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Abstract

We present methods of cluster analysis to identify and classify patterns which are formed by stationary point

processes and used e.g. in the modeling of human cartilage cells. In particular, we consider a generalization of the

single-linkage approach which has been appropriately adapted to deal with inhomogeneous data and describe how

the random-forest methodology can be applied to the classification of the previously identified clusters.

Furthermore, we show how statistical techniques for spatial point processes can be used to validate the methods of

cluster identification and cluster classification considered in this chapter.

1.1 Introduction

In this chapter we present methods of cluster analysis to identify and classify patterns which

are formed by stationary point processes and used e.g. in the modeling of human cartilage

cells. In particular, we consider a generalization of the single-linkage approach adapted to

deal with inhomogeneous data and describe how the random-forest methodology can be
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2 CHAPTER 1. METHODS BASED ON SPATIAL PROCESSES

applied to the classification of the previously identified clusters. Note that the problem of

clustering point patterns occurs not only at microscopic scales in fields like biology, physics,

and computational materials science, but also in geographic applications at macroscopic

scales. Often point-process models play an important role in these applications and the

development of special cluster algorithms adapted to the problem at hand is imperative.

Let us first discuss a macroscopical example which builds on a point-process model de-

veloped in [3]. As explained in [4] due to recent technological advances it is now possible to

cost-efficiently produce small sensors which can be used to gather information on their envi-

ronment. Due to their small size such sensors can carry only very limited battery capacities

and devising energy-efficient computation schemes is crucial. As the cost of transmitting

information over large distances is usually higher than the cost of computation itself, it

makes sense to group these sensors into hierarchical clusters so that only one node in each

cluster has to transmit the information to the next hierarchy level. In particular it is de-

sirable to have a cluster algorithm that is capable of creating a large number of moderately

sized clusters. The classical single-linkage algorithm is inappropriate for this task. Indeed,

by percolation theory we can either observe the occurrence of an infinite component or we

obtain a large number of clusters consisting of only very few sensors, see e.g. [25, 31].

Next let us discuss an application at a microscopic scale. Recently it was observed [26,

33, 34] that the arrangement of chondrocyte cells in the superficial zone of human cartilage

form distinct patterns according to the health status of the cartilage, see Figure 1.1 for an

illustration. By being able to analyze these patterns and to understand their connection

to the health status of the examined cartilage, it might become possible to see already on

the scale of cells, where degenerative diseases such as osteoarthritis might develop soon. In

order to create a diagnostic tool based on this observation, one important step is to develop

point-process models for such cartilage patterns, see [26] for early results in this direction.

Using this type of stochastic model makes diagnoses based on cell patterns amenable to

rigorous statistical testing.

Motivated by these applications, the goal of this chapter is to describe how statistical

techniques for spatial point processes can be used in the validation of cluster identification
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Figure 1.1: Chondrocyte patterns in the superficial zone of the condyle of the human knee
joint. Figure taken from [33].

and classification steps, where the chapter is structured as follows. In Section 1.2, we present

a generalization of the classical single-linkage algorithm which may be useful in situations

where substantial inhomogeneities of cluster densities can be observed. To tackle the problem

of cluster classification we recall in Section 1.3 the probabilistic method based on random

forests which was introduced in a seminal paper of Breiman [7]. In Section 1.4, we show how

the introduced methods can be applied to point patterns formed by cell nuclei in human

cartilage tissue. Finally in Section 1.5 we show how statistical techniques for spatial point

processes can be used in the validation of the identification and classification steps, where

we will first describe the model used as test scenario and then explain our results.

1.2 Generalized single-linkage algorithm

We first review some techniques to reconstruct clusters and correctly determine their shape

from a single realization of the model. Naturally this task splits up into two parts. In the

current section we discuss the issue of cluster identification while Section 1.3 is devoted to

the discussion of the classification step. For generalities on the single-linkage algorithm and

other classical hierarchical clustering algorithms we refer the reader to Chapter ??. reference to Chapter 2.1
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1.2.1 Description of the algorithm

When considering the identification of clusters generated by a point-process model, the

classical method of the single-linkage algorithm seems a reasonable choice. Indeed this

algorithm is capable of identifying e.g. long string-like clusters generated inside elongated

ellipsoids, see Section 1.5. However the presence of inhomogeneities of cluster densities

make it difficult to apply this algorithm directly. Recall from Chapter ?? that the classicalreference to Chapter 2.1

single-linkage algorithm has only one parameter corresponding to a global threshold value.

Therefore it is difficult to choose a single global threshold value appropriate for both dense

as well as sparse clusters. We return to this point in Section 1.5.4 where we show numerical

evidence for this observation. We also refer the reader to the survey paper [28] for related

generalizations of classical single-linkage (see also [17] and [32]).

In order to describe our generalization of the classical single-linkage algorithm, we recall

some basic notions from graph theory. A graph G is called locally finite if every vertex has

finite degree. Furthermore a rooted graph is a graph G = (ϕ,E) together with a distinguished

vertex v0 ∈ ϕ. Also recall that a minimum spanning tree on a finite set ϕ ⊂ R3 is a

tree of minimal total length among all trees whose vertices are given by ϕ. Recall from

Chapter ?? that the single-linkage algorithm defines the clustering corresponding to thereference to Chapter 2.1

connected components of the graph obtained from deleting all edges of length larger than

the global threshold value from the minimum spanning tree. To deal with the problem of

varying cluster densities described above we propose to consider a generalization of the single-

linkage algorithm capable of taking into account not only the length of a specified edge but

also the local geometry of the minimum spanning tree close to this edge. This approach can

be seen as a mathematical formalization of the graph-theoretical methods introduced in [36]

for the detection of clusters of different shapes which also make use of local characteristics

of minimum spanning trees.

Definition 1. Write G∗ for the set of all locally finite rooted graphs in R3. A splitting rule is

a function f : G∗×G∗× [0,∞)→ {0, 1} satisfying f(g1, g2, x) = f(g2, g1, x) for all g1, g2 ∈ G∗

and x ∈ [0,∞).

A splitting rule can be used to define a clustering in the following way.



1.2. GENERALIZED SINGLE-LINKAGE ALGORITHM 5

Definition 2. Let ϕ ⊂ R3 be locally finite and let f : G∗ × G∗ × [0,∞) → {0, 1} be a

splitting rule. Write T = (ϕ,ET ) for the (Euclidean) minimum spanning forest on ϕ, i.e.,

{x, y} ∈ ET if and only if there do not exist an integer n ≥ 1 and a sequence of vertices

x = x0, x1, . . . , xn = y ∈ ϕ such that |xi − xi+1| < |x− y| for all 0 ≤ i ≤ n − 1. For

{x1, x2} ∈ ET write Tx1 , Tx2 for the connected components of (ϕ,ET \ {{x1, x2}}) containing

x1 and x2, respectively (and rooted at x1 and x2, respectively). Then denote by ϕf the family

of connected components of the graph (ϕ, {{x1, x2} ∈ ET : f(Tx1 , Tx2 , |x1 − x2|) = 1}) and

call ϕf the clustering of ϕ induced by f .

1.2.2 Examples of splitting rules

To illustrate the usage of the generalized single-linkage algorithm introduced in Section 1.2.1,

let us consider several examples of splitting rules.

Example 3. For f(g1, g2, `) = 1{x:x<α}(`) we recover the usual definition of single-linkage

clustering at level α > 0, where 1A is the indicator of the set A. See Figure 1.2 for an

illustration of this clustering rule.

Figure 1.2: Clustering induced by the splitting rule of Example 3

Example 4. For a finite set A denote by |A| the number of elements in A. For n ≥ 1

we define f(g1, g2, `) = 1 − 1{x:x>n}(|g1,`|)1{x:x>n}(|g2,`|), where gi,` denotes the connected

component containing the root of gi of the subgraph of gi obtained by retaining only those

edges of length not exceeding `. See Figure 1.3 for an illustration of this splitting rule.
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Observe that as n → ∞ the clustering induced by f approaches the minimum spanning

forest from below. Furthermore this splitting rule has the property of being equivariant

under scaling, i.e. for all c > 0 we have (cϕ)f = c(ϕf ).

Figure 1.3: Clustering induced by the splitting rule of Example 4

Although the scaling property of these graphs makes them interesting candidates for the

inhomogeneous clustering problem, we still need to add further modifications. Indeed it

can be shown [19] that on a large class of stationary point processes these graphs almost

surely (a.s.) do not percolate (i.e. all connected components are finite). This property is

beneficial e.g. for clustering of large-scale sensor networks, where one is faced with the task of

separating a diffuse set of points into a large number of connected components of similar and

rather moderate sizes, see [3, 4, 14]. In [4] a Voronoi-based hierarchical network is constructed

and the energy-efficiency of this network is analyzed in a simulation study. One simplifying

assumption in [4] consists in the hypothesis that each sensor can communicate with all other

sensors in their radio range using the same amount of energy. However, in reality the energy

cost of transmissions increases super-linearly in Euclidean distance [10] which suggests that

minimum-spanning-tree based approaches, where short connections are preferred, could lead

to a further increase in energy efficiency. By making use of the truncation parameter n in

Example 4 it is guaranteed that the determination of the edge set at a given node does

not involve the complete graph but can be achieved in a neighborhood of this graph and

additionally allows for the introduction of clusters at different hierarchy level.

However in the current setting, where clusters contain a large number of points, this
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property is rather detrimental since it tends to destroy connectivity inside clusters, even if

mutually well-separated.

Example 5. Taking the discussion following Example 4 into account we propose to use the

following splitting rule f : G∗ × G∗ × [0,∞) → {0, 1}. For 0 < α1 < α2 and n0, n1 ≥ 1

consider

f(g1, g2, `) = 1{x:x<α2}(x)
(
1− 1{x:α1<x}(`)1{x:x>n0}(|g1,`|)1{x:x>n0}(|g2,`|)

×
(
1− 1{x:x≤n1}(|g1,`|)1{x:x≤n1}(|g2,`|)

))
.

See Figure 1.4 for an illustration of this clustering rule.

Figure 1.4: Clustering induced by the splitting rule of Example 5

Let us explain the intuition behind the various components of f .

1. The first factor 1{x:x<α2}(`) ensures that it is possible to distinguish between clusters

having the property that distances between points from one cluster to points from the

other cluster are rather large (i.e. having at least distance α2 from each other).

2. The term 1{x:α1<x}(`) makes sure that close points (i.e. whose distance is at most α1)

always end up in the same cluster.

3. By including the term 1{x:x>n0}(|g1,`|)1{x:x>n0}(|g2,`|) it is granted that the algorithm

does not create unrealistically small clusters (unless they are already separated due to

item 1).
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4. Finally, the term 1 − 1{x:x≤n1}(|g1,`|)1{x:x≤n1}(|g2,`|) is included to prevent that the

algorithm creates unrealistically large clusters.

1.2.3 Further methods

The generalized single-linkage algorithms proposed in Sections 1.2.1 and 1.2.2 are mainly

designed for cluster identification in off-grid data. Further very interesting methods using

spatial processes for cluster analysis of pixel-based data are discussed in [29, 30], where a

Bayesian approach is considered in conjunction with techniques of Markov random fields

to reconstruct clusters of objects from image data arising in meteorology and astrophysics.

We also remark that probabilistic methods for cluster analysis of pixel-based data such

as the stochastic watershed algorithm play an important role in computational materials

science, where a crucial task is the extraction of voxel clusters from (noisy) image data,

see [13, 8, 16, 35]. Furthermore, model-based clustering could prove to be an alternative

approach for our problem to identify and classify patterns which are formed by stationary

point processes (see Section 1.5 for a more detailed discussion).

1.3 Classification methodology

After having discussed the task of cluster identification in Section 1.2, we would like to

classify these entities according to their shapes. To present the main ideas of the principal

methodology clearly, we consider a stochastic point-process model which is capable of creat-

ing two types of cluster shapes, e.g., balls and elongated ellipsoids, see Section 1.5. For this

classification step we use the random-forest approach proposed by Breiman [7]. To provide

the reader with a gentle introduction to this topic we recall some basic definitions and results

from classification theory based on resampling methods, see also Chapter ??.reference to Chapter 6.3
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Figure 1.5: Example of a decision tree classifying vehicles.

1.3.1 Preliminaries on decision trees

To understand the methodology of random forests, let us first review the notion of deter-

ministic decision trees, a classical tool in classification theory, see e.g. [12, 18]. Informally

speaking, the idea of decision trees is to classify an object by answering a sequence of ques-

tions concerning its properties. The question posed at a given point does not need to be

independent of the answer to its preceding questions, i.e. each answer can influence further

questions. Such a sequence of questions and possible answers can be represented by a di-

rected graph, more specifically by a tree, in which each inner node corresponds to a question

and each edge corresponds to a possible answer or a set of possible answers to the question

of the node it is emanating from, see Figure 1.5. The decision tree is always rooted, where

the root node corresponds to the question from which we start classification. Furthermore,

each leaf node, i.e. each node with no further leading edges, needs to be associated with a

category label. To classify a given object, one starts with the question at the root node and

consecutively follows the edges with the answers applying to the currently classified object

until a leaf node is reached. The label of this leaf node is the category our object is assigned

to.



10 CHAPTER 1. METHODS BASED ON SPATIAL PROCESSES

It is important to make sure that the sets of answers corresponding to the edges departing

from a node should be pairwise disjoint and exhaustive. This means, for each possible answer

there should be one and only one departing edge that fits this answer and that can be followed

in this case. The category labels at the leaf nodes do not need to be unique, so there can

be more than one path through the tree leading to the same category. In our case, we only

consider binary decision trees, which means that at each inner node there are exactly two

descending nodes. This is reasonable because any decision tree can be represented by a

binary one and because it strongly simplifies the construction principle to be explained in

Section 1.3.2.

1.3.2 Measures of impurity and construction principle

Next, we need a way to measure the quality of the classification determined by a fixed

decision tree. We have a labeled training dataset M̃ ⊂ M × C, where M is the space of

objects we want to construct a classifier for (in our case the set of possible clusters in R3, i.e.

M = {ϕ ∈ R3 : 3 ≤ |ϕ| <∞}), and C is the finite set of categories to consider (in our case

C contains the two elements ball and elongated ellipsoid). One can interpret a decision tree

as a successive splitting of our training dataset M̃ into subsets: At each node a subset of the

dataset M̃ is split into one part going to the left and one part going to the right descending

node. Building a decision tree can therefore be done by finding a sequence of splits of M̃

that is optimal in some way. In order to measure the quality of a split quantitatively, the

standard approach is to make use of an impurity measure, see e.g. [12, 18]. If V denotes

the vertex set of the graph representing the decision tree at hand, an impurity measure is a

function i : V → [0,∞) satisfying the following conditions:

1. The impurity i(v) at a node v ∈ V should be 0 if all patterns reaching v are from the

same category.

2. The impurity at a node should be large if all categories are equally present.

There are three popular impurity measures we want to mention here, which all fulfill the

conditions given above. If v is any node of a decision tree, we write M̃v for the subset of
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Figure 1.6: Illustration of (appropriately scaled) impurity measures in the two-category case,
i.e. C = {1, 2}.

all patterns in M̃ that reach v and we denote by Pv(j) the fraction of patterns in M̃v, that

belong to category j ∈ C. Given this notation, we define

• Gini impurity iG : V → [0,∞) by iG(v) = 1
2

(
1−

∑
j∈C P

2
v (j)

)
,

• entropy impurity ie : V → [0,∞) by ie(v) = −
∑

j∈C Pv(j) log2(Pv(j)),

• misclassification impurity im : V → [0,∞) by im(v) = 1−maxj∈C Pv(j).

In general, none of these three impurity measures is superior to the others and it depends on

the specific application as to which one is to be preferred. An illustration of these functions

in the two-category case can be found in Figure 1.6.

To define which split is the best according to a fixed impurity measure i : V → [0,∞),

we compare the impurity i(v) of the node v to the impurities i(vL) and i(vR) of the two

descending nodes vL (to the left) and vR (to the right) that result from the split. It is

desirable to maximize the impurity decrease from v to vL and vR. We therefore define the

drop of impurity as ∆i(v) = i(v) − Pv(vL)i(vL) − (1 − Pv(vL))i(vR)), where Pv(vL) is the
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fraction of patterns at node v that go to the left descendent node vL and where i(vL) and

i(vR) are the impurities at the nodes vL and vR. The best split at the node v should maximize

∆i(v).

After having introduced means to measure the quality of a split, it is desirable to construct

decision trees that are optimal with respect to the above measure. In our case, we only want

to use one property for each decision, because a simple structure of the decision tree is

essential for fast computations as they are needed in random forests. This means that if we

consider k properties of our objects in M , we have to find k best splits of M̃v at a given

node v – one according to each property. This yields k values ∆1i(v), . . . ,∆ki(v) for the

respective drops of impurity. The best property to split on can then be chosen as the one

corresponding to the maximal value of ∆1i(v), . . . ,∆ki(v).

In order to find the best split according to a given (numerically valued) property ` ∈
{1, . . . , k} for numerical data as in our case, see Section 1.5.3 below, we confine ourselves to

splittings of M̃v according to a certain value of threshold. That is, one subset consists of

all objects in M̃v for which the value of the considered property is below this threshold, the

other one to the objects for with the value is greater or equal. The best value of threshold is

then the solution of a one-dimensional optimization problem, which maximizes ∆`i(v) and

can be solved numerically.

In the simplest case, the above explained procedure is started with the full training dataset

M̃ and continued at each descending node, until either the descendent node v is pure, which

means that i(v) = 0, or until none of the possible splits leads to a further drop of impurity,

e.g. if two objects from different categories i 6= j in C have exactly the same properties.

Then, the node v ∈ V is declared a leaf node and associated with the category j ∈ C

such that the majority of objects present at node v belongs to category j. Note that it is

not assured that by consecutively choosing the locally optimal split also a globally optimal

decision tree is built. There are several approaches for further optimizing this procedure,

but for the construction of random forests considered in Section 1.3.3 below, only this simple

form of decision trees is needed. We refer the reader to [12] for more detailed information

on this topic.
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1.3.3 Random forests

One major problem of optimal deterministic decision trees discussed in Section 1.3.2 is that

they are optimized with respect to minimizing the training error in contrast to the desired

minimization of the classification error . In other words, these deterministic trees often lead

to a considerable overfitting to the special training set at hand, i.e., the training error is much

smaller than the classification error. The basic idea of the random-forest approach due to

Breiman [7] is to resolve this problem by using a suitable randomization. The random-forest

approach is very flexible and yields robust results also for problems with missing data or

where the number of considered properties (so-called predictors) is huge when compared to

the size of the training set. There are many approaches for randomization, the most popular

are random feature selection, where only a randomly chosen part of the available properties is

considered for each splitting in a decision tree, and bagging , where each decision tree is built

on the basis of a new training dataset which is drawn with replacement from the original

training dataset. Since in our application the number of predictors is small, we concentrate

on the description of randomization by bagging, see [7] for a detailed description of these

and further techniques.

Let r ≥ 1 be the size of the training set M̃ = {m̃1, . . . , m̃r}. The basic idea of bag-

ging is to generate new random training sets by drawing r elements of M̃ uniformly with

replacement. Thus, we consider a random vector Θ = (Θ(1), . . . ,Θ(r)) and the random set

M̃Θ = {m̃Θ(1) , . . . , m̃Θ(r)}, where Θ(1), . . . ,Θ(r) are independent random variables with uni-

form distribution on {1, . . . , r}. Typically, drawing with replacement has the effect of leaving

out approximately (1 − 1/r)r ≈ 37% of the elements of the original training set M̃ which

are not involved in the construction of the best-split decision tree and therefore may be used

e.g. for cross-validation purposes. These elements are called out-of-bag samples .

By repeating this random generation of training sets independently n ≥ 1 times, i.e. by

considering n independent copies Θ1, . . . ,Θn of Θ, we obtain a sequence of independent

random training sets M̃Θ1 , . . . , M̃Θn and may construct decision trees TΘ1 , . . . , TΘn as de-

scribed in Section 1.3.2, where each decision tree TΘi
is based on the random training set

M̃Θi
. Hence, the randomized decision trees TΘi

are random objects as well and as the con-
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struction of a decision tree Tθi
is deterministic once we consider a fixed realization θi of Θi,

the decision trees TΘ1 , . . . , TΘn are independent copies of the random classifier TΘ.

The collection {TΘ1 , . . . , TΘn} of random decision trees is called random forest . For

realizations θ1, . . . ,θn of Θ1, . . . ,Θn, respectively, we call {Tθ1 , . . . , Tθn} a realization of a

random forest. We can construct a classifier based on Tθ1 , . . . , Tθn as follows. If x ∈M is an

element to be classified, we first consider the category that was assigned to x by the decision

tree Tθi
for each i ∈ {1, . . . , n} and afterwards assign x to the most frequent category in this

list. We define the margin function mg : M × C × (Rr)n → [−1, 1] of a random forest by

mg(x, y,θ1, . . . ,θn) =
1

n

n∑
i=1

1{h(x,θi)=y} −max
j 6=y

(
1

n

n∑
i=1

1{h(x,θi)=j}

)
, (1.1)

where 1A is the indicator of the set A and h(x,θi) denotes the category assigned to x by Tθi
.

This function measures how far the average number of votes for the right category exceeds

the average numbers of votes for all other categories. In particular, mg(x, y,θ1, . . . ,θn) < 0

if and only if the object x ∈ M with category y ∈ C is misclassified by the (deterministic)

forest {Tθ1 , . . . , Tθn}.

If in (1.1) we insert the random vectors Θ1, . . . ,Θn instead of their realizations θ1, . . . ,θn

and a random object X together with its random category Y instead of (x, y), we may con-

sider the probability of misclassification. Note that (X, Y ) and (Θ1, . . . ,Θn) are assumed

to be independent random vectors on the same probability space. The probability for mis-

classification conditioned on Θ1, . . . ,Θn is given by

PE∗n = P (mg(X, Y,Θ1, . . . ,Θn) < 0 | Θ1, . . . ,Θn)

called the generalization error , where

P (mg(X, Y,Θ1, . . . ,Θn) < 0 | Θ1, . . . ,Θn) = E(1{mg(X,Y,Θ1,...,Θn)<0} | Θ1, . . . ,Θn),

i.e., the generalization error PE∗n is a random variable. Using the strong law of large numbers,

one can show (see [7]) that for unboundedly growing n the generalization error PE∗n converges
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to a fixed value, which is given by

lim
n→∞

PE∗n = P
(
P (h(X,Θ) = Y | X, Y )−max

j 6=Y
(P (h(X,Θ) = j | X, Y ))) < 0

)
, (1.2)

where h(X,Θ) is the category which is assigned to X by the random classifier TΘ. This is

the reason why random forests do not overfit.

Apart from (at least partially) resolving the problem of overfitting, the bagging technique

has the additional advantage of removing the need to manually leave out a part of the

training set for the purpose of cross-validation. For each labeled object (x, y) we can average

the votes of only those decision trees Tθi
that did not receive (x, y) in their training set M̃θi

.

We assign x to the category which gets most votes in this modified procedure and call this

out-of-bag classifier . For a realization {θ1, . . . ,θn} of the random forest {Θ1, . . . ,Θn} we

can then define the out-of-bag classification error of a specified class j ∈ C as the fraction of

elements in M̃ from class j that were misclassified by the out-of-bag classifier. By repeatedly

generating realizations of the considered random forest and averaging the out-of-bag errors

over all iterations, we obtain an estimator for the classification error of the random forest

classifier for this problem. In contrast to the naive error rate, this estimator avoids the bias

arising if objects are classified which were already included in the training set. However,

as each out-of-bag predictor only uses about one third of all decision trees of the forest,

it should be assured that a sufficiently high number of decision trees is generated for each

random forest.

Finally, the randomization approach also provides us with a tool to single out the most

relevant predictors. Indeed let j ∈ C be a category and π ∈ {1, . . . , k} be a predictor. In

each iteration we may consider the effect of applying a random permutation on the values

of predictor π among all out-of-bag elements of class j. Then we may compare the out-of-

bag classification error of class j before and after this permutation and compute its relative

increase. This value measures the extent to which disturbing the predictor π decreases the

classification accuracy of elements of class j. Averaging these quantities over all iterations we

obtain a measure of how essential predictor π is for the classification in category j. This value

is called importance score. A more formal approach to select the most important variables



16 CHAPTER 1. METHODS BASED ON SPATIAL PROCESSES

with the aim of creating a parsimonious model is described in [27]. To achieve this goal a

convex penalty for trees is used which is related to the so-called nonnegative Garrote [6].

An implementation of random forests based on the original Fortran code by Breiman can

be found in the R package randomForest, see [21].

1.4 Application to patterns of cell nuclei in cartilage tissue

After having introduced our methodology, we give a biomedical example for its application.

As already mentioned in the introduction of this chapter, the cell nuclei of chondrocytes in

human cartilage form distinct patterns according to the type, localization and health state

of the cartilage, see [34, 26]. We now apply our methods to the point patterns formed by

these cell nuclei in order to detect different types of clusters. First, we describe our data

together with some biological background and apply cluster analysis to the originate point

patterns. Later in this section we assign the obtained clusters to different types by use of

the random-forest approach and explain our results.

1.4.1 Data description

Cartilage tissue contains neither nerves nor veins, it consists of chondrocytes – the only cells

that are found in it – and an extracellular matrix that is produced by these chondrocytes

and encloses them. The matrix mainly consists of proteoglycans and collagens, where the

exact composition varies according to the specific type of cartilage. The chondrocytes are

organized in super-imposed layers, a superficial zone at about 0-10%, a middle zone at 10-

40% and a deep zone at 40-100% tissue depth. In the superficial zone, the cell density is very

high and chondrocytes are organized in horizontal patterns as already illustrated in Figure

1.1, while in the deeper zones the cell density is much lower and chondrocytes form vertical

columns.

All our investigated cartilage samples were taken from the human knee joint of patients
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of the BG Unfallklinik Tübingen who were treated with ACI (autologous chondrocyte im-

plantation), only the superficial zone of the cartilage was examined. ACI is a biomedical

treatment method that tries to repair local cartilage damages as they occur, for example,

as a consequence of an accident. Therefore, intact cartilage is taken from an area of the

joint which is not meant to bear much weight. The cells from this healthy cartilage are

isolated, stimulated in vitro to make them proliferate and applied to some carrier material,

for example a biomembrane. When there are enough chondrocytes grown, this carrier ma-

terial containing the cells is reimplanted into the damaged joint. The pieces of cartilage we

examined are the ones that are taken out from around the lesion during this surgery in order

to clear enough space for the implant.

We distinguished three different health states of these cartilage samples: intact cartilage,

cartilage with early osteoarthritis and already severely damaged cartilage. The respective

health state was determined by visual inspection according to the following criteria: the

sample was considered intact if no or nearly no damage was visually recognizable, i.e. if

its surface was smooth and glossy or only slightly roughened. It was considered to be

cartilage with early osteoarthritis if fibrillations, fissuring or major surface roughening could

be detected and it was considered severely damaged if full defects could be found already.

In total we investigated 20 different cartilage samples, which were taken from five different

patients. In each of these samples, the cell nuclei were stained with a fluorescent dye and

three-dimensional images were taken by use of a fluorescence microscope and the technique of

structured illumination. This technique makes it possible to record two-dimensional sections

through the specimen separately without or with only very few noise from above or below the

plane in focus. A stack of these two-dimensional sections can later be combined to the final

three-dimensional binary image, see also [22]. Note that 10 of the 20 images we obtained

like this were taken with ten-fold, 10 with twenty-fold magnification.

After some preprocessing steps we obtained the three-dimensional coordinates of all cell

nuclei contained in each binary image, given in µm relative to the observation window.

As the cells found in the type of cartilage we examined form clusters with characteristic

shapes according to its health state, our goal was to use the methods introduced in Sections



18 CHAPTER 1. METHODS BASED ON SPATIAL PROCESSES

1.2 and 1.3 to first extract and then classify the clusters contained in our samples.

1.4.2 Results

In order to extract the clusters from the point patterns, we applied the single-linkage algo-

rithm as already discussed in Section 1.2, see also Chapter ?? using the Euclidean distancereference to Chapter 2.1

and a threshold value of 22.5µm. This value led to optically good results and is close to

the values that have already been used earlier in [26] for the analysis of similar data. An

example of a clustered point pattern can be found in Figure 1.7. Cell nuclei which belong to

a given cluster are plotted using the same symbol.

Figure 1.7: 3D pattern of cell nuclei with detected clusters (indicated by different symbols).

Next we classify the resulting clusters according to their shapes. We therefore shortly

discuss the choice of properties, which were considered for classification and the choice of

categories the clusters shall be assigned to. We excluded clusters containing less than three

points from the further analysis, as pairs and singletons do not show any relevant geometric
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substructure and thus form their own trivial categories. So the space of objects we want

to classify consists of the set of all finite subsets of R3 containing at least three points, i.e.

M = {ϕ ⊂ R3 : 3 ≤ |ϕ| <∞}.

The set of possible categories E the clusters in M should be assigned to by the classifier

we are going to construct are the specific patterns that are “typical” for the health states of

human cartilage according to earlier studies (see [33]). Three categories will be distinguished

in the following.

1. string: A group of points that are one after another lying preferably regularly on a

line. This pattern is typical for intact cartilage samples from the considered region of

the human knee joint, a microscopic picture of a typical string can be found in Figure

1.1, enclosed by an ellipse.

2. doublestring: A string in which at least one cell has divided once more, leading to

two cells lying next to each other against the orientation of the original string. In

the extreme case, this results in two close parallel strings. This is typical for early

osteoarthritis and the beginnings of degeneration in the cartilage. In Figure 1.1, a

typical doublestring is enclosed by a rectangle.

3. round cluster: A round or ellipsoid-shaped aggregation of points without relevant

substructure. This pattern is typical for already severely damaged cartilage and severe

forms of osteoarthritis. A typical round cluster is enclosed by a circle in Figure 1.1.

We labeled the clusters according to the health state of the cartilage sample they had

been extracted from, hence clusters from intact cartilage were labeled “strings”, clusters from

cartilage samples with beginning osteoarthritis were labeled “doublestring” and clusters from

severely damaged cartilage were labeled “round cluster”. Of course this method leads to some

errors because not only the specific “typical” pattern is contained in each sample of cartilage

but also patterns from the other two types and inarticulate patterns that do not fit any of

the three categories do occur. But at least most of the patterns should be assigned to the

right category by this procedure and labeling by visual inspection would be very subjective

and need a huge amount of time. Using this method, we obtained 332 clusters labeled as



20 CHAPTER 1. METHODS BASED ON SPATIAL PROCESSES

strings, 811 clusters labeled as doublestrings and 98 round clusters.

As we want to classify the clusters according to their shapes, we mainly chose geometric

features as properties for classification. In detail, we considered:

• the ratio of length and width, where length width and depth of a cluster were defined

as the maximum extension in the direction of the coefficient vector of the first, second

and third principal component of the cluster,

• the mean distance to the best line fitted through the cluster (by orthogonal distance

regression),

• the mean distance to the best plane fitted through the cluster (by orthogonal distance

regression),

• the coefficient of determination and the regression coefficient of the following regression:

let dk be the distance from an extremal point in the cluster (chosen as one of the two

points with the biggest distance) to its kth-nearest neighbor, a line through the origin

was fitted to the points (k, dk) by ordinary regression,

• the mean angle between the connection vectors from one extremal point to all other

points,

• the mean angle between the connection vectors from each point (the both extremal

points excluded) to its first and second nearest neighbor,

• the ratio of the mean distance from the centroid and the number of points in the cluster

and

• the ratio of length and number of points.

In [7] evidence is provided that random forests are quite robust with respect to weak

inputs. Therefore we put no additional effort in selecting the best among these features but

considered all of them simultaneously.

We balanced the dataset by a bootstrapping technique. We took about 50% of the number

of clusters from the biggest category, i.e. 408 as we have 811 doublestrings, and randomly
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OOB estimates of error rates
mean value standard deviation

total 0.1249 0.0090
string 0.1435 0.0156
doublestring 0.2242 0.0200
round cluster 0.0069 0.0039

Test set error rates
mean value standard deviation

total 0.3948 0.0187
string 0.4946 0.0551
doublestring 0.3757 0.0255
round cluster 0.1918 0.2263

Table 1.1: Mean values and standard deviations of the error rates of 100 realizations of
random forests with balanced training dataset.

drew that many clusters from each category with replacement. Note that this means that

any cluster can be contained more than just once in the training dataset.

As test set we only considered clusters which were not selected at all for the training

dataset. This was necessary because after resampling the out-of-bag estimators are most

likely positively biased. Many clusters occur more than once in the training dataset, and

hence, the idea of out-of-bag estimation does not work properly anymore. It may happen

that although a cluster is not in the training dataset of a decision tree itself and is therefore

considered out-of-bag for this decision tree, one or more identical copies of the same cluster

are. A second cause of bias in favor of the classification is that patterns which are in the

training dataset more than once are more likely to be classified correctly. Replicating a

cluster has a effect similar as weighting it higher than other clusters, concerning both the

classification itself and the computation of the error rates. A pattern with many replications

in the training dataset is more likely to be classified correctly and the classification outcome

is taken into account once for each replication. This bias is the reason why we decided earlier

to retain a test set additional to the out-of-bag estimation of error rates.

The error rates we obtained seem quite high compared to other classification problems,

see Table 1.1. However, one can see by optical inspection that the majority of clusters in

each cartilage sample was classified correctly, see Figures 1.7 and 1.8. As the classification
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Figure 1.8: 3D pattern of cell nuclei from cartilage with beginning osteoarthritis. Clusters
containing at least 3 points are shown according to whether they were classified as strings
(symbol o), doublestrings (symbol * ) or round clusters (symbol ×).

of single clusters can be seen as a preceding step to the classification of cartilage samples

themselves, which is even more closely related to the problem of diagnosis, this might be

sufficient. Furthermore, it has to be taken into account that the biological data we considered

is highly variable, which led to a high variability of cluster shapes. Knowing that there is in

fact quite a high amount of noise in our data, we consider the error rates acceptable.

1.5 Validation of clustering methodology

In this section we validate the methodology for cluster identification and cluster classification

stated in Sections 1.2 and 1.3, respectively, by performing a Monte-Carlo analysis of a

synthetic point-process example. Similar to the biomedical problem discussed in Section 1.4,

our goal will be first to identify different clusters in a noisy environment and after this

provide a correct classification of the type of the observed cluster shape. In particular,

the main goal of our approach is not necessarily to associate every single data point with
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its true cluster, but to ensure that the numbers of identified clusters of a given shape are

in accordance with those corresponding to the true clusters. Note that the point-process

model discussed in this section would be a prototypical example for model-based clustering

as discussed in [1, 5, 9, 11, 15, 23, 24] and also in Chapter ??. In particular, since for Chapter 3.9

simplicity we consider a synthetical example where the cluster shapes are given by ellipsoids,

it would be particularly well-suited for this classical method. Nevertheless, as explained in

Section 1.4, in practice one often has to deal with non-ellipsoidal shapes and it usually takes

some effort to accommodate model-based clustering to this framework (see [1, 23, 24] for

possible approaches to resolving this problem).

1.5.1 Description of the test scenario

As input data for the validation of the clustering and classification algorithms we consider

synthetic patterns in R3 formed by realizations of a simple point-process model, see [20] for a

detailed introduction to this class of spatial processes. Note that for simplicity of exposition

we consider a three-dimensional example like in Section 1.4, although the methods described

in this chapter can be applied in other dimensions as well. Let us first give an informal

description of our model. We begin with a primary point process X(1) of possible locations

of cluster centers. At each of these centers we place cluster areas with one of two possible

random shapes – either a ball or an elongated ellipsoid, see Figure 1.9a. Afterwards we

remove some of these cluster areas so that the remaining ones are pairwise disjoint (marked

in gray in Figure 1.9a). We then decide for each of the remaining areas independently

whether it is supposed to be filled with a dense or sparse cluster and place an appropriate

number of points uniformly and independently inside this area, see Figure 1.9b. Finally

some background noise is added, see Figure 1.9c.

We now provide a formal mathematical description of this model. For simplicity of ex-

position we consider a basic Poisson-type scenario exhibiting the properties of the informal

description above. It would be interesting to conduct an extensive analysis on far more

complicated (and more realistic) point-process models, but this would be beyond the scope

of this expository chapter.
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a) b) c)

Figure 1.9: Construction principle of the point-process model

Write N for the family of all locally finite subsets ϕ ⊂ R3 and C for the family of all

convex compact bodies of R3. Furthermore denote by SO3 the group of orthogonal matrices

in R3×3 with determinant 1 which can be identified with the group of three-dimensional

rotations around the origin. The point process we are interested in is hierarchically built up

as follows. Let Z+ = {1, 2, . . .} denote the set of positive integers and consider independent

random variables X(1), X(2), X(3), X(4) ∈ N, Z(5) =
{
Z

(5)
n

}
n≥1

, Z(6) =
{
Z

(6)
n

}
n≥1
∈ {0, 1}Z+ ,

U (7) =
{
U

(7)
n

}
n≥1
∈ [0, 1]Z+ and G(8) =

{
G

(8)
n

}
n≥1
∈ SO

Z+

3 with the following properties.

Assume that

1. X(1), X(2), X(3), X(4) are homogeneous Poisson point processes in R3 with intensities

λ1, λ2, λ3, λ4, respectively, where λ3 < λ4,

2. Z(5), Z(6) are sequences of independent and identically distributed Bernoulli random

variables with 1−P
(
Z

(5)
1 = 0

)
= P

(
Z

(5)
1 = 1

)
= p5 and 1−P

(
Z

(6)
1 = 0

)
= P

(
Z

(6)
1 = 1

)
= p6 for some p5, p6 ∈ [0, 1],

3. U (7) is a sequence of independent and identically distributed random variables uniformly

distributed on [0, 1],

4. G(8) is a sequence of independent and identically distributed random rotations uniformly

distributed on SO3.

Let a > 0 and let K0, K1 ∈ C be two fixed compact bodies centered at the origin, where we

assume for simplicity that K0 is an ellipsoid, and K1 a sphere. Write X(1) ∩ [−a/2, a/2]3 ={
X

(1)
1 , . . . , X

(1)
N

}
for the restriction of the Poisson process X(1) to the cube [−a/2, a/2]3,

where N =
∣∣X(1) ∩ [−a/2, a/2]3

∣∣ denotes the total number of points of X(1) in [−a/2, a/2]3.
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For 1 ≤ i ≤ N we say that X
(1)
i survives the construction if there does not exist 1 ≤

j ≤ N with U
(7)
i < U

(7)
j and

(
X
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i +G
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i K

Z
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)
6= ∅. Let us write{

X
(1)
i1
, . . . , X

(1)
iN′

}
for the set of points of X(1) which survive the construction. The final

point configuration X is then obtained as

X =
(
X(2) ∩ [−a/2, a/2]3

)
∪

N ′⋃
j=1

(
X

(
3+Z

(6)
ij

)
∩
(
X

(1)
ij

+G
(8)
ij
K
Z

(5)
ij

))
, (1.3)

where X(2) ∩ [−a/2, a/2]3 is some noise.

To summarize, the main features of the point-process model defined in (1.3) are its ability

to generate both different cluster shapes as well as different cluster densities. In particular,

the Poisson process X(2) generates some background noise, N ′ denotes the random number of

clusters in the cube [−a/2, a/2]3 which survive, and X

(
3+Z

(6)
ij

)
either generates dense clusters

(if Z
(6)
ij

= 1) or sparse clusters (if Z
(6)
ij

= 0). Finally, X
(1)
ij

+ G
(8)
ij
K
Z

(5)
ij

generates the area of

a spherical (if Z
(5)
ij

= 1) or ellipsoidal (if Z
(5)
ij

= 0) cluster.

Finally, after having introduced our point-process model and tools of cluster analysis,

we now validate both the cluster identification as well as the cluster classification steps by

extensive Monte-Carlo simulation based on the underlying spatial point process.

Let us first specify the parameters of the point-process model introduced in (1.3) so that

the following properties are satisfied. On the one hand the number of cluster centers should be

not too large (due to computational restrictions) but also not too small to guarantee that for

a considerable fraction of cases the distance between two different clusters can be rather small

and cluster separation becomes a non-trivial issue. Furthermore the density in dense clusters

should be significantly higher than in sparse clusters so that there is a distinct advantage

in using the generalized single-linkage algorithm in contrast to the standard single-linkage

algorithm. Finally both cluster shapes should occur with a sufficiently high probability

and also the number of background points should not be too small in order to increase the

difficulty of cluster identification.
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We fix the size of the sampling window [−a/2, a/2]3 by putting a = 200 and define suitably

chosen values for the intensities λ1, . . . , λ4 introduced above, where we put

• λ1 = 2.125 · 10−6 (cluster center intensity),

• λ2 = 1.250 · 10−5 (intensity of background noise),

• λ3 = 0.001705 (intensity of cluster points in sparse clusters),

• λ4 = 0.01023 (intensity of cluster points in dense clusters).

Furthermore the lengths of the three half-axes of the elongated ellipsoidK0 are given by 70, 10

and 10, respectively, while we letK1 be a ball whose radius is determined by ν3(K1) = ν3(K0),

where ν3(K) denotes the volume of the set K ⊂ R3. Finally, we put p5 = p6 = 1/2.

Observe that the values of λ1, λ2, λ3 and λ4 have been chosen so that in the sampling

window [−a/2, a/2]3 with side length a = 200 the expected number of cluster centers is

equal to 17, the expected number of noise points is equal to 100 and such that the expected

number of points in dense/sparse clusters is equal to 300 and 50, respectively. A realization

of the point-process model for the test scenario described above is shown in Figure 1.10.

Figure 1.10: Sampled 3D point pattern; cutout in a thin slice of the cube [−a/2, a/2]3
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1.5.2 Choice of classification categories

In this section we show how the general framework of random forests described in Section 1.3

can be applied in the point process setting of Section 1.5.1. Ultimately our goal is to classify

the clusters created in the identification step either as ball-shaped (we call this class ball)

or elongated ellipsoidal clusters (called ellipsoid). However, even when using the generalized

single-linkage algorithm some errors occur already at the stage of cluster identification and

we have to take this problem into account in the classification step. In general, we cannot

say much on the shape of these erratically identified clusters, but we may at least extract

two subclasses that are easy to identify. If we have a set of points that was returned as a

cluster by the clustering algorithm but that is neither an element of ball nor of ellipsoid then

we define its category as follows.

1. If it contains more than a prespecified number of elements κlarge then we define its

category to be errLarge.

2. If it contains less than a prespecified number of elements κsmall then we define its

category to be errSmall.

3. If none of the above applies we define its category to be errRemainder.

This subdivision of the error categories makes it possible to identify more easily at least

those cases where several dense clusters in the model step are merged into only one cluster

in the identification step or if one of the sparse clusters in the model step is subdivided into

several smaller clusters in the identification step. In our Monte-Carlo example we choose

κsmall = 30 and κlarge = 350.

1.5.3 Choice of properties

Finally let us discuss the set of predictors used to assign clusters to the categories defined

in Section 1.5.2. To identify at least some of the obvious misidentifications by the single-

linkage algorithms considered in this chapter, a useful predictor is the size (in terms of
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number of elements) of a cluster. We denote this quantity by nPoints in the following.

In order to distinguish between the categories ball and ellipsoid we need predictors related

to the geometry of a cluster. We may make use of the fact that in elongated clusters the

variance of the cluster points is particularly pronounced in one direction. Quantitatively this

feature may be captured by principal component analysis on the three spatial coordinates of

the points. Indeed for elongated clusters the largest eigenvalue of the empirical covariance

matrix tends out to be much larger than the second-largest one. On the contrary, for ball-

shaped clusters we would expect the eigenvalues to be of similar size. Therefore we include

predictors η1 and η2 which are defined as the quotient of the largest and the second-largest

eigenvalue and the quotient of the second-largest and the smallest eigenvalue, respectively.

1.5.4 Validation of cluster identification

Naturally it is desirable that the quality of the cluster analysis is robust with respect to mod-

erate changes of the parameters. We comment on this issue in detail in Section 1.5.5 below,

but nevertheless let us summarize the main results at already this point. For all parameter

constellations of the point-process model we have considered, the generalized single-linkage

algorithm with the splitting rule given in Example 5 of Section 1.2 had a better performance

than the standard single-linkage algorithm. Since we only considered performance under

optimal parameters of the single-linkage algorithm for cluster identification and since the

standard single-linkage algorithm can be seen as a special case of the generalized single-

linkage algorithm, this is not surprising. When increasing the ratio between the intensities

of dense and sparse clusters, the advantage of the generalized single-linkage algorithm on the

standard single-linkage algorithm becomes less significant, but both improve with respect to

accuracy. Increasing the noise has a greater impact on the performance of the generalized

single-linkage algorithm than on the standard single-linkage algorithm. Finally increasing

the intensity of cluster centers deteriorates the quality of both the standard as well as the

generalized single-linkage algorithm. Both cluster identification algorithms were relatively

robust with respect to changes in the cluster shape.

The first validation step is to compare the quality of cluster identification of the gen-
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eralized single-linkage algorithm to that of the standard single-linkage algorithm. This is

achieved by first generating n = 1000 realizations of the point-process model and computing

the fraction of clusters generated by the point-process model which are detected by each

of the algorithms. For both the standard and the modified single-linkage algorithm the

parameters of the algorithm were optimized using the Nelder-Mead method, see [2]. Note

that the Nelder-Mead method is a popular simplex-based method for heuristically finding

maxima/minima of multivariate functions. An advantage of the Nelder-Mead method in

contrast to other classical optimization techniques such as gradient descent is due the fact

that no knowledge on the derivatives of the objective function is needed. Let us elaborate

on the optimization procedure in our specific setting. Denote by D` = {D`,1, . . . , D`,m`
}

and S` = {S`,1, . . . , S`,m′
`
} the family of dense respectively sparse clusters that appear in

the `-th realization of the point process. We say that the algorithm correctly identified a

dense cluster D`,j if there exists a purported cluster Ξ with max(|Ξ \D`,j| , |D`,j \ Ξ|) ≤ 30.

Similarly, we say that the algorithm correctly detects a sparse cluster S`,j if there is a set

of points Ξ which is deemed to be a cluster by the identification algorithm and such that

max(|Ξ \ S`,j| , |S`,j \ Ξ|) ≤ 5 holds. The bounds 30 and 5 correspond to 10% of the ex-

pected number of elements in a dense respectively sparse cluster. Observe that we chose

different bounds for dense and sparse clusters, since in our application it is appropriate to

use a threshold relative to the cluster size. Indeed, our final goal is to determine the shape

of various clusters and not to determine the membership of a single point to one of these

clusters.

In Figure 1.11 the identification of clusters in a sampled 3D point pattern is visualized

using the splitting rule of Example 5 in Section 1.2, where we also show an example of a

misspecified cluster.

Let ρd denote the ratio of the number of correctly identified dense clusters (accumulated

over the n iterations) by the overall number of simulated dense clusters. Similarly we define

ρs. We want to compare the quality of the two clustering methods under optimal choice of

their parameters α and α1, α2, n0, n1, respectively, where we use the Nelder-Mead search for

the parameters maximizing the sum ρs+ρd. These parameters were introduced in Example 5

of Section 1.2. For the ordinary single-linkage algorithm we obtain an optimal threshold of
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Figure 1.11: Identification of clusters in a sampled 3D point pattern; cutout in a thin slice
of the cube [−a/2, a/2]3

α = 10.66 while for the generalized single-linkage algorithm the optimizer yields the values

α1 = 6.06, α2 = 16.14, n0 = 10 and n1 = 50. Table 1.2 shows the fractions of clusters

detected in the identification step using either the standard or generalized single-linkage

algorithm.

Observe that the α2-value for the generalized single-linkage algorithm is much larger than

the α-value of the standard single-linkage algorithm. This is reasonable, as decreasing the

α-value is the only possibility to distinguish between a larger number of clusters, while in the

generalized single-linkage algorithm α2 can be chosen much higher as we have the additional

possibility to delete an edge between two clusters if one of the subgraphs g1,` or g2,` is

sufficiently large. We also note that the generalized single-linkage algorithm considerably

improves the proportion both of detected dense and sparse clusters when compared to the

standard single-linkage algorithm.

Table 1.2: Proportion of clusters detected in the identification step

algorithm dense clusters sparse clusters total
standard single-linkage 75.7% 52.4% 63.9%

generalized single-linkage 91.5% 79.5% 85.6%
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1.5.5 Robustness of identification quality

Let us conclude by discussing the robustness of the quality concerning the presented cluster-

ing algorithms when changing the parameters of the point-process model. For all configura-

tions of model parameters, the parameters of the single-linkage algorithms were optimized

by the Nelder-Mead method. After that n = 1000 realizations of the point-process model

were generated and the numbers of correctly identified clusters were computed. As a first

step, one may vary the ratio between the intensities of dense and sparse clusters. If we put

p6 = 0.99, so that only 1% of all clusters are sparse, then the standard single-linkage algo-

rithm correctly identifies 84.9% of all clusters while the generalized single-linkage algorithm

correctly identifies 86.1% of all clusters. On the other hand if we put p6 = 0.01, so that only

1% of all clusters are dense, then the standard single-linkage algorithm correctly identifies

only 68.4% of all clusters while the generalized single-linkage algorithm manages to identify

correctly a fraction of 77.4% of all clusters. In a second step, one may change the half-axes of

the ellipsoid K0. If we shrink the size of the largest half-axis by a factor of 2 while increasing

the lengths of the other half-axes by a factor of
√

2, then the standard single-linkage algo-

rithm correctly identifies 79.7% of all clusters while the generalized single-linkage algorithm

correctly identifies a fraction of 92.1% of all clusters. In a third step, one may change the

intensity of the noise, e.g. we may choose λ2 = 2.5 · 10−5 (i.e. double the original value).

Then the standard single-linkage algorithm correctly identifies 64.0% of all clusters while

the generalized single-linkage algorithm correctly identifies a fraction of 82.5% of all clusters.

Finally we can increase the intensity of cluster centers, e.g. let us double the value of λ1 so

that λ1 = 4.5 · 10−6. Then the standard single-linkage algorithm correctly identifies 54.3%

of all clusters while the generalized single-linkage algorithm correctly identifies a fraction of

76.5% of all clusters.

1.5.6 Validation of cluster classification

We now describe the numerical results of the cluster classification based on random forests.

As discussed in Section 1.5.2 each cluster is assigned to precisely one of the five categories

ball, ellipsoid, errLarge, errSmall, errRemainder. Furthermore we use the three predictors
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nPoints, η1 and η2 introduced in Section 1.5.3. We consider the classification of clusters

obtained in 1000 realizations of the point-process model and use a random forest consisting

of 500 decision trees. All clusters consisting of less than four points were discarded, since due

to the choice of our intensities the probability that these points constitute the realization of

a cluster from the original point process practically vanishes. In this way, we can greatly

reduce the number of clusters to be classified. Table 1.3 shows the results obtained for the

out-of-bag estimators for the classification error for the five categories under consideration.

These estimators were introduced in Section 1.3. In particular, we see that the classification

Table 1.3: Out-of-bag estimators for the classification error

ball ellipsoid errSmall errLarge errRemainder total
oob-estimate 0.54% 2.07% 0.00% 1.36% 28.47% 3.12%

error for the four classes ball, ellipsoid, errLarge, errSmall is very low, while for the category

errRemainder it is rather large. This is intuitively reasonable. Indeed the predictor nPoints

is very well suited to discriminate between the sets of categories {errSmall}, {errLarge}
and {ball, ellipsoid, errRemainder}. Similarly, due to the simple geometry of the shapes

considered in our point-process model the predictor η1 is appropriate to distinguish between

ball and ellipsoid. However, as the class errRemainder may contain a variety of shapes, it

is also not surprising that our simple set of predictors has problems to discriminate between

the classes ball or ellipsoid on the one hand and errRemainder on the other hand. These

observations are reflected in the importance scores obtained from the out-of-bag sample, see

Table 1.4. Furthermore, we see that the importance score for the predictor η2 is rather low

when compared to η1 or nPoints (which is also in accordance with intuition). The notion of

the importance score was introduced in Section 1.3.3.

Table 1.4: Importance scores

predictor ball ellipsoid errSmall errLarge errRemainder total
nPoints 0.11 0.096 0.87 0.85 0.19 0.20
η1 0.49 0.58 0.10 0.18 0.32 0.46
η2 0.088 0.054 0.021 0.19 0.027 0.065
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