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Abstract

It is well known that the microstructure of the active material in lithium-ion
battery electrodes has a strong influence on the battery’s performance. In order
to improve functional properties of lithium-ion batteries, designing optimized
electrode morphologies is an important task. As exploring a large set of pos-
sible design concepts via laboratory experiments is very expensive in cost and
time, model-based simulations have become an important tool to explore a broad
range of possible microstructures on the computer. They allow a preselection
of promising design concepts. This procedure, which is called virtual materials
design, involves two main tasks. First, a tool for creating virtual, but realistic
electrode morphologies is needed. This tool must be able to generate a broad
range of electrode microstructures on the computer. In a second step, the per-
formance of these virtual electrodes must be evaluated using spatially resolved
numerical transport simulations. In the present paper, the first part of this pro-
cedure is addressed. A general framework based on tools of stochastic geometry
is presented, which can be used to create a broad range of different electrode
microstructures on the computer. To demonstrate the wide spectrum of possi-
ble outcomes of the microstructure generator as well as its ability to describe
real electrode microstructures, we show how the microstructure of three types of
electrodes, which exhibit rather different morphologies, can be described using
different adaptions of the framework. A comparison of structural characteristics
of the model outputs and tomographic image data of real electrodes indicates
a good fit of the model. Moreover, we show how design concepts can be im-
plemented for generating virtual electrode microstructures that can be used as
input for spatially resolved transport simulations.
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1. Introduction

Although lithium-ion batteries are, due to their high energy density, wide-
spread in many applications [1], production costs are high while the energy
density is still too small for an entirely satisfying application in the automotive
sector [2]. As it is well-known that the microstructure of battery electrodes5

strongly influences their performance [3], it is highly desired to identify optimal
electrode morphologies. With laboratory experiments being expensive in cost
and time, many approaches are based on modeling and simulations, see, e.g.,
[4]. In [5], a tool for spatially resolved electrochemical transport simulations has
been developed, which has recently, e.g., been applied to analyze properties of10

thick electrodes [6]. However, for systematic investigations of the relationships
between the microstructure of electrodes and their electrochemical properties,
it is necessary to have a broad range of electrode microstructures as input for
spatially resolved electrochemical simulations. In the present paper, a frame-
work for such a microstructure generator is described. The basic idea is to15

model the individual active particles of the electrodes using spherical harmonics
expansions of Gaussian random fields. Note that spherical harmonics can be
used to represent functions defined on a sphere, see [7] for an overview. Mod-
eling of particles using spherical harmonics has successfully been performed in
[8] and [9]. In [10], an approach to ensure a realistic arrangement and connec-20

tivity of particles in the sampling window is presented for modeling of battery
electrodes. This method is extended in [11, 12]. The modeling approaches
considered in [10, 11, 12] are based on tools of stochastic geometry [13]. The
main idea is to subdivide the region of interest into a space-filling system of
polytopes, a so-called Laguerre tessellation, see [14] for details on this topic.25

Subsequently, the individual particles are placed inside the polytopes, where a
pre-defined connectivity of particles is ensured using a connectivity graph (see
[15] for details on graphs). While exhibiting a remarkably good fit to exper-
imental data for different scenarios (anodes in energy and power cells as well
as pristine and aged cathodes), these models also have some limitations which30

make their application for virtual materials testing difficult. On the one hand,
the model construction via Laguerre tessellations is rather complicated and the
number of parameters is quite large, and, on the other hand, the parameters
are rather abstract variables with no direct geometrical interpretation. This
makes it difficult to systematically vary and adjust morphological parameters.35

For instance, even predetermining a specific particle size distribution is difficult,
as the particle size distribution can not be directly expressed as a function of
model parameters. Therefore, in the present paper a simplified version of these
models is presented, where the number of model parameters is kept small, and
many model parameters have a direct geometrical interpretation. In particu-40

lar, the particle size distribution is a direct, adjustable input parameter. The
basic idea is to omit the construction via a random tessellation, and, instead,
use a random packing of spheres to control the spatial arrangement of particles.
These spheres are subsequently replaced with particles which are generated us-
ing spherical harmonics, whereby their volume is retained. This procedure has45
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three main advantages. First, as already mentioned above, the particle size
distribution can be directly adjusted by predetermining the size distribution of
the spheres being packed. Moreover, sphere packing algorithms are reproducing
the production process of electrodes in a more natural way than the approach
via tessellations, i.e., a random packing of spheres can be interpreted to mimic50

the random allocation of particles when casting the suspension of an electrode.
It turns out that, surprisingly enough without further presets, this approach
leads to a good representation of how particles are in contact with each other in
real data. Finally, the small number of parameters, which mainly have a direct
geometrical interpretation, allows for a systematic variation of morphological55

properties.
The model described in the present paper is constructed in a modular con-

cept, which consists of three main modules. Each module can be adjusted to the
specific needs in a given application, where “adjustment” does not only mean a
different choice of parameters, but slightly changing the setup of the individual60

modules. We first present the general framework with a simple example, i.e.,
each of the modules is kept in the most simple way. Afterwards, we show how
the three modules can be adjusted to three different battery scenarios, anodes in
energy and power cells as well as cathodes. Finally, we give examples for adjust-
ing the modules for generating virtual electrode microstructures. The modular65

concept has the great advantage that a collection of slightly different implemen-
tations of each module can be created. When generating virtual structures, a
choice for each module can be made and the different modules can be combined
with each other.

Note that the framework described in the present paper is not only applicable70

for lithium-ion battery electrodes, but similar methods can be used to model
other particulate materials.

The outline of the paper is as follows. The general framework of the modeling
idea is presented in Section 2. Examples using specific adaptions of the frame-
work are presented in Section 3. For the three examples under consideration, a75

comparison of structural characteristics of model realizations and tomographic
image data is performed to show that the simulation outcomes are realistic.
Applications for virtual materials design using the framework are described in
Section 4. Conclusions are drawn in Section 5.

Note that in Section 4 only two examples for the generation of virtual mi-80

crostructures are presented. For an overview of further virtual structures that
can be generated using the framework described in the present paper, we refer
to the supplementary material.

2. Modeling framework

2.1. Overview85

In order to model a system of connected particles, three main steps are
necessary. This is (a) modeling of locations and approximate sizes of particles,
(b) determining how particles should be in contact with each other and (c)

3



●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

(a)

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

(b)

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

(c) (d)

Figure 1: (a) Approximate locations and sizes of particles are modeled using a random allo-
cation of spheres (black circles). This can, e.g., be achieved using the force-biased algorithm
for random sphere packing. (b) A connectivity graph (blue) determines how particles should
be connected with each other. This can, e.g., be the minimum spanning tree. (c) For each
sphere, a particle with approximately the same size is modeled using a Gaussian random field
on the sphere (grey), where the connectivity conditions are fulfilled. (d) Spheres and graph
are deleted and only the (connected) system of particles is retained.

modeling of particles themselves according to the specifications of the first two
steps. These steps are illustrated as a 2D sketch in Figure 1. A 3D view can90

be found in Figure 2. The main difference of the approach proposed in the
present paper compared to the ones in [10, 11, 12] is to use a random packing
of spheres in the first step instead of random tessellations. These spheres act as
a placeholder for the particles that will be created in a later step. Thus, they
define their approximate locations and sizes. We will denote this set of random95

spheres by Ξ = {(Si, Ri), i = 1, ..., N} with Si ∈ W ⊂ R3 a random vector in
the sampling window W , a random radius Ri > 0 of the corresponding sphere
and N the random number of spheres in the sampling window. Such a random
packing of spheres with predefined radii can be generated using the force-biased
algorithm [16, 17]. Based on these spheres, a connectivity graph G = (V,E)100

is constructed, where the vertex set V = Ξ is the system of spheres, and the
edgeset E ⊂ Ξ × Ξ consists of pairs of spheres. If there is an edge between
two spheres, this indicates that the corresponding particles are supposed to
touch each other. In contrast to the tessellation-based approach, in a random
allocation of spheres generated by a packing algorithm it is much easier to105

implement such connectivity conditions, due to the fact that, if two spheres
(almost) touch each other, it is easy to model two touching particles with the
same volume as the spheres. The particles themselves are finally modeled using
Gaussian random fields on the unit sphere, where the connectivity conditions
can be reached by sampling from conditional multivariate normal distributions,110

which is possible by solving systems of linear equations.
In the following subsections, each modeling step is described in more detail.

An example of a simple implementation of each step is given, which results in
the example structure discussed in Section 2.5. Further implementations of the
individual steps tailored to specific situations are discussed in Section 3.115

4



Figure 2: Left: Random sphere packing (grey) and connectivity graph (blue) in 3D. Right:
System of particles simulated based on sphere packing and connectivity graph on the left.

2.2. Modeling of particle locations and sizes

In the first step, the approximate locations and sizes of particles are deter-
mined. These two features can be interpreted as a system of spheres, where the
location of the sphere determines the approximate location of the particle, and
the radius of the sphere determines its approximate size (as a volume-equivalent120

radius of the particle). A common tool to simulate such a random packing of
spheres is the force-biased algorithm [16, 17, 18]. Based on an initial configura-
tion of (overlapping) spheres, an iterative rearrangement is performed until the
spheres do not overlap any more. The initial configuration is achieved as follows.
Sphere radii are sampled from the desired particle size distribution R, where125

throughout this paper, particle sizes will be considered as volume-equivalent
radii. Spheres with radii drawn from R are thrown into the sampling window
at random until the sum of volumes of all spheres divided by the volume of the
sampling window exceeds a certain threshold ξ. The threshold ξ is chosen as
the desired volume fraction of the active material in the electrode that is mod-130

eled. After iterative rearrangements, this results in a system of non-overlapping
spheres Ξ = {(Si, Ri), i = 1, ..., N}, where the sphere radii follow the desired
particle size distribution R and the volume fraction of the sphere system in the
sampling window matches the desired volume fraction of the active material in
the battery electrode. For a visualization, see the 2D sketch in Figure 1(a) and135

the spheres in Figure 2, left. This is the basis for the next modeling step.
Note that not necessarily a random packing of spheres has to be used, but

other approaches that lead to a system of marked points Ξ on W , e.g., random
marked point processes, can also be used. However, for the examples discussed
in the present paper, a random packing of spheres leads to reasonable results,140

which indicates that for a broad range of structures random packings of spheres
can be used for the first modeling step.

Using the random sphere packing allows to directly control the approximate
volume fraction ξ of the active material as well as the particle size distributionR.
Moreover, further characteristics can be controlled. For instance, in a slightly145
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modified version, the approximate pore size distribution can be regulated, see
Section 3.3.

2.3. Modeling of particle connectivity

Given the approximate locations and sizes of particles, it has to be deter-
mined which particles should be in contact with each other. We use a geometric150

graph to describe connectivity of particles, see [15] for details on graphs. Often
the aim is to achieve a completely connected system of particles, i.e., there is a
path through the system of particles from each particle to every other particle.
Thus, a good starting point for predetermining connectivity is the minimum
spanning tree [19]. This is the subgraph of a completely connected graph with155

minimum sum of edge lengths in which a path from each vertex to every other
vertex exists. Thereby, the (Euclidean) edge length can also be replaced by
other weightings of edges. In our case, the set of vertices is the set of centers of
the spheres Ξ. To prevent unrealistic particle configurations, we do not compute
the minimum spanning tree from the graph with full connectivity, i.e., there is160

an edge between every pair of vertices, but from the graph G′, where an edge
is put between each sphere (Si, Ri) ∈ Ξ and its κ nearest neighbours and the
distance is computed by the distance of sphere centers. Then, the minimum
spanning tree G of G′ is computed. Thereby the edges are weighted by the dis-
tance between centers of spheres minus both corresponding radii, which gives165

the shortest distance between the surfaces of both spheres. For an example of
such a graph, see Figure 1(b) and the blue lines in Figure 2, left. Note that the-
oretically it is possible that G′, and therewith G, is not completely connected,
however, for reasonable large values of κ this does hardly happen.

In the next step (see Section 2.4), instead of spheres, not necessarily spherical170

particles will be created that touch each other as prescribed byG. In many cases,
the minimum spanning tree is already sufficient, as it provides a completely
connected system of particles. Contact of further particles will automatically
happen due to the sphere packing approach, see Section 3.1. The reason for
this is that, if two spheres are close to each other (because they have just been175

shifted to a non-overlapping position in the force-biased algorithm), volume-
equivalent particles will touch each other with a high probability. If, however,
further presets should be made by the connectivity graph, additional edges can
be added to G. This allows a further predetermination of the structure of the
particle system. An example is given in Section 3.2, where the connectivity180

graph is used to include anisotropy effects.

2.4. Modeling of particle shapes

In the final step, each sphere (which only acts as a placeholder) is replaced
by a (not necessarily spherically shaped) particle. Thereby it is ensured that
particles are in contact as predetermined by the connectivity graph and that the185

shape of simulated particles is drawn from the distribution of particle shapes
observed in the given electrode that is being modeled. In order to do so, particles
are modeled using Gaussian random fields on the unit sphere ψ : [0, π]×[0, 2π]→
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Figure 3: 2D sketch showing how particles are connected according to the connectivity graph.
Black: Two spheres from the set Ξ. Blue: Edge of the connectivity graph. Red: Point which
both particles have to touch. Grey: Particles sampled from the Gaussian random field model
conditioned on the fact that they touch the red point. Thus, they are in contact with each
other.

R, where ψ(θ, φ) describes the distance from the centroid of the particle to its
boundary in direction (θ, φ). Isotropic Gaussian random fields are uniquely190

determined by their mean radius µ and the so-called angular power spectrum
A : [0,∞) → [0,∞), see [20]. Furthermore, ψ(θ, φ) can be represented using
so-called spherical harmonic functions via

ψ(θ, φ) ≈
L∑

l=0

al,0Yl,0(θ, φ)

+ 2

l∑
m=1

Re(al,m)Re(Yl,m(θ, φ))− Im(al,m)Im(Yl,m(θ, φ)).

In this formula, Yl,m : [0, π] × [0, 2π) → C for l ∈ N0 and m ∈ {0, .., l}
denotes a spherical harmonic function for each l and m, Re(c) is the real part of a195

complex number c ∈ C and Im(c) its imaginary part, respectively. Moreover, the
random coefficients al,m are independent and normal distributed. In particular,
a0,0 ∼ N (µ,A0), al,0 ∼ N (0, Al) for l > 0, Re(al,m) ∼ N (0, Al/2) and
Im(al,m) ∼ N (0, Al/2) for l ∈ N, m ∈ {1, ..., l} with Al = A(l) and N (·, ·)
the normal distribution. For details on the spherical harmonic representation200

of particles, we refer to [9]. The parameter L is used to truncate the first
sum, where for L = ∞ equality holds. In [9], it has been shown that rather
small values of L can lead to a realistic description of particles extracted from
tomographic image data, while at the same time a smoothing effect is achieved,
i.e., artefacts from the imaging procedure or postprocessing are removed.205

Using the concept described above, random particles can be generated by
determining their mean radius µ and the angular power spectrum A. Then, a
realization can be drawn by sampling from a multivariate normal distribution.
The angular power spectrum can be estimated, e.g., from tomographic image
data of a real particle system that is going to be modeled, see [10]. For each210
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particle, the mean radius µ is chosen to be the radius Ri of the sphere (Si, Ri)
that is replaced by the particle. Moreover, the connectivity conditions between
two particles induced by the connectivity graph G can be met by forcing both
particles to touch one or several joint points in space. This point can, e.g., be the
(uniquely determined) point in space with shortest distance to both spheres, see215

the red cross in Figure 3. Then, a conditional multivariate normal distribution
can be used to generate a particle that touches the given point(s), see [10] for
details. By doing so for each sphere (Si, Ri) ∈ Ξ, a particle system which is
connected according to the connectivity graph G is generated, see also Figure
1(c) and Figure 2, right. Note that, due to the normal distribution of ψ(θ, φ),220

it is possible that some values of ψ(θ, φ) are negative, which is not desired (as
we want the particle radius considered from its center to be always positive).
We address this problem using an acceptance-rejection method, as it has also
been done in [12]. Whenever a particle with negative radius in some direction
occurs, this particle is rejected and a new particle is drawn from the considered225

multivariate normal distribution. This is done up to η times, where, unless
otherwise stated, throughout this paper η = 100 is used. If after η runs still no
particle with only positive radii in all directions is drawn, a sphere is generated
the radius of which is drawn such that all connectivity conditions according
to G are fulfilled. This however only happens for rather small particles, the230

size of which will only be a few voxels in the discretized image anyway. For
larger particles, negative radii occur only with such a low probability that 100
repetitions typically lead to a realization with only positive radii.

2.5. Simple example

In this section, a simple implementation of the modeling framework is used
to create a first example of a virtual microstructure. The microstructure is
simulated in a sampling window with 500× 500× 200 voxels, where voxels are
cubic with a side length of 440nm. The sphere packing is generated as described
in Section 2.2 with ξ = 0.6 and the particle size distribution R is chosen as a
gamma distribution with shape parameter k = 4 and scale parameter θ = 4
(remember that particle sizes are given as volume-equivalent radii). For the
connectivity graph, the minimum spanning tree G with κ = 10 as described in
Section 2.3 is chosen. For the angular power spectrum, the function

A(l) =
al + b

l2 + cl + d
, (1)

is considered, see also [10, 11, 12], where we put a = 0.1027, b = 0.2411, c =235

−4.009 and d = 4.206. These values have been obtained when modeling parti-
cles in NMC-cathodes in [12], and thus lead to rather regular particles with a
high sphericity. In [12], the parameter L has been chosen individually for each
particle. In this example, we globally set L = 14. The high sphericity and regu-
larity of particles can be seen in Figure 4(a), where a realization of the model is240

shown. The volume fraction of the particle phase is 59.8% in this realization. In
Figure 4(b), the particle size distribution of the model realization is compared
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Figure 4: (a) 3D example electrode microstructure generated by a simple implementation of
the modeling framework. (b) Particle size distribution R.

to the desired (gamma) particle size distribution. A nearly perfect match can be
observed. Thus, this first example shows how the modeling framework can be
implemented with only a few parameters to model an electrode microstructure245

with predefined volume fraction, particle size distribution and shape of particles.
In Section 3, several further examples are given which show how the framework
can be tailored to specific applications. Finally, in Section 4, its application for
the generation of a wide spectrum of virtual, but realistic microstructures that
can be used for virtual materials testing is shown.250

2.6. Remarks on implementation

The modeling framework is implemented using the GeoStoch software library
[21]. The advantages of the modular concept have already been addressed in
Section 1. On the level of implementation, the modular concept can be visu-
alized as shown in Figure 5. On the left-hand side, an interface for each of255

the three main steps of the algorithm is shown. Given all these models, the
model for the whole particle system is defined. Thus, an abstract class can
be implemented, which, given implementations of the three interfaces, provides
a method for realization of a whole particle system. This is indicated on the
right-hand side of Figure 5. Note that this concept has the great advantage260

that all the different implementations of the interfaces can be stored and (al-
most) arbitrarily combined with each other to generate virtual, but realistic
morphologies. We also note that the three modeling approaches that have been
presented in [10], [11] and [12] can be implemented using specific, rather so-
phisticated implementations of the interfaces described above. Moreover, note265

that periodic boundary conditions are applied. This is a big advantage when
applying numerical transport simulations to the model realizations, because no
transport limitations at the boundary of the structures distort the results.
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〈〈interface〉〉
ILocationSizeModel

realizeLocationSize()

〈〈interface〉〉
IConnectivityRule

realizeConnectivity()

〈〈interface〉〉
IParticleCreator

realizeParticles()

AbstractParticleSystemModel
{abstract}

ILocationSizeModel
IConnectivityRule
IParticleCreator

realizeParticleSystem()

Figure 5: Simplified class diagram of the four classes that are needed to implement the model.

3. Implementations of the modeling framework for various kinds of
electrodes270

In this section, we give three further examples of implementations of the
modeling framework. Each implementation is tailored to a specific kind of
electrode. In all cases, a comparison of structural characteristics computed for
model realizations and tomographic image data indicates a good fit of the model
realizations to real data. Note that the three examples under consideration275

are the electrodes for which stochastic 3D microstructure models have been
proposed in [10, 11, 12], which are simplified in the present paper. Therefore,
structural characteristics of model realizations drawn from the models described
in [10, 11, 12] are compared to the simplified version described in the present
paper. It turns out that the model realizations resemble the properties that are280

found in the tomographic image data. Altogether, the goodness of fit of the
simplified modeling framework described in the present paper is comparable to
the models described in [10, 11, 12].

3.1. Energy cell anode

The first electrode under consideration is an anode from a lithium-ion bat-285

tery. For details, see [10]. In this electrode, the volume fraction of the particle
phase is rather high, namely 73.4%. In the following, an implementation of
the three modules of the modeling framework proposed in the present paper is
described which allows for the realization of model structures that are similar
to those observed in tomographic image data for this kind of electrodes.290

Locations and sizes of particles. To model the approximate locations and sizes
of particles, the force-biased algorithm is used. However, such a packing of
spheres only works well for a packing density up to approximately 65%, whereas
we have ξ = 0.734 here. We solve this problem by simulating systems of slightly
overlapping spheres as described in [22]. The idea is to scale the spheres by a295

so-called core-shell ratio γ before applying the force-biased algorithm, and then
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scale the system of non-overlapping spheres back such that they are slightly
overlapping, where the degree of overlap depends on the core-shell ratio γ. The
core-shell ratio is computed such that the packing density for the scaled sphere
system is 0.6, which results in γ = 0.935. The particle size distribution is300

estimated from tomographic image data and a mixed gamma distribution is
fitted, which results in k1 = 14.19, θ1 = 0.31, k2 = 4.89, θ2 = 1.87 and a mixing
parameter λ = 0.38. This means that with probability λ, the particle size is
gamma distributed with shape parameter k1 and scale parameter θ1, and with
probability 1 − λ, it is gamma distributed with shape parameter k2 and scale305

parameter θ2.

Connectivity rule. The connectivity graph G is computed as the minimum span-
ning tree as described in Section 2.3 using κ = 15.

Modeling of particle shapes. The angular power spectrum of the particles in the
electrode under consideration has already been estimated in [10], where the func-310

tion given in (1) is used with a = 0.4241, b = 0.356, c = −3.858 and d = 3.903.
In [10], the parameter L was chosen to be L = 14. Note that L determines the
number of constraints that can be made in the conditional normal distribution,
i.e., how many points the particle has to touch. As in the procedure described in
the present paper by the minimum spanning tree G only rather few constraints315

are made, L can be chosen much smaller, which leads to a better accordance
regarding the specific surface area of the final structure. Here, we choose L = 6.
The points that particles have to touch in order to achieve the connectivity
indicated by G are placed as described in Section 2.4, see also Figure 3, if the
corresponding spheres do not intersect with each other. If they do intersect, the320

point which both particles have to touch is placed in the center of their intersec-
tion. Note that due to the small overlap of spheres, also particles (with a mean
radius equal to the radius of the corresponding sphere) overlap more than they
do for systems of non-overlapping spheres, leading to a lower volume fraction
of the particle phase. This can be overcome by introducing a correction factor325

ρ > 0 as it has been done in [10]. Each sphere (Si, Ri) ∈ Ξ is then replaced
by a particle with mean volume-equivalent radius ρRi. The correction factor ρ
has to be determined only once for a given parameter constellation. This can
be easily done using the bisection method, i.e., systematically creating model
realizations with varying ρ until the error regarding the volume fraction of the330

particle phase is smaller than a pre-defined threshold. Here, we get ρ = 1.0156.
Moreover, as in this energy cell anode microstructure many small particles oc-
cur, the number of repetitions in the acceptance-rejection method before placing
a sphere is set to η = 10 to lower computation time. The structure is finally
discretized on a voxel grid of 400× 400× 119 voxels with a voxel side length of335

440nm, which corresponds to the resolution of the tomographic image data. Fi-
nally, as in [10], a closing with radius 1 is performed on the discretized structure.

Note that the modeling procedure described above differs from that one con-
sidered for the example structure in Section 2.5 (despite from actual values of340
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(a) (b)

Figure 6: 3D visualizations of (a) a cutout from tomographic image data and (b) a model
realization for the energy cell anode.

tomography model realizations
volume fraction 0.734 0.733
specific surface area (1/µm) 0.295 0.292
mean sphericity 0.83 0.86
specific integral of mean curvature -0.00855 -0.00700
specific Euler characteristic -0.00030 -0.00031

Table 1: Comparison of characteristics of tomographic image data and corresponding model
realizations for the energy cell anode.

parameters and the distribution type of the particle size distribution) only by
the fact that in the first step the spheres can slightly overlap, the resulting need
for a correction factor ρ and the closing step. Nevertheless, a good accordance
with tomographic image data can be observed in the visual comparison given
in Figure 6(a) and 6(b). In addition to the visual comparison, also struc-345

tural characteristics have been compared between tomographic image data and
model realizations, see Table 1. First of all, note that the volume fraction of
the particle phase is approximately matched, which is also true for the specific
surface area. In addition, the mean sphericity of particles is in good agreement
with the one observed for particles extracted from tomographic image data.350

Moreover, we consider the specific integral of mean curvature and the specific
Euler characteristic, see [23], which are also in good agreement. In addition
to these aggregated values, we consider distributions of particle characteristics.
The particle size distribution is in accordance with the results extracted from
image data, see Figure 7(a). Also the distribution of the coordination number,355

i.e., how many particles each particle is in contact with, resembles the situ-
ation in the tomographic image data. Note that the latter characteristic has
not directly been fitted (only a minimum spanning tree has been predefined for
particle connectivity), but is rather a result of the sphere packing approach.
Finally, we consider more detailed morphological characteristics, one character-360

istic of the particle phase and one characteristic of the void phase, respectively.
The estimated probability density of chord lengths (see [24] for details) approx-
imately matches between tomographic image data and model realizations, see
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Figure 7: Comparison of image characteristics computed from tomographic image data and
from model realizations for the energy cell anode. Distribution of (a) particle sizes, (b)
coordination numbers, (c) chord lengths, and (d) spherical contact distances.
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Figure 7(c). Note that we only consider the chord length distribution in one
horizontal direction, because the model is isotropic. As can be seen in Figure365

7(d), the same good match holds true for the estimated probability density of
spherical contact distances, see [25]. Note that this characteristic can be con-
sidered in both phases. Here, we consider distances from the remaining phase,
i.e., outside of active particles, which consists of binder, additives and pores,
and will be called bap-space in the following. This information is related to the370

pore sizes. As can be seen from the green lines in Figure 7(c) and 7(d), for
the chord lengths (especially for short chords) as well as for spherical contact
distances (especially for larger distances) the fit is slightly better compared to
the one of the model considered in [10].

3.2. Power cell anode375

The microstructure of power cell anodes remarkably differs from those ob-
served in energy cells, see, e.g., [26]. The main difference is the considerably
lower volume fraction of the particle phase. To account for this, in [11] the model
introduced in [10] has been extended to model the microstructure in power cell
anodes. Moreover, the data set under consideration exhibited an anisotropic380

structure, with particles being rather elongated and predominantly connected
in horizontal direction. In the following, an implementation of the modeling
framework described in the present paper is demonstrated which allows to gen-
erate virtual microstructures the morphological properties of which resemble
the tomographic image data from [11].385

Locations and sizes of particles. Locations and sizes of particles are modeled
using the method described in Section 2.2 without any extension, i.e., a sphere
packing is performed, where the only parameters are the packing density and
the sphere size distribution. The packing density is chosen according to the
desired volume fraction, resulting in ξ = 0.416. The distribution of sphere sizes390

is chosen according to the particle size distribution R of the material, which
can be modeled using a mixed gamma distribution with k1 = 14.19, θ1 = 0.31,
k2 = 4.89, θ2 = 1.87 and mixing parameter λ = 0.38.

Connectivity rule. The anisotropy mentioned above is integrated into the model
by a special construction of the connectivity graph. To begin with (for prac-395

tically always ensuring complete connectivity), a minimum spanning tree is
computed. As the sphere packing is not as dense as for the energy cell (due to
the lower volume fraction of the spheres), it will more often be the case that
particles are supposed to touch each other even if there is a certain distance
between the corresponding spheres. Therefore, the points which both particles400

have to touch to ensure their connectivity are chosen in a slightly different way.
Let (S1, R1) and (S2, R2) be two spheres the corresponding particles of which
are supposed to touch each other. Then the point ζ1,2 which both particles have
to touch is chosen as the (uniquely determined) point in space with minimum
distance to S1 and S2 such that ||S1−ζ1,2||/R1 = ||S2−ζ1,2||/R2. By this choice405

of ζ1,2 it is achieved that larger particles have to expand more towards the point
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Figure 8: Sketch showing the angle between two sphere centers, which is considered for in-
cluding anisotropy.

that has to be touched than smaller particles. This motivates to weight the
edges between two spheres (Si, Ri) and (Si, Rj) of the graph G′ from which
the minimum spanning tree is computed by ||Si − ζi,j/||Ri (which is equal to
||Sj − ζi,j ||/Rj due to the definition of ζi,j). Based on these edge weights, a410

minimum spanning tree is computed as described in Section 2.3. This minimum
spanning tree is denoted by G∗. Note that G∗ does not yet include anisotropy
into the model. Therefore, we now weight the edges of G∗ by the angle between
a horizontal plane and the segment between the two corresponding sphere cen-
ters, see the angle marked using red color in Figure 8. Note that the same edge415

weighting has been used in [11] to include anisotropy, however, the construction
of the connectivity graph was more complex. Moreover, we add a weighted
(depending on the angle) edge to G∗ if the edge weight in G′ is less than a
threshold δ, where we found that δ = 0.2 leads to reasonable results. Note that
δ has a geometrical interpretation, i.e., if δ = 0.2, particles have to expand by420

20% of their mean radius towards the point which they have to touch to fulfill
the connectivity conditions. Finally, based on G∗, a minimum spanning tree
G is computed. The procedure described above ensures that (a) particles are
rather elongated and predominantly connected in horizontal direction, as the
minimum spanning tree was computed based on edge weights depending on the425

angle, (b) no particles that are too far away from each other have to touch each
other, i.e., most particles have to expand by not more than 20% of their mean
volume-equivalent radius and (c) the whole system of particles is completely
connected.

Modeling of particle shapes. Particles are finally modeled as described in Section430

2.4 with parameters as in [11], namely L = 10, a = 0.615, b = 0.047, c = −3.642
and d = 3.398. The only difference to Section 2.4 is the choice of points ζi,j
which particles have to touch as decribed in the previous paragraph. As in [11],
the structure is discretized on a voxel grid of 400×400×109 voxels with a voxel
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(a) (b)

Figure 9: 3D visualizations of (a) a cutout from tomographic image data and (b) a model
realization for the power cell anode.

tomography model realizations
volume fraction 0.416 0.424
specific surface area (1/µm) 0.197 0.199
mean sphericity 0.84 0.85
specific integral of mean curvature 0.00303 0.00315
specific Euler characteristic -0.00004 -0.00005

Table 2: Comparison of characteristics of tomographic image data and corresponding model
realizations for the power cell anode.

side length of 440nm, and a closing with radius 2 is performed.435

Again, we compare model realizations to tomographic image data to inves-
tigate the goodness of fit of the model. A comparison of 3D visualizations (see
Figure 9(a) and 9(b)) indicates that the elongation of particles in horizontal
direction is resembled. From Table 2, we see that the volume fraction of the440

simulated particle phase is slightly larger than the desired value. This differ-
ence results from the fact that when sampling the particles from a conditional
distribution (given points in space which they have to touch), their volume can
become a little larger than desired on average. In [11], this problem was over-
come by using a correction factor as described in Section 3.1. However, as the445

difference is rather small and, moreover, the particle size distribution (see Fig-
ure 10(a)) is nevertheless approximately matched, no correction factor is used
in the present paper. Moreover, the mean specific surface area of the model re-
alizations almost perfectly matches the specific surface area of the tomographic
image data. Also the mean sphericity of particles is in good agreement with450

the one observed for particles extracted from tomographic image data. Also the
specific integral of mean curvature and the specific Euler characteristic are in
good agreement. In addition, the distributions of coordination numbers match
almost perfectly, see Figure 10(b). Again, note that (as for the energy cell an-
ode) this property has not been directly adjusted, but is a result of the sphere455

packing procedure.
Furthermore, we compare the estimated probability density of chord lengths

and the probability density of spherical contact distances of model realizations
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Figure 10: Comparison of image characteristics computed from tomographic image data and
from model realizations for the power cell anode. Distribution of (a) particle sizes, (b) coor-
dination numbers, (c) chord lengths, and (d) spherical contact distances.
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and tomographic image data. In addition, the results for structures drawn
from the model considered in [11] are shown. The density of chord lengths (see460

Figure 10(c)) is considered in horizontal (continuous line) and vertical (shaded
line) direction. The difference between the two directions is an indicator for the
anisotropy of the structure, which we find to be resembled by the model. Only
in vertical direction, the fit is slightly worse than in [11], however still being in
a reasonable range, especially when considering the considerable simplification465

of the model described in the present paper compared to the model considered
in [11]. Moreover, the density of spherical contact distances from the bap-phase
of the tomographic image data (see Figure 10(d)) is approximately resembled
by the simulated structures.

To summarize, it has been shown that the framework described in the present470

paper can be used to realistically describe the microstructure of power cell an-
odes. Comparing the implementation to the simple example structure consid-
ered in Section 2.5, only the construction of the connectivity rule has been
changed to account for the anisotropy, and the points that particles have to
touch to ensure that they are in contact with each other according to the con-475

ncectivity graph have been defined in a slightly different way.

3.3. Energy cell cathode

In this section we show that the modeling framework can also be used to
describe the microstructure of cathodes. In [12], the ideas developed in [10, 11]
have been further extended to model cathode microstructures, which have rather480

spherical particles and a low volume fraction of active material. However, the
model considered in [12] is rather complicated with even a lot more parameters
than in [10] and [11]. We show that a much simpler model using the framework
described in the present paper can be used, which leads to a comparable fit with
respect to several microstructural characteristics. The extension compared to485

the procedure described in Section 2.5 is to explicitely model the structure of the
remaining space, outside of active particles, which consists of binder, additives
and pores, and is therefore called the bap-space. This can be done in the first
step of the framework and is described in the following.

Locations and sizes of particles. The particle size distributionR can be modeled490

using a mixed gamma distribution with k1 = 14.19, θ1 = 0.31, k2 = 4.89,
θ2 = 1.87 and mixing parameter λ = 0.38. The packing density ξ = 0.336 is
chosen according to the volume fraction of the active particle system. The rather
low volume fraction of the particle system induces a specific structure of the bap-
phase. This structure is taken into account by additionally including spheres495

in the first step which are not replaced by particles, but form the bap-phase of
the electrode. To define their size distribution, we describe the bap-phase of the
tomographic image data by non-overlapping spheres as follows. We start with
the largest sphere that can be put into the bap-phase without intersecting with
any particle. Given this sphere, we look for the second largest sphere that does500

neither intersect with the first sphere nor with any particle. This procedure is
repeated until the volume fraction of particles together with the bap-spheres
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Figure 11: Example of a system of non-overlapping spheres for the generation of a cathode mi-
crostructure. Grey: Spheres that will be replaced by a particle. Yellow: Spheres representing
bap-volume.

exceeds a threshold of 60%. Then we estimate the distribution function of the
sphere radii. It turns out that they can be described by a gamma distribution
with parameters k = 1.26 and θ = 1.9, which is shifted by 5.83 and truncated505

at 17.47. Then, after sampling spheres from R for the initial configuration
on which the force-biased algorithm is performed, we sample spheres from the
distribution of spheres describing the bap-phase and add them to the initial
configuration until a volume fraction of 60% is reached. Then the force-biased
algorithm is performed to achieve a structure with non-overlapping spheres. An510

example can be found in Figure 11, where grey spheres show those drawn from
R and yellow spheres show those representing the bap-spheres. Later on, only
the grey spheres will be replaced by particles, while the yellow spheres ensure
that the pore size distribution of the bap-phase of the real data set is resembled
by the model.515

Connectivity rule. When considering the tomographic image data, it turns out
that the particle system is not completely connected. This is due to the fact
that more additives (which are not visible in the images) are added to cath-
odes because of the bad conductivity of the active material. Therefore, we do
not construct a connectivity graph in the cathode model, i.e., each particle is520

sampled independently of its neighbourhood. It turns out that nevertheless a
reasonable particle connectivity is achieved, because particles induced by neigh-
bouring spheres will be in contact with a certain probability even this is not
predefined by a connectivity graph.

Modeling of particle shapes. Particles are finally modeled as described in Sec-525

tion 2.4 with parameters of the angular power spectrum as in [12], namely
a = 1027, b = 0.2411, c = −4.009 and d = 4.206. The series expansion parame-
ter L is chosen to be L = 4. This small value leads to rather regular particles as
they are observed in the tomographic image data. As in [12], the structure is dis-
cretized on a voxel grid of 400×400×80 voxels with a voxel side length of 440nm.530

To summarize, the specific features of the cathode model in constrast to
the basic model described in Section 2 are that additional spheres are added
in the first step to model the structure of the bap-phase, and that no particle
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(a) (b)

Figure 12: 3D visualizations of (a) a cutout from tomographic image data and (b) a model
realization for the energy cell cathode.

tomography model realizations
volume fraction 0.336 0.334
specific surface area (1/µm) 0.198 0.229
mean sphericity 0.90 0.92
specific integral of mean curvature 0.00622 0.00832
specific Euler characteristic -0.00003 -0.00018

Table 3: Comparison of characteristics of tomographic image data and corresponding model
realizations for the energy cell cathode.

connectivity is predefined by a connectivity graph. In Figure 12(a) and 12(b), a535

visual comparison between tomographic image data and a model realization is
given. In Table 3, it can be seen that the volume fraction of the particle phase
is approximately matched. The mean specific surface area of active material in
the model realizations is a bit larger than the one estimated from tomographic
image data. An additional closing (as it has also been done in [12] of the dis-540

cretized image would lower the surface area. However, this step is skipped in the
present paper, because it can change the volume fraction of the particle phase,
which would make it necessary to include a correction factor ρ as in Section 3.1.
In addition, the mean sphericity of particles is in good agreement with the one
observed for particles extracted from tomographic image data. While there is545

a slight difference of the specific integral of mean curvature, a larger deviation
of the specific Euler characteristic can be observed. However, the structural
characteristics shown in Figure 13 indicate that many structural characteris-
tics (which are important for the functionality of a battery) are matched. The
particle size distribution (see Figure 13(a)) is approximately matched, and the550

distribution of the coordination number regarding particle connectivity (see Fig-
ure 13(b)) is also close to the one observed in tomographic image data, although
no connectivity has been predefined. Furthermore, we again consider the es-
timated probability density of chord lengths as well as the spherical contact
distances in the bap-phase. While the latter one matches well with its coun-555

terpart estimated from tomographic image data (see Figure 13(d), there is a
slight deviation for the chord lengths (see Figure 13(c)). This characteristic
was matched a bit better by the model described in [12], however, we again
emphasize the considerably lower amount of parameters of the model described
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Figure 13: Comparison of image characteristics computed from tomographic image data and
from model realizations for the energy cell cathode. Distribution of (a) particle sizes, (b)
coordination numbers, (c) chord lengths, and (d) spherical contact distances.
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in the present paper, as well as the geometrical interpretation, which makes the560

model suitable for virtual materials testing. If a better fit of the chord length
distribution function is desired, the model can be extended. In particular, the
closing step that has not been performed would eliminate small chords, leading
to a distribution that is closer to the one obtained for tomographic image data.

4. Applications to virtual materials design565

In Section 3 the flexibility of the modeling framework as well as its ability
to reproduce the structural features of given tomographic image data has been
shown. We now demonstrate how the fact that the modeling framework is
less complicated than the approaches proposed in [10, 11, 12] can be used to
systematically design virtual electrode microstructures on the computer. First,570

it is shown how the particle size distribution can be changed for structures as
discussed in Section 3.2, keeping other characteristics fixed, see Section 4.1.
Then, the design of a two-layer electrode with different structural properties in
the top layer compared to the bottom layer is shown, see Section 4.2. Further
examples are given in the supplementary information.575

4.1. Varying the particle size distribution

A first simple task that can be performed using the framework described in
the present paper is to change the particle size distribution, while keeping the
volume fraction of active material fixed. This means that we have to define a
different distribution R. We use the same implementation and parameters as in580

Section 3.2, but change the particle size distribution R to a gamma distribution
with parameters k = 15 and θ = 1. The resulting structure is shown in Figure
14(a). The volume fraction of the active particle phase of the structure is 42.1%,
which approximately matches the predefined one. In Figure 14(b) it can be seen
that the predefined particle size distribution (black line), which strongly differs585

from the one estimated from tomographic image data (red line) is approximately
matched in the simulated structure (blue line). Moreover, the mean sphericity
of particles (0.84) is still in agreement with the one estimated from tomographic
image data.

4.2. Two-layer electrodes590

Another possibility to improve transport properties of lithium-ion batteries
is to use layered electrodes, see, e.g., [27]. After casting and drying of the first
layer, a second layer is added. This allows us to vary structural properties
between first and second layer. Therefore, we use the modeling framework
described in the present paper to simulate an electrode microstructure with595

different particle size distribution and volume fraction of the particle phase in
the top and bottom part, respectively.

In the first step, we use the force-biased algorithm to generate a system of
non-overlapping spheres in the bottom part of the sampling window. We use
a truncated and shifted gamma distribution for the sphere size distribution,600
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Figure 14: (a) 3D visualization of a model realization of the power cell model with different
particle size distribution. (b) Particle size distribution estimated from tomographic image
data (red) compared to the virtual structure (blue). The black line shows the predefined
distribution.

i.e., a gamma distribution with shape parameter kb = 4 and scale parameter
θb = 2, that is shifted by sb = 10 and truncated at tb = 30. The packing
density was chosen as ξ1 = 0.6. For the sphere size distribution of the top layer,
we choose a truncated and shifted gamma distribution with shape parameter
kt = 2 and scale parameter θt = 2, that is shifted by st = 3 and truncated605

at tt = 20. However, for the top layer, the force biased algorithm is only
applied in a subwindow of the upper part of the sampling window, such that no
intersection of spheres between the lower and upper part is possible. The region
which is not considered is subsequently filled with spheres following the same
size distribution as the other spheres in the top layer. However, no collective610

rearrangement algorithm is applied, but spheres are placed using an acceptance-
rejection method. This means that for each sphere, first a radius is drawn,
and then a location is simulated uniformly such that no intersection with the
remaining spheres is caused. This is done by sampling up to 10 000 times, until
a location which does not cause any overlap is found. In the unlikely case615

that after 10 000 iterations no location is found, a new radius is drawn from
the distribution described above. Note that this might lead to a preference of
smaller spheres. However, in our simulations, no radius was rejected, i.e., after
at least 10 000 tries a suitable location was found. Even if, for other parameter
constellations, rejection of a radius does occur, it can be interpreted to mimic620

the fact that smaller particles fill the gaps that are generated by the larger
particles of the bottom layer. Spheres are added until the packing density ξ2 of
the top layer is reached, which is chosen to be ξ2 = 0.4. Note that the random
allocation of spheres can also be generated by consistently using a collective
rearrangement algorithm like the force-biased algorithm. However, the explicit625

placing of spheres allows to control the behaviour of particles at the interface
between the two layers. This is of advantage if effects at this interface are of
interest, as they have e.g. been investigated in [28].
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Given the random allocation of spheres, the connectivity graph G is con-
structed as the minimum spanning tree described in Section 2.3. Particles are630

finally simulated using the same angular power spectrum as in Section 3.3 with
L = 10.

A visualization of the outcome of the algorithm described above is visualized
in Figure 15(a). Note that the predefined particle size distribution functions in

(a)

0.00

0.05

0.10

0.15

0.20

10 20 30

radius (voxel)
d
en

si
ty

bottom
top

(b)

0.40

0.45

0.50

0.55

0.60

0 100 200 300 400

slice

v
o
lu

m
e
 f

ra
c
ti

o
n

(c)

Figure 15: (a) 3D visualization of a model realization of a two-layer electrode. (b) Particle
size distributions (continuous lines) together with predefined distributions (dashed lines). (c)
Volume fractions of the active particle phase per slice of the 3D image stack (from bottom to
top).

the top and bottom part are matched, see Figure 15(b), and also the local vol-635

ume fractions approximately correspond to the values of ξ1 and ξ2, see Figure
15(c). Therefore, we conclude that the framework described in the present pa-
per allows us to generate multi-layer electrodes with predefined local volume
fractions and particle size distributions, which can subsequently be investigated
regarding their electrochemical performance, using e.g. spatially resolved nu-640

merical transport simulations [29].
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5. Conclusions and outlook

In the present paper, a framework for stochastic 3D modeling of the mi-
crostructure of battery electrodes has been presented. The framework is based
on models proposed in recent publications ([10, 11, 12]), but significiantly simpli-645

fies these models, while providing a similar good fit of structural characteristics
when fitted to tomographic image data for various kinds of electrodes. In par-
ticular, the (fewer) model parameters mainly have (in contrast to the models
described in [10, 11, 12]) a direct geometrical interpretation, which, e.g., allows
to explicitely control the particle size distribution. Moreover, the framework is650

constructed in a modular way, where the three modules control different aspects
of the resulting microstructure. The fact that the number of model parameters
is reduced, while they have a direct geometrical interpretation, combined with
the modular concept allows to more systematically perform virtual materials
design, i.e., to make use of the models to generate virtual, but realistic elec-655

trode microstructures. To give an example, it has been shown how to generate
two-layer electrodes, where the volume fraction of active material as well as the
particle size distribution differ in the bottom and top part of the electrode, re-
spectively. Such virtual microstructures can then be used as input for spatially
resolved transport simulations, which allows us to identify promising design660

concepts that can improve the functionality of batteries.
Due to the modular concept, it is easily possible to improve individual steps

of the modeling framework. To give some ideas for further extensions, which
could be subject of further research, the estimation of the angular power spec-
trum could be conditioned on the particle size, such that (possibly differing)665

shapes of smaller and larger particles can be modeled individually. This can
also be used to prevent that small particles have to be replaced by spheres,
which can eliminate the difference in the distribution of sphericity between real
and simulated data. Moreover, it is possible to enlarge the contact areas be-
tween particles by forcing them not only to touch one common point, but several670

ones.
Possible ideas for future work include the electrochemical validation, as it

has e.g. been done in [29]. Moreover, the modeling framework can finally be
used to generate a broad range of virtual, but realistic microstructures, which
allows us to investigate relationships between microstructure and performance675

of lithium-ion battery electrodes. A first outlook to possible virtual structures
(despite from the ones presented in Section 4) is given in the supplementary
material.
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