure-dependent
characteristics of tomographic and simulated image data, where a particular focus has been put on
effective tortuosity and local heterogeneity, which has been quantified by computing the quantities
computed for 400 small cutouts. It has been shown that the extended model outperforms the basic15

model and is able to generate realistic 3D morphologies of graphite anodes. Thus, the presented
stochastic 3D microstructure model based on a spatially varying threshold can be used in the
future to generate a wide spectrum of virtual but realistic morphologies by systematic variation of
the model parameters. Due to significantly improved fit of the extended model with regard to the
local distribution of effective tortuosity compared to the basic model, these structures can then20

be used for spatially resolved numerical simulations of electrochemical performance to establish
microstructure-property relationships as well as to generate structuring recommendations for the
design of graphite anodes with optimized electrochemical properties.
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Descriptor A1 A2 B1 B2 C1 C2

µ(τ eff
0,e) 2.75 (10) 4.42 (8) 3.7 (6) 7.7 (2) 3.24 (10) 6.95 (9)

µ(τ eff
0,b) 2.35 (23) 2.99 (38) 2.78 (29) 3.8 (52) 2.74 (24) 4.71 (38)

σ(τ eff
0,e) 0.21 (6) 0.78 (4) 0.42 (4) 2.3 (12) 0.64 (10) 2.78 (6)

σ(τ eff
0,b) 0.13 (43) 0.25 (67) 0.15 (65) 0.35 (83) 0.33 (43) 1.53 (48)

Cl0,e [µm] 4.6 (10) 4.19 (9) 4.01 (13) 3.51 (17) 5.09 (4) 3.48 (17)
Cl0,b [µm] 4.51 (12) 3.97 (13) 3.6 (22) 3.2 (24) 4.58 (14) 3.15 (25)
Cl1,e [µm] 7.13 (6) 9.21 (1) 7.81 (7) 10.15 (7) 8.35 (0) 9.23 (9)
Cl1,b [µm] 7 (7) 8.77 (5) 7.07 (15) 9.36 (15) 7.58 (9) 8.48 (16)

Ae [mm]−1 300 (2) 253 (2) 295 (5) 243 (2) 255 (5) 265 (6)
Ab [mm]−1 305 (3) 266 (3) 330 (7) 267 (8) 285 (6) 291 (16)

τ geo0,e 1.117 (2) 1.172 (2) 1.149 (1) 1.238 (0) 1.13 (3) 1.214 (2)
τ geo0,b 1.104 (3) 1.138 (4) 1.125 (3) 1.169 (6) 1.118 (4) 1.177 (5)

τ geo1,e 1.06 (2) 1.041 (2) 1.047 (0) 1.031 (0) 1.055 (2) 1.034 (1)
τ geo1,b 1.074 (1) 1.053 (1) 1.06 (1) 1.041 (1) 1.066 (1) 1.042 (0)

β0,e 0.71 (5) 0.68 (1) 0.7 (21) 0.41 (3) 0.56 (2) 0.42 (2)
β0,b 0.79 (17) 0.71 (6) 0.53 (8) 0.59 (49) 0.76 (32) 0.56 (34)
β1,e 0.64 (19) 0.69 (5) 0.73 (19) 0.71 (1) 0.71 (12) 0.74 (7)
β1,b 0.64 (18) 0.66 (0) 0.62 (2) 0.67 (3) 0.71 (13) 0.73 (6)

µ(τ geo
0,e ) 1.117 (2) 1.172 (1) 1.149 (1) 1.239 (0) 1.131 (2) 1.216 (2)

µ(τ geo
0,b ) 1.105 (3) 1.138 (4) 1.125 (3) 1.17 (6) 1.119 (3) 1.178 (5)

σ(τ geo
0,e ) 0.011 (10) 0.022 (9) 0.015 (5) 0.034 (4) 0.02 (13) 0.033 (19)

σ(τ geo
0,b ) 0.008 (33) 0.013 (39) 0.008 (41) 0.015 (58) 0.014 (40) 0.025 (39)

µ(ε1,e) 0.621 (0) 0.711 (0) 0.679 (0) 0.771 (0) 0.639 (0) 0.752 (0)
µ(ε1,b) 0.622 (0) 0.711 (0) 0.68 (0) 0.77 (0) 0.639 (0) 0.752 (0)
σ(ε1,e) 0.016 (16) 0.018 (12) 0.015 (2) 0.013 (20) 0.029 (26) 0.022 (16)
σ(ε1,b) 0.014 (0) 0.014 (32) 0.011 (30) 0.011 (37) 0.023 (1) 0.021 (19)

µ(Ae) [mm]−1 300 (2) 253 (2) 295 (5) 243 (2) 255 (5) 265 (6)
µ(Ab) [mm]−1 305 (3) 266 (3) 330 (7) 267 (8) 285 (6) 291 (16)
σ(Ae) [mm]−1 5.58 (27) 8.08 (17) 6.65 (14) 8.62 (13) 10.52 (23) 17.7 (0)
σ(Ab) [mm]−1 5 (35) 6.7 (31) 5.49 (5) 7.25 (27) 11.19 (18) 19.73 (11)

Table 2: Distributional descriptors of all considered image characteristics. The values within parenthesis denote
the mean absolute percentage error (MAPE) in % with respect to tomographic image data, i.e., tomographic image
data is used as ground truth for computing the errors.

Data availability

The raw/processed data required to reproduce these findings cannot be shared at this time as the
data also forms part of an ongoing study.
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and K. Palágyi, eds.), (Berlin), p. 247–258, Springer, 2007.

[50] M. B. Clennell, “Tortuosity: a guide through the maze,” Geological Society, London, Special35

Publications, vol. 122, no. 1, p. 299–344, 1997.

21



[51] B. Ghanbarian, A. G. Hunt, R. P. Ewing, and M. Sahimi, “Tortuosity in porous media: a
critical review,” Soil Science Society of America Journal, vol. 77, no. 5, p. 1461–1477, 2013.

[52] B. Tjaden, D. J. L. Brett, and P. R. Shearing, “Tortuosity in electrochemical devices: a review
of calculation approaches,” International Materials Reviews, vol. 63, no. 2, p. 47–67, 2018.

[53] D. Jungnickel, Graphs, Networks and Algorithms. Algorithms and Computation in Mathe-5

matics, Berlin: Springer, 3rd ed., 2007.
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