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Abstract

In process engineering, the breakage behavior of particles is needed for the modeling and optimization of comminution processes.
A popular tool to describe (dynamic) processes is population balance modeling (PBM), which captures the statistical distribution
of particle properties and their evolution over time. It has been suggested previously to split up the description of breakage into a
machine function (modeling of loading conditions) and a material function (modeling of particle response to mechanical stress).
Based on this idea, we present a mathematical formulation of machine and material functions and a general approach to compute
them. Both functions are modeled using multivariate probability distributions, where in particular so-called copulas are helpful.
These can be fitted to data obtained by the discrete element method (DEM). In this paper, we describe the proposed copula-based
breakage model, and we construct such a model for an artificial dataset that allows to evaluate the prediction quality.
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1. Introduction

Population balances are a widely used tool in engineering,
especially in the field of particulate materials. They describe
disperse properties of entities like particles; these properties
are time- and possibly space-dependent (Ramkrishna, 2000).
In population balance modeling (PBM) (Ramkrishna, 2000;
Ramkrishna and Mahoney, 2002), the aim is to describe
processes like, e.g., crystallization or comminution by suitable
population balance equations (see, e.g., Briesen, 2006; Bilgili
and Scarlett, 2005). These equations model the change in the
number of particles with a given property; they are (partial
integro-) differential equations. In such a setting, it is clear
that a model-based description of particle breakage is required
for all processes where breakage occurs. Breakage frequencies
may be seen as a functional of the properties of the individual
particle and the loading conditions. This separation goes back
to Rumpf (1967) and it is stated more precisely in Peukert
and Vogel (2001), where the process function is controlled by
a machine function and a material function. In the case of
comminution, this means that the machine function specifies
the loading conditions (kind of stress, number of stress events
and stress intensity), and the material function describes how
a particle reacts to a given stress event. Combining these
two functions leads to the description of breakage on the
apparatus-scale.

A complementary but very different approach is the discrete
element method (DEM) (Cundall and Strack, 1979; O’Sullivan,
2011). Individual particles are considered explicitly and contact
models describe how they interact with each other. However,
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this technique is computationally expensive, in particular for
large-scale simulations. Yet, this method can be used to
investigate the loading conditions in processes, and it is suitable
to determine the breakage behavior of agglomerated particles.
Quantitative information gained in this way can be used as input
to PBM, see, e.g., Freireich et al. (2011); Dosta et al. (2012,
2013); Barrasso and Ramachandran (2015).

In this paper, we present a new approach to the stochastic
modeling of loading conditions and single-particle breakage
behavior, i.e., breakage probability and breakage function.
The breakage function is essentially a conditional probability
density function (Otwinowski, 2006) — however, this fact
has not been exploited so far. We propose to construct
multivariate (copula-based) probability distributions in order to
use the resulting density functions to derive particle-dependent
loading frequencies, breakage probabilities, and breakage
functions. This information can then be combined to describe
the apparatus-scale breakage behavior. As a consequence, this
method provides a link between DEM and PBM, which is
much more flexible than existing approaches. Note that the
copula-based modeling of multivariate distributions is already
applied in various areas. Typical applications are in finance and
insurance (McNeil et al., 2005), but copulas are also used in,
e.g., climate research (Schölzel and Friederichs, 2008).

The present paper is structured as follows. First,
in Section 2, the basic ideas of PBM and DEM are
explained. Furthermore, copula-based modeling of multivariate
distributions is introduced shortly. In Section 3, the
copula-based modeling of loading conditions and particle
breakage is explained. Then, we present an example in
Section 4. We generate a simple data set, fit copula-based
models to the data, and show that the copula-based models
are able to predict breakage probabilities and fragment size
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Nomenclature
bfragm(x; y) breakage function: number-scaled density

function of fragment properties x for original
particle y (e.g., x and y could be the particle
volume, then [1/mm3])

C a copula, see Appendix A
fmach machine function, see Eq. (5)
fmat material function, see Eq. (6)
ffragm,int probability density function of internal

properties of a fragment
f4 probability density function of a random

variable or random vector 4
f(4|�) (conditional) density function of 4 under

condition �
F4 cumulative distribution function of a random

variable or random vector 4
` loading conditions vector
mint number of internal particle properties [-]
mext number of external particle properties [-]
mload size of loading conditions vector [-]
n(x, t) number-scaled density function for particle

properties x in PBM at time t (e.g., x can be
the particle volume, then [1/mm3])

nDEM(x) probability density function of particle
properties in an apparatus-scale DEM simulation

NDEM-particles total number of particles in DEM simulation [-]
NDEM-stress total number of stress events in DEM simulation

[-]
Nfragm expected number of fragments of a broken

particle [-]
Nparticles(t) expected total number of particles at time t [-]
pbreak breakage probability [-]
rbreak(x) breakage rate of particle with properties x [1/s]
rload(x) loading frequency [1/s]
x particle properties (e.g., particle volume, then

[mm3])
xint internal particle properties
xext external particle properties
(Xint, L1, . . . , Lmload−1,Ccrit) random vector of internal particle properties

Xint, loading conditions L without last
component and critical threshold Ccrit

(X̃int, L̃, Xfragm,int) random vector of internal fragment properties
Xfragm,int and their corresponding original
internal particle properties X̃int and loading
conditions L̃

(Xstress, Lstress) random vector of stress events Lstress in DEM
simulation and their corresponding particle
properties Xstress
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distributions quite well. In Section 5, the results are
summarized and an outlook for future work is provided.
Finally, Appendix A provides an overview on copulas and
typical procedures for fitting such models to sample data.

2. Methods

In this section, we briefly describe the methods required to
develop the copula-based breakage models in Section 3. This
includes a short description of population balance modeling,
the discrete element method, and copula-based multivariate
probability distributions.

2.1. Population balance modeling (PBM)

The population balance equation is a differential equation
that describes the change over time in the number of particles
having certain properties. Particle properties are usually split
up into internal and external properties, i.e., x = (xint, xext),
where both xint ∈ Rmint and xext ∈ Rmext are vectors and mint, mext
denote the numbers of internal and external properties. Internal
properties describe the particle itself, e.g., its size or shape.
Particle coordinates are an example for external properties.
The dynamic particle system is described by a time-dependent
density function n. For fixed time t, n(x, t) describes the
distribution of particle properties, and the expected total
number of particles Nparticles(t) can be obtained from the density
by computing

Nparticles(t) =

∫
Rmint+mext

n(x, t)dx .

In the simplest form of PBM, one assumes a well-mixed
system of particles (no external properties) and considers only
one internal property, i.e., mint = 1, mext = 0. Usually, the
particle size in some sense (e.g., its diameter, volume, or mass)
is used as property coordinate. Then, the population balance
equation that describes an aggregation or breakage process can
be written as

∂n(x, t)
∂t

= b(x, t) − d(x, t) , (1)

where b(x, t) and d(x, t) describe birth and death frequencies
of particles with property x at time t. For example, inlet
and outlet streams can be modeled by these birth and death
terms, i.e., b(x, t) = ninlet(x, t), d(x, t) = noutlet(x, t). However,
both the birth and death terms may depend on the entire
current population n(x, t), therefore, in general, Equation (1)
is an integro-differential equation. Even in such a simple
example, several important effects can be modeled that change
the particle population over time: aggregation, breakage, and
nucleation. All these phenomena can be described by the
“death” of the original particle(s) and “birth” of one or more
new particles (that have other properties).

In this paper, the focus lies on particle breakage. Therefore,
we consider (1) with respect to particle breakage. Birth
and death terms b(x, t), d(x, t) can be obtained by the

standard approach using breakage rate and breakage functions
(Kostoglou, 2007). A breakage process can be described by

∂n(x, t)
∂t

=

∫ ∞

x
bfragm(x; y)rbreak(y)n(y, t)dy − rbreak(x)n(x, t) ,

(2)
where rbreak(x) is the breakage rate of a single particle with
property x, and bfragm specifies the so-called breakage functions.
In principle, both may depend on t and n. The object bfragm
can be understood as a family {bfragm(x; y), y > 0} of breakage
functions, which means that there is an individual breakage
function for every original particle’s size. A breakage function
bfragm(x; y) for some original particle y is the probability density
function of the fragment size distribution scaled with the
expected number of fragments.

It is clear that the breakage behavior depends on the physical
(comminution) process. Therefore, the main problem in using
PBM is to determine suitable breakage frequencies rbreak(x)
and the breakage functions {bfragm(x; y), y > 0}. There are
many different approaches in literature. Very often, so-called
algorithmic breakage functions are used (Kostoglou, 2007):
A family of functions is described by a small number of
parameters, and these parameters are estimated based on
experimental data. The breakage rate is called homogeneous
if rbreak(x) = Kxa for some K, a > 0. This means
that larger particles have a higher breakage rate, which
is frequently observed in breakage processes (Ramkrishna,
2000). The breakage functions are called homogeneous if
bfragm(x; y) = θ(x/y)/y for some suitable function θ. Most
algorithmic breakage functions are homogeneous (Kostoglou,
2007). However, in general, breakage frequencies may depend
on internal and external properties of particles as well as on
the entire particle population and possibly even on external
(time-dependent) process parameters. With the concept of
considering machine and material function separately (Peukert
and Vogel, 2001), it is possible to model much more complex
breakage processes. In this paper, we present a general
approach to the modeling of breakage frequencies and breakage
functions by construction of suitable machine and material
functions.

2.2. Discrete element method

The discrete element method (DEM, see, e.g., Cundall and
Strack, 1979; O’Sullivan, 2011) is a computational technique to
investigate the dynamics of particles on the microscale. Every
particle is represented as a separate object and the forces acting
on each particle are evaluated to predict particle movement,
rotation, etc. based on Newton’s laws of motion. Contact
models define the physical laws (or approximations thereof)
that are used in the simulation. The simulation is performed
in sufficiently short discrete time steps.

DEM is very powerful; however, a problem is that it is
hard to investigate large particle systems as necessary for
industrial-scale processes. For example, in Torbahn et al.
(2016), micron-sized particles in a mm-sized shear-tester are
used to compare experimental results directly to those of DEM
simulations. For the modeling of larger particle systems,
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multi-scale approaches are used frequently. One example is the
combination of PBM and DEM (Freireich et al., 2011; Dosta
et al., 2013, 2014; Barrasso and Ramachandran, 2015). On
the one hand, DEM can be used to understand the loading of
particles in processes (apparatus-scale DEM simulation of the
process). On the other hand, DEM may be used to investigate
the breakage behavior of individual particles (single-particle
DEM simulations as performed, e.g., in Spettl et al. (2015)
using the bonded-particle model (BPM) presented in Potyondy
and Cundall (2004)). Both the single-particle breakage
behavior and the loading conditions can then be combined using
PBM to describe the process on the macro-scale.

2.3. Multivariate probability distributions and copulas
Recall that a (real-valued) random variable X is described

by its cumulative distribution function FX(x) = P(X ≤ x)
for x ∈ R. Distribution functions are often specified by
parametric models like, e.g., the normal distribution, the gamma
distribution or the uniform distribution. Now, a more general
case is considered. If X is an m-dimensional random vector, its
(joint) distribution function is defined by setting

FX(x1, . . . , xm) = P(X1 ≤ x1, . . . , Xm ≤ xm), x1, . . . , xm ∈ R .

Analogously to the univariate case, the distribution of the
random vector X is called absolutely continuous if there exists
a density function fX : Rm → [0,∞) such that

FX(x1, . . . , xm) =

∫ x1

−∞

· · ·

∫ xm

−∞

fX(z1, . . . , zm)dzm · · · dz1,

for all x1, . . . , xm ∈ R. Note that a probability density f is
always normalized to

∫
Rm f (x)dx = 1. In this paper, we also use

unnormalized density functions, e.g., for some time t, n(x, t) is
a density, which integrates to the number of particles.

However, there are few parametric models for the description
of multivariate distributions. The reason is simple: parametric
models with a reasonable number of parameters are often not
capable to describe real-world data — such models are not
flexible enough. For example, think about a two-dimensional
random vector X = (X1, X2). Even if both components
(also called marginals) X1 and X2 are independent, there are
many possibilities for different combinations of the univariate
distributions of X1 and X2. The two marginal distributions
may be chosen from different families of distributions (normal,
log-normal, gamma, uniform, . . . ) or may have different
parameters. Even in that simple example, it becomes obvious
that higher-dimensional modeling approaches make a high level
of flexibility necessary.

A way out of this problem is to model every marginal
distribution separately. This can be done with classical methods
from statistics (see, e.g., Casella and Berger, 2002). However,
the question remains how these marginal distributions can be
recombined to form the joint distribution. This is far from
being trivial, because, in general, the Xi, i = 1, . . . ,m, are not
independent. The question is answered by the relationship

FX(x1, . . . , xm) = C(FX1 (x1), . . . , FXm (xm)), x1, . . . , xm ∈ R ,
(3)

which holds for any random vector X, where, of course, the
choice of the function C : [0, 1]m → [0, 1] depends on the
distribution of X. In this formula, FXi denotes the distribution
function of the ith marginal Xi, and C is a so-called copula. In
other words, Equation (3) states that for every random vector X,
it is possible to split up the complexity of its (joint) distribution
function into marginals and the dependencies between the
marginals. The dependencies are described by the copula C.

The copula C itself is a multivariate distribution function
with marginal distributions that are all uniform distributions
on [0, 1]. If C is selected from a parametric family of
copulas, the parameters specifying C describe the dependence
structure of X. For example, the copula corresponding to
a bivariate normal distribution is called (two-dimensional)
Gaussian copula and it has one single parameter ρ ∈ [−1, 1],
which is the correlation coefficient. Figure 1(top-left) shows
samples of the form (x1, x2) obtained using a bivariate normal
distribution with correlation coefficient ρ = 0.7. A sample
(x1, x2) can be transformed to a sample of the copula by setting
(u1, u2) = (FX1 (x1), FX2 (x2)) ∈ [0, 1]2. The corresponding
transformed samples describing the copula are visualized in
Figure 1(top-right), and histograms for the two marginal
distributions are given in Figure 1(bottom). We can see that the
data can be split up into data describing only the dependence
and data describing only the marginals. Vice versa, fitting
parametric models to both the data of the marginals and the
copula, the joint distribution of X can be reconstructed. This
is the basic idea of copula-based modeling of multivariate
distributions.
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Figure 1: 200 samples of a bivariate normal distribution with expectation vector
(4, 4), variances (1, 1) and correlation coefficient 0.7: scatter plot of samples
in the form (x1, x2) (top-left), scatter plot of pseudo-observations (vectors
(x1, x2) transformed to (u1, u2), cf. Appendix A.3, top-right), and histograms
of marginals (bottom).

Summarizing, copulas are a tool for modeling the joint
distribution function of random vectors. In particular,
they provide an easy method to construct the multivariate
distribution function by splitting up the complexity into several
(less complex) sub-problems. The models of particle breakage
presented in this paper are based on multivariate distributions,
which are constructed using copulas. More details regarding the
basics of copulas, some important parametric copula families
and their fitting to data can be found in Appendix A and, e.g.,
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Mai and Scherer (2012); Joe (2015).

3. Theory

A very general idea for modeling of particle breakage in
processes is given by the approach of Peukert and Vogel (2001).
The comminution process is described by a machine function
and a material function. The machine function specifies the
loading frequency and the loading conditions (kind of stress,
stress intensity). These depend on the type of the mill
and its operation parameters, which may change over time.
Complementary, the material function describes how a particle
will react to a given stress event.

It is useful to formalize this approach by defining the
machine and material functions explicitly, i.e., with the help
of mathematical functions. This is done in Section 3.1. Their
link to DEM simulations is described in Section 3.2. Then, in
Sections 3.3 and 3.4, we explain how the machine and material
functions can be specified based on techniques from probability
calculus — in particular, by use of multivariate distributions.
Finally, in Section 3.5, we state how machine and material
functions can be recombined in order to describe the breakage
behavior of the process.

3.1. Machine and material functions

We introduce a possible mathematical definition of
machine functions. Recall that the particle properties are
specified by internal and external properties as done in
PBM, where the internal properties xint are given as an
mint-dimensional numerical vector, the external properties xext
as an mext-dimensional vector, and together they are denoted
as x = (xint, xext). For particles with properties vector x, a
straightforward way would be to describe the loading frequency
rload and the (mload-dimensional) loading conditions vector ` by
a mapping

(rload, `) = fmach(x, p) . (4)

For particles with properties x, the function yields how often
such particles are stressed individually. This means that rload
is the loading frequency of each particle with properties x, and
` is a vector containing information on the loading conditions
like type of stress event (static loading, dynamic impact,
etc.) and stress intensities (e.g., acting forces, impact energy).
The parameter vector p may be used to provide necessary
information on the current operation parameters of the machine
(e.g., rotational velocity for ball mill, roll gap in roller mill).

However, in real processes all particles with the same
properties x are not stressed equally. Therefore, we replace
the loading conditions vector ` by a “distributed” vector. In
particular, one can think of ` as being a random vector, which
can be described by an mload-dimensional probability density.
This leads to our final definition of the machine function, which
is as follows. In Equation (4), the vector ` is replaced by a
probability density function fload(`), which essentially describes
how often a certain ` is encountered. This leads to the mapping

(rload, fload) = fmach(x, p) , (5)

where we write fload without parameter to emphasize that the
complete function is the returned “value” (i.e., it is not only the
function evaluated at some specific `).

Material functions are constructed to return the expected
behavior of a particle under a certain load (which we also call
single-particle breakage model). In particular, the function
takes the internal particle properties and the loading conditions
as an argument and returns

(pbreak, ffragm,int,Nfragm) = fmat(xint, `) , (6)

where pbreak is the breakage probability, ffragm,int is an
(mint-dimensional) probability density function that describes
the internal properties xfragm,int of the fragments, and Nfragm ≥ 1
is the expected number of fragments.

3.2. Multi-scale DEM simulations

Both the machine and material functions have to be
determined using real experiments or computer simulations.
Detailed simulations like DEM are ideal because all
information can be accessed like, e.g., the collisions in
apparatus-scale simulations. Figure 2 illustrates the general
approach. DEM simulations on the apparatus-scale are
performed for realistic conditions and particle dynamics and
their interactions are recorded. On the scale of single particles
experimental or numerical investigations can be performed to
obtain the material function.

Single-particle scale Apparatus scale

DEM (BPM) DEM PBM

(process parameters)

Figure 2: Schematic illustration of the modeling procedure for PBM.

The stress events from DEM calculations on the
apparatus-scale can be employed as the main tool to predict the
machine function. A stress event of a specific particle appears
when this particle interacts with any other type of object.
Therefore, a collision between particle and wall will result
in one new stress event in the system. A collision between
two particles will result in two events. Each stress event
may be described by several parameters, e.g., one being the
stress intensity. These parameters are described by a loading
conditions vector in the following. Naturally, different collision
types (like particle–particle or particle–wall) have to be taken
into account in a realistic model. There are two approaches to
include these types of stress events. For one, it is possible to
encode this information as a categorical variable in one entry
of the loading conditions vector. This is the direct way. An
alternative is to establish several machine functions — i.e., split
up the data in order to have one machine function as explained
in Section 3.3 for every type of stress event. This leads to
several independent birth and death terms in Equation (1).
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In some cases, due to the high computational effort, the real
distribution of particles cannot be directly simulated with DEM.
For example, to reduce the number of simulated particles, their
size can be increased with a scaling approach (Sutkar et al.,
2013). Another problem is the modeling of wide particle size
distributions, which cannot be effectively done. Therefore,
the density distribution of particles in DEM, nDEM(x), can be
different from n(x, t). In that cases additional extrapolation of
data obtained from DEM is needed. However, in this paper,
we consider the case when nDEM(x) ≈ n(x, t) (up to a scaling
constant; recall that n(x, t) is not normalized to be a probability
density). This means that the data of stress events from DEM
can be transferred directly to the PBM approach. Note that
it is hard to include breakage in the DEM simulations due
to the resulting wide size distributions and large number of
particles. This is exactly the reason why it is useful to only
extract information on stress events from DEM and use these in
a PBM approach.

3.3. Machine function: modeling of loading conditions
We can model the machine function fmach by the following

construction. For every particle with properties x, we model
(a) the specific loading frequency rload and (b) the distribution
of loading conditions fload. The construction is based on data
that can be obtained by DEM simulations. A DEM simulation
on the apparatus-scale yields information on stress events (cf.
Section 3.2 and Figure 2). Recall that, in this paper, we interpret
a collision between two particles as two stress events, one for
each particle.

For convenience, we make some simplifying assumptions.
We assume that we have a stationary regime, i.e., loading
frequencies rload do not depend on time, and that the distribution
of particle properties used in DEM is representative for
the investigated process. From the apparatus-scale DEM
simulations we learn which particle is stressed how and how
often — in particular, we have a set of vectors (x(i)

stress, `
(i)
stress)

indexed by i. These are understood as a sample of a random
vector (Xstress, Lstress). The meaning is as follows. The random
vector Xstress denotes the (mint + mext)-dimensional random
vector of particle properties of a (random) stressed particle, and
Lstress is the corresponding mload-dimensional random vector of
loading conditions. Therefore, the distribution of Xstress is not
a standard, number-weighted distribution of particle properties
in the system — rather, it is the distribution of particle
properties weighted with their respective number of stress
events. The model is based on describing the joint distribution
of (Xstress, Lstress) by specifying a joint density function, which
can be approximated based on the sample data from DEM
simulations. Furthermore, we can easily determine the mean
number of stress events per unit time interval occurring in
whole apparatus, denoted by NDEM-stress.

First, we consider the loading frequency. The aim is
to determine the loading frequency rload(x) of an individual
particle (which is different from fXstress (x) because the latter
must be interpreted with respect to all particles present in the
DEM simulation). The probability density nDEM describes
the distribution of the particles that are present in the DEM

simulation, and fXstress describes how often particles with
properties vector x are stressed. The sought loading frequency
rload(x) must fulfill

fXstress (x) ∝ rload(x) nDEM(x) , (7)

i.e., the left- and right-hand sides must be proportional to
each other. Recall that both nDEM and fXstress are probability
density functions, which means that they integrate to unity.
In order to compute rload from (7), we need to determine the
proportionality factor. Because the number of particles in the
DEM system scaled with the respective loading frequencies
should equal the total number of stress events (per unit time
interval), we know that∫

Rmint+mext
rload(x) nDEM(x)NDEM-particlesdx = NDEM-stress

where NDEM-particles is the total number of particles simulated in
DEM. Therefore, with c = NDEM-stress/NDEM-particles, we have

fXstress (x) =
1
c

rload(x) nDEM(x) .

A simple rearrangement of terms in the equations stated above
leads to the formula

rload(x) =
NDEM-stress × fXstress (x)

NDEM-particles × nDEM(x)
.

Note that the ratio fXstress (x)/nDEM(x) will equal unity if all
individual particles in the system are stressed equally often
regardless of their properties because, in that case, both
probability density functions would be identical. Then, only
the ratio NDEM-stress/NDEM-particles remains, where it can be easily
seen that rload(x) is just the mean number of stress events per
particle in a unit-length time interval.

Based on the random vector (Xstress, Lstress), the distribution
of loading conditions can be predicted by evaluation of the
(conditional) density of (Lstress | Xstress = x). For x with
fXstress (x) > 0, the conditional density f(Lstress |Xstress=x) is defined
as

f(Lstress |Xstress=x)(`) = f(Xstress,Lstress)(x, `)/ fXstress (x), ` ∈ Rmload .

Putting everything together, by knowledge of rload and
f(Xstress,Lstress), the machine function fmach can be defined as

fmach(x) =
(
rload(x), f(Lstress |Xstress=x)

)
, x ∈ Rmint+mext .

In this formula, we did not include the parameter p, which
describes the process conditions. However, it should be
mentioned that the results obtained from apparatus-scale DEM
also depend on p. Note that, in a more sophisticated model, one
should use a set of DEM apparatus-scale simulations to gain
knowledge for different operation conditions.

3.4. Material function: single-particle breakage model
The material function fmat, see Equation (6), maps the

internal particle properties and loading conditions to the
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breakage probability, fragment properties density function, and
expected number of fragments.

The breakage probability pbreak can be obtained as follows.
Let (xint, `) ∈ Rmint × Rmload be the vector that is given as
input. The standard approach would be to predict pbreak directly
from (xint, `) — e.g., by fitting a surface to data obtained from
single-particle DEM simulations. However, depending on the
data, a splitting approach can be applied more effectively. The
idea is to consider one of the loading parameters (in this paper,
it will be the last parameter `mload ) separately from the vector
(xint, `1, . . . , `mload−1). In this case, for every (xint, `1, . . . , `mload−1)
there exists a one dimensional function that depends on `mload

and returns the breakage probability. Such a function can be
constructed as follows. Suppose there is some random variable
Ccrit that describes the critical threshold for the last component,
i.e., the starting point for `mload where the particle breaks. Then,
the value FCcrit (`mload ) of the cumulative distribution function of
Ccrit returns the probability that the critical threshold is at most
`mload . Therefore, we only need to predict the critical threshold
Ccrit (which is influenced by (xint, `1, . . . , `mload−1)).

This can be implemented as follows. For every vector
(xint, `1, . . . , `mload−1), there is some threshold ccrit that can
be determined with DEM. There exist different types of
characteristic types like octahedral shear stress, major principal
stress, etc. which can be used as breakage criteria. An overview
and a comparison between them can be found in De Bono and
McDowell (2016). This threshold is essentially some critical
stress intensity, e.g., the energy required for breakage. We
assume (xint, `1, . . . , `mload−1, ccrit) to be a realization of a random
vector

(Xint, L1, . . . , Lmload−1,Ccrit) .

The distribution of (Xint, L1, . . . , Lmload−1,Ccrit) can be obtained
by fitting to data of single-particle DEM simulations (cf.
Section 4.3), where stressing of particles is simulated, and the
critical stress intensities required for breakage are recorded.
Then, the breakage probability is directly given by

pbreak = P(Ccrit ≤ `mload | Xint = xint, L1 = `1, . . . , Lmload−1 = `mload−1)
= FCcrit |Xint=xint,L1=`1,...,Lmload−1=`mload−1 (`mload ) .

where FCcrit |Xint=xint,L1=`1,...,Lmload−1=`mload−1 denotes the (conditional)
cumulative distribution function of (Ccrit | Xint = xint, L1 =

`1, . . . , Lmload−1 = `mload−1).
The same idea works for the distribution of fragment

properties. Let Xfragm,int be the random vector describing
the properties of single fragments in the same manner as the
internal properties xint ∈ Rmint . The distribution of Xfragm,int
should be predicted from (xint, `). Similar to the modeling of
the critical stress intensity, the joint distribution of the random
vector

(X̃int, L̃, Xfragm,int),

should be modeled. Then, the distribution of the conditional
random vector

(Xfragm,int | X̃int = xint, L̃ = `) (8)

provides all information on the fragments. A technical detail is
that the distribution of (X̃int, L̃) is not equal to that of (Xint, L)
from above — the reason is simple: for the distribution of
fragment properties, the original particle is weighted with the
number of fragments it produces.

Ideally, the modeling of (X̃int, L̃, Xfragm,int) already makes sure
that a fragment may not be larger than the original particle.
However, in practice, it is cumbersome to ensure that this
is the case with probability 1. It is much more convenient
to describe the distribution of (X̃int, L̃, Xfragm,int) without this
constraint. Then, by fitting the distribution to realistic data,
a fragment may be too large, but this happens only with a
small probability. This is a problem that is then solved by only
considering Xfragm,int conditioned on fragment sizes being small
enough. Let the first component Xfragm,int,1 of Xfragm,int as well as
the first component Xint,1 of Xint denote the size of the random
fragment and of the original (random) particle, respectively.
We require that Xfragm,int,1 < Xint,1 with probability 1. This is
achieved by considering

X′fragm,int = (Xfragm,int | Xfragm,int,1 < xint,1)

instead of Xfragm,int. Therefore, the distribution of

(X′fragm,int | X̃int = xint, L̃ = `)

is used to predict fragment properties. Impossible outcomes
are simply rejected. Note that, if sizes are specified using solid
volumes or masses, by conservation of mass, it is clear that the
expected number of fragments from a single breakage event is
given by Nfragm(xint, `) = xint,1/E(X′fragm,int,1 | X̃int = xint, L̃ = `),
i.e., the mean number of fragments can be determined by the
original particle size and the mean fragment size.

Summarizing, the material function fmat is given by

fmat(xint, `) =
(
pbreak(xint, `), ffragm,(xint,`),Nfragm(xint, `)

)
,

for xint ∈ Rmint , ` ∈ Rmload , with breakage probability

pbreak(xint, `) = FCcrit |Xint=xint,L1=`1,...,Lmload−1=`mload−1 (`mload )

and fragment properties density function

ffragm,(xint,`)(xfragm,int) = f(X′fragm,int |X̃int=xint,L̃=`)(xfragm,int) ,

for all xfragm,int ∈ Rmint .

3.5. Linking material and machine functions together:
apparatus-scale breakage model

The single-particle breakage behavior is described by the
material function, and the loading frequencies and loading
conditions are specified by the machine function. Both can
be combined to obtain an apparatus-scale breakage model.
On the apparatus scale, we need the distributions of breakage
frequencies and fragment properties, where both must only
depend on the particle properties. In particular, both do
not depend on the loading frequencies or loading conditions
because this information is already included by an appropriate
averaging.
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Let x ∈ Rmint+mext denote some particle properties. By
applying the machine function fmach, we obtain the probability
density function fload, and the loading frequency rload. Then,
we can compute the breakage probability (averaged over all
loading conditions) by evaluating

pbreak(x) =

∫
Rmload

pbreak(xint, `) fload(`)d` ,

which leads directly to the breakage rate

rbreak(x) = rload(x)pbreak(x) .

The same averaging procedure is applied for the fragment
properties. The distribution of internal fragment properties is
given by the probability density function

ffragm,xint (xfragm,int) =

∫
Rmload

ffragm,(xint,`)(xfragm,int) fload(`)d` ,

for xfragm,int ∈ Rmint . Furthermore, the expected number of
fragments is given by

Nfragm(xint) =

∫
Rmload

Nfragm(xint, `) fload(`)d` .

The breakage function bfragm(xfragm; x) can be obtained directly
from ffragm,xint (xfragm,int) and Nfragm(xint). Note that the procedure
how the external properties of fragments are added depends on
the meaning of the external properties. For example, spatial
coordinates would just be transferred from the original particle.

4. Example

In this section, we explain the methodology with a simple
example. First, we discuss the general procedure for applying
the models of Section 3 in conjunction with DEM. However, in
the present paper, for simplicity we generate a data set without
using DEM. The incorporation of DEM simulations will be the
subject of a forthcoming paper. The generated data is used as
a basis to fit the breakage model, and the prediction quality of
the fitted model is evaluated.

4.1. General procedure

The general procedure for obtaining the machine and
material functions as described in Section 3 is as follows.

1) Determine the internal and external properties that shall be
used in the modeling.

2a) Perform DEM simulations on the apparatus-scale to
obtain information on stress events for given operation
parameters. Note that the DEM simulations require
suitable (calibrated and validated) contact models.

2b) Fit a multivariate distribution to the observations of the
(unknown) random vector (Xstress, Lstress), which captures
the particle-dependent loading conditions.

3a) Perform DEM simulations on the scale of a single particle
to obtain information about influence of stress intensity on
breakage probability and fragment properties. To obtain
such information the bonded-particle model (BPM) can
be effectively used. By BPM an investigated particle
is represented as an agglomerate consisting of smaller
primary particles connected with bonds (Dosta et al.,
2013). During simulation bonds can be destroyed and,
thus, breakage of the initial particle can be modeled.

3b) Fit a multivariate distribution to the observations of
the (unknown) random vector (Xint, L1, . . . , Lmload−1,Ccrit),
which captures the critical stress intensities.

3c) Fit a multivariate distribution to the observations of
the (unknown) random vector (X̃int, L̃, Xfragm,int), which
captures the properties of the fragments.

4) Compute the conditional density functions as necessary
for evaluation of material and machine functions. Usually,
discretization will be needed to solve the PBM.

As already mentioned above, in the following section
we generate a sample data set without DEM. This has the
advantage that the obtained data is simple to model. Otherwise,
technical details would obfuscate the fitting procedure in steps
2b), 3b) and 3c). Furthermore, (realistic) DEM simulations
would need further elaboration on model choice, model
calibration and validation.

4.2. Sample data generation

We generate a simple data set to which we will fit a
copula-based breakage model. Here the breakage behavior of
particles is investigated where the particles are distributed only
through one internal coordinate: their volume x. The initial
distribution is described by the logN(µX , σX)-distribution with
location parameter µX = −1 and scale parameter σX = 0.2. For
modeling, 1000 representatives of the random volume X have
been generated (x(1), . . . , x(1000)). The particle volume density
distribution is illustrated in Figure 3.
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Figure 3: Particle volume distribution of sample data.

In our example, we assume that the vector ` of loading
conditions is one-dimensional and contains the stress energy.
The “critical” stress energy is the breakage energy and it is
assumed to depend on the particle volume according to a linear
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function. In particular, for the particle with volume X, the
random critical energy Ccrit (specified in mJ) is set to

Ccrit = (25 + ε)X (9)

where ε ∼ N(0, σ2
ε) is a normally-distributed noise with σε =

2.5, and ε is independent of X. For every x(i), we simulate c(i)
crit

according to Equation (9), and we obtain a scatter plot as shown
in Figure 4(a). Looking only at the realizations c(1)

crit, . . . , c
(1000)
crit ,

the histogram of critical energies in Figure 4(b) is obtained.
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(a) Scatter plot of particle volumes and critical stress
energies.
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(b) Critical energy distribution of all particles.

Figure 4: Critical stress energies in sample data.

The data on fragments is generated as follows. We assume
that the fragment sizes do not depend on the stress energy.
Furthermore, we make the assumption that the relative fragment
sizes do not depend on the initial particle volume. This
scale invariance means that the distribution of fragments
(described by the random fragment volume Xfragm) appearing
after breakage of particle with random volume X is determined
by

Xfragm/X ∼ Beta(αfragm, βfragm) ,

where Beta(αfragm, βfragm) is the beta distribution with
parameters αfragm = 2 and βfragm = 8. Note that the
beta distribution generates only values in the interval [0, 1].
Therefore, a fragment cannot be larger than the original particle.
With this construction, the average number of fragments is
given by (αfragm + βfragm)/αfragm. For our example, this leads
to the average number of fragments of (2 + 8)/2 = 5. The
sample data generation of the fragment volumes is organized
as follows. We assume that the random number of fragments
Nfragm ∼ Poi(5) has a Poisson distribution. This is a technical
detail of sample data generation: the Poisson distribution is
discrete and returns integer values, and the expected value is
exactly the parameter. This is useful to obtain a statistically
correct number of fragments (although in given simulation runs

the relative fragment volumes do not necessarily sum up to
unity). In DEM simulations on the single-particle scale this
would not be a problem. For a given original particle volume
x(i), the fragments are generated by

1) drawing a realization n(i)
fragm from Nfragm,

2) sampling n(i)
fragm fragment volumes {x(i, j)

fragm, j =

1, . . . , n(i)
fragm} from Xfragm.

The resulting data is shown in Figure 5, where both the scatter
plot against original particle sizes and the histogram of the
overall fragment volume distribution are shown.
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(a) Scatter plot of (original) particle volumes and
fragment volumes.
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(b) Fragment volume distribution of all fragments.

Figure 5: Fragment volumes in sample data.

So far we have described the critical energies and the
fragment volumes of the sample data, which is the data required
for fitting the material function. Now, we consider the data
required for the machine function, i.e., we consider the loading
conditions that are described by the stress event distribution.
For simplicity, we assume that all particles are stressed equally
often (i.e., regardless of their size). Furthermore, we assume
that there is a deterministic relationship between particle
volume and stress energy. (In the reality, a particle with
a specific volume is stressed with varying energies and the
stressing frequency is influenced by its size.) The random stress
energy is defined as Lstress = 25Xstress + 20(Xstress − 0.4)Xstress
for some random particle volume Xstress of stressed particles.
Note that, here, Xstress has the same distribution as X because
the particle volume does not influence the loading frequency.
A scatter plot of realizations of (Xstress, Lstress) is shown in
Figure 6(a), and a histogram of the marginal Lstress is given in
Figure 6(b).

4.3. Fitting copula models to sample data
In this section, we assume that the there is no information

about the distributions of (X,Ccrit), (X̃, Xfragm) and
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(a) Scatter plot of particle volumes of stress events
and stress energies.
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(b) Stress energy distribution of all stress events.

Figure 6: Stress events in sample data.

(Xstress, Lstress). Only the data generated above for the
1000 simulation runs is known. Based on this data and using
copulas we reconstruct and estimate the initial distributions
(previously defined in Section 4.2).

4.3.1. Fitting of (X,Ccrit)
We start with the distribution of (X,Ccrit), which will

be estimated from the data shown in Figure 4(a). The
pseudo-observations of the copula (see Appendix A.3) are
shown in Figure 7(a). We fitted several families of copulas
to the data (Clayton, Gumbel, Frank, Joe, Gaussian, t-copula,
cf. Mai and Scherer, 2012; Nelsen, 2006) using maximum
likelihood fitting, and we selected the best fit using the AIC
(see Appendix A.4). The result is a Gaussian copula with
correlation coefficient 0.906. Samples of this copula are shown
in Figure 7(b), which confirms a good agreement.
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(a) Pseudo-observations
of particle volumes and
critical stress energies.
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(b) Samples of fitted
Gaussian copula.

Figure 7: Modeling of dependence structure for critical stress energies. The
normalization to so-called pseudo-observations is made according to (A.3).

The copula describes the dependence structure of X and Ccrit.
However, we also need the marginal distributions of both X

and Ccrit. This is done with maximum likelihood fitting and
a manual suitable families of parametric distributions. Fitting
a log-normal distribution to {x(i), i = 1, . . . , 1000} yields an
almost perfect fit with µ̂X = −0.998, σ̂X = 0.206. The marginal
distribution of Ccrit is also chosen as log-normal, i.e., Ccrit ∼

logN(µCcrit , σ
2
Ccrit

). This leads to the estimate µ̂Ccrit = 2.213,
σ̂Ccrit = 0.226 based on the data {c(i)

crit, i = 1, . . . , 1000}. The
density function is shown in Figure 8.
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Figure 8: Modeling of critical energy distribution of all particles.

4.3.2. Fitting of (X̃, Xfragm)
Similar to the modeling of particle volumes and critical

energies, the original particle volumes and fragments have to
be described by (X̃, Xfragm). The data is given as a set of vectors
{x̃(i), x(i, j)

fragm, i = 1, . . . , 1000, j = 1, . . . , n(i)
fragm}. Fitting several

copula families to the pseudo-observations and selection of the
best fit with the AIC lead to a Gumbel copula with parameter
1.230. The pseudo-observations and samples drawn from the
copula are shown in Figure 9. The marginal distribution of
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(a) Pseudo-observations
of (original) particle
volumes and fragment
volumes.
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(b) Samples of fitted
Gumbel copula.

Figure 9: Modeling of dependence structure for fragment volumes.

X̃ is log-normal with estimated parameters µ̂X̃ = −1.002,
σ̂X̃ = 0.206. Note that, in this case, all particles generate
(in expectation) the same number of fragments, therefore the
estimated distribution of X̃ is essentially the same as the
distribution of X. The marginal distribution of Xfragm is
described by a gamma distribution with shape parameter 2.429
and rate parameter 22.957. The fit is illustrated in Figure 10.

4.3.3. Fitting of (Xstress, Lstress)
The distribution of (Xstress, Lstress) is modeled a bit differently.

Because we assumed a deterministic relationship for data
generation in Section 4.2, we can use the so-called
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Figure 10: Modeling of fragment volume distribution of all fragments.

co-monotonicity copula. It ensures a perfect dependence
without randomness, i.e., it leads to a monotonically increasing
stress energy in dependence on the particle volume. The
co-monotonicity copula has no parameter — therefore, we need
only to determine the marginal distributions. Note, however,
that this is only the case for the sample data considered here.
For more realistic data, other relationships can be captured by
choosing another copula that fits the data well. Having selected
the copula, the marginal distributions have to be determined.
These include information on the distribution of particle
volumes and loading frequencies. The marginal distribution of
Xstress is again log-normal (with estimated parameters µ̂Xstress =

−0.991, σ̂Xstress = 0.194) because in this case, it was assumed
for data generation that all particles are stressed equally often.
For the marginal distribution of Lstress, we also use a log-normal
distribution. The estimated parameters are µ̂Lstress = 2.209,
σ̂Lstress = 0.253. The fit is shown in Figure 11.
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Figure 11: Modeling of stress energy distribution of all stress events.

Finally, for all three modeled random vectors (X,Ccrit),
(X̃, Xfragm) and (Xstress, Lstress), we can draw samples and
compare them to the original data that was used for fitting.
Figure 12 shows the samples drawn from these copula-based
distributions. We can observe a quite nice agreement with the
original data. In the next section, we evaluate the predictive
abilities of the copula-based model.
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(a) Samples of particle volumes and critical stress
energies.
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(b) Samples of (original) particle volumes and
fragment volumes.
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(c) Samples of particle volumes of stress events and
stress energies.

Figure 12: Samples of fitted distributions for (X,Ccrit), (X̃, X′fragm) and
(Xstress, Lstress).
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4.4. Copula model validation

One quantity that is of great interest is the breakage
probability under a given stress intensity. For that reason,
we selected three different stress energies and evaluated the
predicted breakage probability for all particle volumes. The
results are shown in Figure 13(a). The prediction on the basis
of the copula-based breakage model is shown using dashed red
lines. Due to the data generation method of Section 4.2, we
know the correct result — the desired outcome is shown using
solid black lines. We see that there is a very good agreement.
The interpretation is as follows. Consider x = 0.4 mm3. For
a stress intensity of 5 mJ, the breakage probability is zero
and therefore no particles with this volume are expected to
break under this stress event. For 10 mJ on the other hand,
the breakage probability is about 0.5, which means that every
second particle with x = 0.4 mm3 is expected to break. For an
even larger stress intensity of 15 mJ, the breakage probability
is 1, which leads to the interpretation that all particles with this
volume will break under this load.
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(a) Breakage probabilities in dependence on particle
volume for three different stress energies.
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Figure 13: Comparison of data obtained from theoretical construction of
Section 4.2 (solid black lines) and predictions from fitted distributions of
Section 4.3 (dashed red lines).

Furthermore, we consider the predicted fragment volume
distributions of the copula-based breakage model. We fix three
different original particle volumes and compare the predicted
fragment volume distributions to the theoretically expected
distributions. In Figure 13(b) we can see the predicted density
functions. As expected, large particles break up into large
fragments, i.e., we see a wider fragment volume distribution
than the one for smaller original particles. The match of
theoretical and obtained density functions is not perfect, but
the data is described quite well, even on this limited data set
consisting of 1000 particles. In this evaluation one has to keep
in mind that the copula-based breakage model does not assume

scale invariance of the fragment volume distribution. (If this
is desired, one could consider relative fragment volumes, thus
avoiding the probabilistic dependence on the original volume
and decreasing the dimensionality — however, our aim at this
point is to make few assumptions and obtain good predictions
anyway.)

5. Conclusions and outlook

In this paper, we presented a new approach to the modeling
of breakage behavior of particles. This is important in process
engineering, where comminution occurs and processes are
modeled using PBM. The proposed approach is based on
copulas, a well-known tool for the modeling of multivariate
distributions. We showed that copula-based distributions are
suitable to describe both the machine function as well as the
material function. We generated a sample data set, fitted
copula-based distributions and evaluated the quality of their
predictions.

A big advantage of the proposed approach is its high
flexibility. There are almost no restrictions on the effects that
can be modeled. However, at the same time, this is also the
largest disadvantage. Making only few assumptions in the
model construction, there needs to be sufficiently many sample
data in order to obtain realistic stochastic models. This makes
extensive DEM simulations necessary.

In a follow-up paper, we will use data from DEM simulations
to describe realistic scenarios, and use the developed models
for a PBM-based description of a real process. This is beyond
the scope of the present paper. In practice, there may be
some technical problems — for example, the fragment size
distribution is often not nearly as nice as in the example
considered in the present paper. Then, mixed distributions
or similar techniques can be used to obtain good stochastic
models for the data. Note that this does not change anything
in the methodology. From our point of view, the choice of
(mixed) distribution families should be made according to the
data because it is unlikely that one suggested distribution family
for e.g. fragment sizes will work in all cases.

Appendix A. Copula-based modeling of multivariate
distributions

Although copula-based modeling of multivariate
distributions is already applied in different areas, it is not
yet well-known on a broad basis. Typical applications are in
finance and insurance (McNeil et al., 2005), but there are also
some other applications like, e.g., in climate research (Schölzel
and Friederichs, 2008). In this appendix, we aim to give a short
introduction to copulas, present typical copula families, and
explain their practical application like model choice and fitting.
More details can be found in books on copulas, e.g., Mai and
Scherer (2012); Nelsen (2006).

12



Appendix A.1. Definitions and basic properties
In this section, a short introduction to the modeling of

random vectors and their multivariate distributions is given.
The modeling idea is to consider marginal distributions and
the dependence structure separately — and the dependence
structure is described by a copula. More precisely, a copula is
an m-dimensional distribution function with uniform marginals
on the interval [0, 1]. The theoretical foundation for splitting
marginals from the dependence structure is Sklar’s theorem
(Nelsen, 2006; Mai and Scherer, 2012; Joe, 2015; Ruppert
and Matteson, 2015). Let X = (X1, . . . , Xm) denote an
m-dimensional random vector with multivariate distribution
function FX(x1, . . . , xm) = P(X1 ≤ x1, . . . , Xm ≤ xm). It has
marginal distribution functions FXi (x) = P(Xi ≤ x) for Xi,
i = 1, . . . ,m. Then, Sklar’s theorem states that there exists a
copula C such that

FX(x1, . . . , xm) = C(FX1 (x1), . . . , FXm (xm)) (A.1)

for all x1, . . . , xm ∈ R (this is exactly Equation (3)). Vice
versa, given an m-dimensional copula C and m one-dimensional
distribution functions FX1 , . . . , FXm , then FX defined as in (A.1)
is a multivariate distribution function.

The most simple copula is the so-called independence copula
(or product copula). It is given by

CΠ(u1, . . . , um) = u1 · · · um ,

which makes it obvious that a multivariate distribution with this
copula must have independent components. On the other hand,
a perfect positive linear dependence (without randomness) is
given by the co-monotonicity copula

C+(u1, . . . , um) = min{u1, . . . , um} .

Appendix A.2. Parametric families of copulas
Most copulas used in practice belong to parametric copula

families. For example, such a family is given by the Gaussian
copulas. A Gaussian copula corresponds to the dependence
structure of a multivariate normal distribution. Let Σ ∈ Rm×m

denote a correlation matrix. Then, the Gaussian copula with
parameter matrix Σ is given by

CGauss
Σ (u1, . . . , um) = ΦΣ

(
Φ−1(u1), . . . ,Φ−1(um)

)
,

where ΦΣ is the distribution function of a multivariate normal
distribution with expectation vector zero and covariance matrix
Σ, and Φ−1 is the inverse distribution function (i.e., quantile
function) of a (univariate) standard normal distribution.

A similar approach works for the multivariate t-distribution,
which is characterized by its degrees of freedom ν ∈ N, location
parameter η ∈ Rm and positive definite scale matrix Σ ∈ Rm×m.
The t-copula is given by

Ct
ν,Σ(u1, . . . , um) = Fν,Σ

(
t−1
ν (u1), . . . , t−1

ν (um)
)

where Fν,Σ is the joint distribution function of a t-distributed
random vector with ν degrees of freedom, scatter matrix Σ =

Table A.1: Some important Archimedean copula families and their generators.
Note that “log” denotes the natural logarithm.

name of family range of θ generator ϕθ(t)

Gumbel [1,∞) (− log(t))θ

Frank (−∞,∞)\{0} − log
(

exp(−θt)−1
exp(−θ)−1

)
Clayton [−1,∞)\{0} 1

θ

(
t−θ − 1

)
Joe [1,∞) − log

(
1 − (1 − t)θ

)
Ali-Mikhail-Haq [−1, 1) log 1−θ(1−t)

t

and location parameter η = (0, . . . , 0), and t−1
ν denotes the

quantile function of a univariate standard t-distributed random
variable with ν degrees of freedom. It is worth mentioning that
both the Gaussian and t-copulas belong to the class of so-called
elliptical copulas (Mai and Scherer, 2012).

Another important class of copulas is known as the
Archimedean copulas. They are easily constructed, very
different dependence structures can be modeled, and they have
nice mathematical properties (Nelsen, 2006). Let ϕ : [0, 1] →
[0,∞] be a continuous, strictly decreasing function such that
ϕ(1) = 0 and let

ϕ[−1](w) =

ϕ−1(w) if 0 ≤ w ≤ ϕ(0),
0 if ϕ(0) ≤ w ≤ ∞

denote its pseudo-inverse. If ϕ is convex, then

C(u, v) = ϕ[−1] (ϕ(u) + ϕ(v)) , u, v ∈ [0, 1],

is a two-dimensional copula (Nelsen, 2006). It is called
an Archimedean copula with generator ϕ. Note that a
generalization to higher dimensions is possible, but another
condition is necessary for ϕ such that C is a copula (Nelsen,
2006).

By choosing different generator functions, it is possible
to construct various families of Archimedean copulas. Very
important families are: Gumbel, Frank, Clayton, Joe,
Ali-Mikhail-Haq. These families are implemented in the
R-package copula (Hofert et al., 2015) and their generators are
given in Table A.1. (Note that some authors switch the meaning
of the generator function and its pseudo-inverse, i.e., notation is
just the other way round. This may be confusing at first glance
when the generator is “different”.)

Appendix A.3. Parametric pseudo-maximum likelihood

A common case is that there are n ∈ N observations
{(xi,1, . . . , xi,m), i = 1, . . . , n} of a random vector X =

(X1, . . . , Xm), whose multivariate distribution function FX is
unknown. A standard approach in this case is to combine
a (parametric) copula C and m (parametric) one-dimensional
distribution functions FX1 , . . . , FXm . This is possible by formula
(A.1), yielding the multivariate distribution function FX . In
theory, it is possible to use standard maximum-likelihood
fitting to estimate all parameters that describe the marginal
distributions as well as the copula. However, this is often not
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feasible because the optimization problem is high-dimensional,
possibly multi-modal, it cannot be solved analytically and
it is hard to choose a suitable initial guess for iterative
numerical methods. Therefore, the univariate marginals are
fitted separately using classical maximum-likelihood (Casella
and Berger, 2002), i.e., for every j ∈ {1, . . . ,m}, the distribution
function FX j is estimated from the sample {xi, j, i = 1, . . . , n}.
Finally, the copula is fitted to the transformed observations

{(FX1 (xi,1), . . . , FXm (xi,m)), i = 1, . . . , n} (A.2)

by maximum-likelihood. This methodology is called
parametric pseudo-maximum likelihood (Ruppert and
Matteson, 2015).

Note that, very often, the copula fitting is based on so-called
pseudo-observations (Hofert et al., 2015), which are given by

{(ui,1, . . . , ui,m), i = 1, . . . , n} ={( n
n + 1

F̂X1 (xi,1), . . . ,
n

n + 1
F̂Xm (xi,m)

)
, i = 1, . . . , n

} (A.3)

instead of (A.2), where F̂X j (z) = 1
n
∑n

i=1 1{xi, j ≤ z} denotes
the empirical distribution function of X j. The scaling with

n
n+1 is asymptotically negligible and only a technical detail (for
practical reasons, it is an advantage for all values to lie in the
open interval (0, 1)).

Appendix A.4. Selecting a parametric family using AIC

Sometimes, it is a problem to decide which family of
distributions (or copulas) fits the data best. An optical
impression may be misleading or different types of deviations
cannot be compared easily. When using maximum-likelihood,
a reasonable way is to choose the parametric family whose
(log)likelihood value is the largest. However, in the case of a
different number of parameters, the maximized likelihood value
should not be compared directly — the additional flexibility that
makes better fits possible comes at the cost of more parameters,
which is a clear disadvantage. A standard technique to
balance goodness-of-fit and complexity is Akaike’s information
criterion (AIC) (Akaike, 1974). For a given parametric family
of distributions (or copulas), it is defined as

AIC = 2(p − log L(η̂)) ,

where p is the number of parameters and L(η̂) denotes the best
likelihood value (which is adopted for parameters η̂ ∈ Rp).
Having computed the AIC for several different families, one
selects the family that yields the smallest AIC value.
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assemblies. Géotechnique 29, 47–65.

De Bono, J., McDowell, G., 2016. Particle breakage criteria in discrete-element
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