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Abstract. We present a (dynamic) stochastic simulation model for 3D grain

morphologies undergoing a grain coarsening phenomenon known as Ostwald ripening.

For low volume fractions of the coarsening phase, the classical LSW theory predicts a

power-law evolution of the mean particle size and convergence toward self-similarity of

the particle size distribution; experiments suggest that this behavior holds also for high

volume fractions. In the present work, we have analyzed 3D images that were recorded

in situ over time in semisolid Al-Cu alloys manifesting ultra-high volume fractions

of the coarsening (solid) phase. Using this information we developed a stochastic

simulation model for the 3D morphology of the coarsening grains at arbitrary time

steps. Our stochastic model is based on random Laguerre tessellations and is by

definition self-similar—i.e., it depends only on the mean particle diameter, which in

turn can be estimated at each point in time. For a given mean diameter, the stochastic

model requires only three additional scalar parameters, which influence the distribution

of particle sizes and their shapes. An evaluation shows that even with this minimal

information the stochastic model yields an excellent representation of the statistical

properties of the experimental data.
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1. Introduction

Ostwald ripening is a phenomenon that can occur when particles of a given phase are

embedded in a matrix consisting of a second phase: in order to reduce the excess energy

of interphase boundaries, larger particles tend to grow at the expense of smaller ones,

which eventually disappear completely. An introduction to this topic and a review

of existing theories may be found in e.g. [1–6]. In the limit of low volume fractions

VV of the coarsening phase (VV → 0), the classical LSW theory [7, 8] predicts a

power-law evolution of the mean particle size and convergence toward self-similarity

of the particle size distribution. In this regime, it is acceptable to approximate the

coarsening particles as isolated domains embedded in a homogeneous matrix. At higher

volume fractions, however, such a simplification is no longer tenable [9]. There, particle-

particle interactions and correlations become significant [10–12], and the local geometry

of particle boundaries exerts a strong influence on the resulting kinetics [13,14]. Despite

many decades of research into the phenomenon of Ostwald ripening, there is still much

to be learned about coarsening in the high-VV limit. Recent efforts in this regard include

experimental investigations [15–18], phase-field and Monte-Carlo simulations [19–22] as

well as analytic modeling [23,24].

Modeling approaches that are designed to capture the statistical properties of

a multiparticle microstructure can potentially contribute deeper insight into the

morphology and dynamics of systems undergoing Ostwald ripening. This ought to be

particularly true for simple parametric models of particle morphology, as the limited

number of parameters makes them amenable to individual physical interpretation. A

first step in the development of such a parametric model—and a primary goal of this

paper—is therefore to extract the essential statistical properties of coarsening particle

systems from experimental data. We perceive the particle systems to be realizations of

random sets of particles, and we postulate that the properties of these (sets of) random

particles can be represented by a simple and parametric stochastic model.

One potential application for such stochastic models is their integration into

multiscale computational models, which aim to span a wide range of lengths and/or

times by the judicious combination of individual models optimized for different

length/time scales. This is the strategy behind Integrated Computational Materials

Engineering (ICME) [25] for the computer-based design of new materials and their

requisite processing techniques. Frequently, for the adequate simulation of a given

materials processing step, it is not necessary to compute the actual migration of

individual grain or phase boundaries; rather, it suffices to capture the resulting change

in microstructure in a purely statistical sense. By generating a 3D microstructure with

appropriate structural properties from a statistical model, one can readily “populate”

the sample space simulated by a macroscopic model operating at much longer length

scales, thereby vastly improving the overall computational efficiency of the multiscale

model. Once this step has been carried out, a representative volume can be carved out

as the basis for computing any relevant microsctructure-dependent properties, which
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can then be fed back in to the macroscopic model.

Based on this motivation, we develop a (dynamic) stochastic simulation model

that describes the particle morphology of a two-phase multiparticle system in which

the coarsening phase occupies an ultra-high volume fraction, VV ≥ 0.9, of the sample.

(For the experimental data set to which we apply the model, we have VV = 0.93.)

The model is based on random Laguerre tessellations, with each (convex) cell of the

tessellation representing a region containing exactly one particle. We implement the

dynamics of coarsening such that the mean particle size R̄(t) follows a power law of the

form

R̄n(t)− R̄n(0) = k · t, t > 0, (1)

where the scaling exponent n > 0 takes on a value that is determined by the underlying

mechanism for coarsening [3], k > 0 depends on the kinetics operating in the material,

and R̄(0) denotes the mean particle size at the initial time t = 0. We note that the

scaling exponent has been the subject of considerable discussion in the literature: at

low to fairly high volume fractions of the coarsening phase, a value of n = 3 has been

reported to hold not only in experimental investigations of Ostwald ripening [16, 26]

but also in computer simulations [21] and analytic modeling [2, 5]. The situation is

murkier, however, in the ultra-high volume fraction regime (0.9 . VV < 1), where

comparatively few studies [19,27–29] have been performed. According to [19], a scaling

parameter n = 3 is suitable up to VV = 0.96, as the kinetics of phase coarsening is still

approximately controlled by diffusion through the matrix. This conclusion is consistent

with the experimental data analyzed in [27]. But there have also been reports of scaling

exponent values as low as 2.6 and as high as 4 (see e.g. [28, 29]), depending on the

particular growth scenario.

In addition to power-law growth, we assume the particle size distribution that

is generated by Ostwald ripening to be self-similar, meaning that a simple rescaling

transforms the distributions at arbitrary times into each other. More formally, we

call the family {R(t), t ≥ 0} of (random) particle sizes self-similar if their cumulative

distribution functions FR(t), t ≥ 0, fulfill the relationship

FR(t)

(
x/R̄(t)

)
= FR(0)

(
x/R̄(0)

)
, x ∈ R,

with R̄(t) equal to the expectation value E[R(t)]. Once again, although experiments

generally support a tendency for convergence toward a self-similar distribution, there

has been considerable debate regarding the question of whether the self-similar state

is reached in finite time in real systems [30, 31]. In this work, we adopt the pragmatic

approach of applying our model to experimental data for which any time-dependent

variations in the shape of the size distribution are smaller than the latter’s statistical

uncertainty.

The model is fitted to experimental X-ray tomographic datasets obtained at the

European Synchrotron Radiation Facility (ESRF) in Grenoble. Tomographic scans of

24 sec duration were performed repeatedly on an Al-5 wt% Cu alloy sample held at
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592 ◦C, thereby producing a two-phase microstructure of solid particles embedded in a

liquid matrix. At this temperature, the liquid phase constitutes only 7% of the sample

by volume, and the microstructural dynamics are slow enough that each tomographic

scan can be considered to be a snapshot of the instantaneous state of the system. Armed

with a series of time steps spanning more than 800 min, we employ a fitting procedure to

several time steps in order to fix the values of the model parameters, and then we use an

additional time step for model validation. We find that our model fits the experimental

data quite well, which is rather remarkable, considering that close agreement means that

a completely random and time-dependent microstructure has been described statistically

with only six parameters: three for the dynamics of particle coarsening (Eq. (1)) and

another three for the full 3D morphology of the particles and their size distribution.

This paper is structured as follows: In Section 2 we describe the experimental

samples, the tomographic imaging technique and the data processing steps.

In particular, we explain how the tomographic reconstructions were segmented

structurally—a procedure that entailed the detection of individual particles and their

representation as convex polyhedra. Our stochastic model is introduced in Sections 3

and 4. First, in Section 3, we describe the underlying (static) 3D model, which is able to

capture the morphology of 3D grain microstructures at any fixed point in time using 3D

tessellations consisting of convex cells. This model is parametric in nature and can be

fitted to any coarsening state; consequently, it is able to represent grain microstructures

at any scale. Secondly, in Section 4, we construct a time function that maps from the

coarsening state—e.g., the duration of annealing—to the 3D model parameters. This

function adheres to the power-law growth of grains, ensures self-similarity and is also

parametric. The 3D model considered together with the time function for describing

system dynamics constitutes the dynamic model. In Section 5, the proposed dynamic

model is fitted to experimental (time-resolved) data. We validate the dynamic model

using various characteristics estimated from experimental and simulated data. Finally,

in Section 6, we summarize the results and provide an outlook for future work.

2. Experimental data, imaging and segmentation

In this section we describe the experimental sample, the 3D imaging technique and

the steps performed during image processing, paying particular attention to the

segmentation of tomographic data sets, which was carried out according to well-

known techniques [32, 33]. Binarization of the tomographic reconstructions yielded

images with incompletely marked particle boundaries. The watershed algorithm

[34–37] was therefore employed to detect basins in which single particles were located.

A postprocessing step removed the remaining segmentation artifacts, based on the

assumption of approximate convexity of particles. Finally, we extracted convex

polyhedra from the experimental data as representations of individual particles, which

significantly facilitates the computation of particle characteristics during subsequent

stages of data analysis.
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2.1. Experimental sample and in situ 3D imaging

To obtain three-dimensional data for a microstructure undergoing Ostwald ripening at

a high volume fraction of the coarsening phase, we studied a cylindrical sample of Al-5

wt% Cu. The constituent material had been homogenized at 500 ◦C for 24 hours in air

and subsequently cold-rolled to a thickness reduction of 50%. Finally the sample was cut

by spark erosion into cylinders 8.5 mm in length and 4 mm in diameter. A custom-built

furnace that was designed to be compatible with the spatial and optical constraints

of beamline ID15A at ESRF allowed for the time-resolved in situ measurement of

coarsening processes in the semisolid state of the sample at a temperature of 592 ◦C.

Application of the lever rule to the Al–Cu phase diagram [38] yields a volume fraction

of the solid (coarsening) phase of VV = 0.93 at thermodynamic equilibrium between the

solid and liquid. Owing to the higher concentration of Cu dissolved in the liquid phase at

this temperature (22.4 vs. only 3.5 wt% in the solid phase) the liquid matrix absorbs X-

rays more strongly than the coarsening particles do, which enables absorption-contrast

tomography to map out the matrix phase. Absorption images were recorded at a beam

energy of 47.4 keV. A tomographic scan was performed every 10 minutes over the course

of 25 hours, with each scan consisting of 8000 projections recorded within an individual

scan time of 24 sec. All tomographic reconstructions were generated by the standard

filtered backprojection technique from the projection series, and the nominal resolution

of the final reconstructed data is given by the voxel side length of 5.36µm.

In the following, we denote an image I that corresponds to an individual

tomographic dataset by {I(x, y, z) ∈ {0, . . . , 255} : (x, y, z) ∈ W}, where W ⊂ N3 is

the grid of voxel coordinates and the possible grayscale values are given by {0, . . . , 255}.
The reconstructed images are denoted by It, with the index t indicating the annealing

duration. In this work, we examined the datasets that were recorded at annealing times

of t = 200, 400, 600, 750, 900 and 1000 min. It should be noted that, in a previous

study of Ostwald ripening in Al-Cu with VV = 0.74, the particle size distribution was

found to evolve in a (nearly) self-similar manner after about 3 hours of annealing [18].

Therefore, the earliest time step analyzed was t = 200 min. Although we cannot be

sure that our sample has reached steady-state conditions by this time, even in the case

of a very slowly evolving transient state of the sample, it makes sense to represent the

structural features using a stochastic model. Naturally, in that case, predictability is

limited to the time spanned by the experiment.

2.2. Ring artifacts

An important preprocessing step is the removal of ring artifacts, which are often present

in tomographic reconstructions. We have carried out this correction based on the

approach presented in [39]. Images that have been subjected to ring-correction are

denoted by a prime, as in I ′t. Figure 1 shows a slice through a tomographic reconstruction

before and after ring correction.
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(a) (b)

Figure 1. Slice through a tomographic data set before and after correction for ring

artifacts. Note that the regions of greatest distortion are not corrected completely,

but even in such locations the quality of the resulting image suffices for subsequent

segmentation steps.

2.3. Binarization

Global thresholding of the grayscale image I ′t shown in Figure 1(b) yields binary images

Bt with incompletely marked particle boundaries, as depicted in Figure 2(a). In

addition, numerous small white objects are visible in Bt, which indicate the presence

of liquid droplets enclosed within the solid phase; these should not be confused with

the network of particle boundaries. Therefore, we first apply the Hoshen-Kopelman

algorithm [40] to detect connected (white) components in the images. Entrapped liquid

drops can be recognized by their comparatively small volume, and they are removed

based upon this criterion (using a manually chosen threshold value). The remaining

(incomplete) particle boundaries are dilated using a sphere b(o, 3) centered at the origin

o with radius 3 as structuring element. This step closes small gaps and reduces the

frequency of oversegmentation during subsequent segmentation steps. Binary images

that have been preprocessed in this manner—see Figure 2(b) for a visualization—are

denoted by B′t.

2.4. Watershed transformation

The particle boundaries visible in the binary images B′t are incompletely marked. To

rectify this unsatisfactory situation, we employ the watershed transformation [34–37],

which operates on the interpretation of grayscale values in an image as denoting a local

“height” above ground level. The local minima (that is, the “valleys”) in this landscape

are then progressively flooded with water—i.e., every local minimum generates a region

that grows during the flooding procedure. At locations of impingement between growing

regions, a watershed curve (in 2D) or surface (in 3D) is placed, which prevents further

growth of the adjacent regions in the direction perpendicular to the watershed.
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(a) (b)

Figure 2. Image processing of Figure 1(b) following (a) binarization and (b) removal

of entrapped liquid drops and subsequent dilation.

Application of the (inverted) Euclidean distance transform [32] to B′t images

generates suitable grayscale input for the watershed transformation. At each voxel in

the solid (black) phase of B′t, the distance transform Dt specifies the shortest distance

to a voxel of the liquid (white) phase. Following inversion of these Dt values, the local

minima in the resulting mapping correspond to voxels located furthest from the known

(incompletely marked) particle boundaries.

One problem with the conventional watershed transformation is oversegmentation

(i.e., the generation of spurious additional regions). The Euclidean distance transform

is quite sensitive to small artifacts in the binary image, which then carry over to the

detection of local minima and, subsequently, to the computed watershed locations.

One approach toward minimizing this problem is to apply a marker-based watershed

algorithm, in which the flooding process is begun not from each local minimum in the

plot of the inverse distance transform but only from a predefined set of markers. To place

such markers in our data, we first generalize the concept of a (regional) local minimum.

A (regional) local minimum is identified as a connected set of voxels having (the same)

grayscale value that is smaller than the grayscale values in their direct neighborhood.

These grayscale values are obtained from the image where the flooding is performed, i.e.,

the inverted distance transform in this case. We define an extended regional minimum

to contain the voxels of the regional minimum plus all adjacent voxels having grayscale

values that differ by no more than ε ≥ 0 from the grayscale value of the regional

minimum. When constructing the extended regional minimum, we apply the additional

constraint that watershed boundaries may never be crossed; in other words, an extended

regional minimum is not permitted to extend into adjacent watershed regions (which

are obtained from computing the watershed transform based on (standard) regional

minima). This procedure alone has no influence on oversegmentation, as the number

of regions remains unchanged. The key step in reducing the generation of spurious

watersheds is the following: whenever two extended regional minima meet at a watershed
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(a) (b)

(c)

Figure 3. Schematic illustration of extended regional minima as markers for the

watershed algorithm: (a) two extended regional minima meet at a watershed and will

therefore be joined together; (b) two extended regional minima that will not be joined,

as they do not make contact at a watershed; (c) (extended) regional minima located

in very small cells are deleted.

boundary, they are joined together, as illustrated in Figure 3(a). This has the effect

that mainly adjacent regions are merged when they are both small, whereby not only

their size is considered but also their shape. If only one of the neighboring extended

regional minima touches a watershed, however, the two regions are not joined together

(Figure 3(b)). Furthermore, (extended) regional minima belonging to very small cells

(which can be detected by their small (maximum) distance value to the nearest particle

boundary voxel) are deleted (Figure 3(c)). This avoids very small cells in the final

segmentation. Note that from the illustration in Figure 3(a) it is not clear that joining

the two regions is preferable to leaving them apart, but in 3D there are more cases where

the distance transform is disturbed in a similar way and joining the regions is required

to avoid oversegmentation.

The result of the marker-based watershed transformation based on extended

regional minima is a new binary image with completed grain boundaries, which we

call B′′t (Figure 4(a)). When segmenting our data, we obtained good results using

ε = 5 voxels.

2.5. Postprocessing

As can be seen in Figure 4(a), the marker-based watershed algorithm does not eliminate

all instances of oversegmentation, as there are obvious problems with small “particles”

appearing along boundaries that were poorly marked in the original tomographic

reconstruction. These spurious particles can be identified by the fact that they appear
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(a) (b)

Figure 4. Image processing of Figure 1(b) following the steps illustrated in Figure 2.

(a) The marker-based watershed transformation, with remaining segmentation artifacts

marked by red circles; (b) after further postprocessing to remove the excessive overlap

of particle convex hulls. Both binary images are superimposed on the original grayscale

data.

to have been “carved out” of a larger adjacent particle. We express this criterion in

mathematical terms by noting that the particles in our sample are approximately convex

in shape: consequently, by computing the convex hull for all particles and determining

the extent to which a given particle is covered by the convex hull of a neighbor, we

can unambiguously identify a spurious particle as one whose overlap with a neighbor’s

convex hull exceeds a threshold of 40 %. In that case, the spurious particle is deleted

and its volume is added to the neighbor (Figure 4(b)).

The postprocessed binary images are denoted by B′′′t . The detection of connected

components yields a labeled image Lt given by {Lt(x, y, z) ∈ {0, . . . , Nt} : (x, y, z) ∈
W}, in which the value Lt(x, y, z) ∈ {1, . . . , Nt} denotes the particle number, Nt is the

total number of particles at time t, and Lt(x, y, z) = 0 corresponds to particle boundaries

(with a thickness of one voxel in 3D, which may appear thicker in 2D cross-sections).

From the information contained in Lt, we can perform statistical analyses of the particle

regions Rt(i) = {(x, y, z) ∈ W : Lt(x, y, z) = i}, i = 1, . . . , Nt,.

2.6. Extraction of convex polyhedra

Some characteristics of particles are difficult to estimate directly from voxelated data.

Therefore, we apply the algorithm presented in [41] to extract convex polyhedra from

experimental image data using orthogonal regression. The system of particles {Rt(i), i =

1, . . . , Nt} is described by a set of convex polyhedra {Ct(i), i = 1, . . . , Nt}, from which

various characteristics can be readily computed. Furthermore, such polyhedra are a

more realistic target for modeling than are the experimentally measured particles, as

the latter need not be perfectly convex—i.e., their faces and edges can be slightly curved.

In the stochastic model presented in Section 3, we consider only the case of a space-
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filling ensemble of convex grains. This means that each simulated grain must have the

shape of a convex polyhedron (that is, all of its faces must be planar). For a sensible

comparison of characteristics computed from such a model to those extracted from

experiment, we must first determine a “best fit” representation of the experimental

data using convex polyhedra in order to maintain consistency with the assumptions

underlying the modeling.

Note that tomographic reconstructions and their structural segmentation are

discussed again in Section 5, where the proposed dynamic simulation model is fitted

to and validated against experimental data. In the next two sections, our stochastic

modeling approach is presented.

3. Stochastic 3D microstructure model

In this section we introduce a stochastic simulation model for the particle morphologies

observed during Ostwald ripening. We consider only the case of an ultra-high

volume fraction of the coarsening phase, which means that particles fill space almost

completely; for this reason, we alternatively refer to particles as grains, as this is the

standard terminology in materials science for the constituent elements of a single-phase

polycrystalline microstructure. Owing to the space-filling arrangement of such grains,

it is natural to model the resulting microstructures using tessellations. By definition,

a tessellation divides space into disjoint regions, usually called cells. To begin with,

we attempt to describe the instantaneous state of such a microstructure by means of a

stochastic tessellation model computed in three dimensions.

First, we introduce the notion of a Laguerre tessellation, which is the mathematical

basis of our modeling approach. Then, we extend the (deterministic) Laguerre

tessellation with the help of a random weighted point pattern to a stochastic model,

which leads to the concept of a random Laguerre tessellation [42].

3.1. Laguerre tessellations

A generalization of the well-known Voronoi diagram is the Laguerre tessellation [43].

Like standard Voronoi diagrams, Laguerre tessellations consist of convex cells (i.e.,

convex polyhedra), but additional weights are used to control cell sizes. Because

Laguerre tessellations are easy to define, they are attractive for modeling grain

microstructures. For example, polycrystalline structures have been modeled with the

help of Laguerre tessellations in [44–48]. Furthermore, Laguerre tessellations have been

applied to the stochastic modeling of other materials, too, e.g. open and closed-cell

foams [49,50].

Formally, a 3D Laguerre tessellation is defined as follows. Given a (locally finite)

set S = {(xi, ri), i ∈ I} ⊂ R3 × R+ of seed points xi ∈ R3 (also called spring points

or generators) with indices in some (finite or countable) set I and weights ri ≥ 0, the
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Laguerre cell of (xi, ri) with respect to S is given by

C ((xi, ri), S) =
{
y ∈ R3 : |y − xi|2 − r2

i ≤ |y − xj|2 − r2
j , (xj, rj) ∈ S, j 6= i

}
.

Then, the Laguerre tessellation is the set of all Laguerre cells {C((xi, ri), S), i ∈ I}.
The weights ri allow control over cell sizes and can be interpreted as the radii of spheres

centered at the seed points (see Figure 5 for an illustration in 2D). Note that it is

possible for a seed point to create no cell at all, provided an adjacent seed point has a

sufficiently large weight. For the same reason it is possible for a seed point not to be

contained within the cell generated by that seed point.

Figure 5. Illustration of a Laguerre tessellation in 2D: seed points with weights

pictured as circles, along with the resulting Laguerre cell boundaries.

It may come as a surprise to learn that every normal tessellation in 3D that consists

entirely of convex cells is a Laguerre tessellation [42]. A normal tessellation is one in

which neighboring cells have coinciding faces, edges and vertices (face-to-face property);

furthermore, each planar face borders exactly two cells, each edge belongs to exactly

three cells and each vertex is shared by exactly four cells. Since these conditions are

typically satisfied by real polycrystalline microstructures, Laguerre tessellations are a

natural choice for modeling polycrystalline materials. Note that real grains are usually

only approximately convex, but we do not consider the slight curvatures of their faces in

this paper; instead, we approximate all faces by planar regions and all edges by straight

line segments.

3.2. Random weighted point pattern by sphere packing

In order to model a polycrystalline material by means of a Laguerre tessellation, we

must choose appropriate input parameters such that the resulting tessellation reflects

the characteristics of the real microstructure. One approach to generating the set

S = {(xi, ri), i ∈ I} of seed points and weights would be to employ a random point

process—for example, a Poisson process to determine seed locations and independent,
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(a) (b)

Figure 6. Realizations of random Laguerre tessellations in 2D: (a) seed points

with independently generated locations (Poisson-Laguerre tessellation with gamma-

distributed weights), and (b) with nearly no overlap of weighting circles, which

generates a more regular arrangement of cells.

identically distributed random variables to fix the weights—in order to obtain a random

marked point pattern [51–54]. However, our investigations have found that real

polycrystalline microstructures are in a sense “too regular” for this approach to yield

acceptable results, as simple random point process models generate broader distributions

of cell topologies and sizes than those measured experimentally. This issue is illustrated

in Figure 6, where it can be observed that shifting the seed locations to reduce the

overlap of weighting circles (i.e., imposing a non-random modification on the marked

point pattern) produces a much more realistic ensemble of Laguerre cells. For this

reason, we take an alternative approach to generating the marked point pattern of seed

points and their weights.

Random sphere packings are often used to model systems of (spherical) particles,

and such packings are well suited to specifying the locations of (weighted) seed points

[44, 55]. A random sphere packing is an arrangement of non-overlapping spheres with

a packing density d ∈ [dmin, dmax], with dmin ≈ 0.5 and dmax ≈ 0.65. Note that for

packing densities d > 0.65, the arrangement of spheres must be nearly regular for

equally sized spheres. For our polycrystalline data, we found that partially overlapping

spheres are better suited as (weighted) seed points. For this reason, we will generate

sets of moderately overlapping spheres from a dense packing of “hard cores,” which are

themselves spherical in shape and fixed concentrically within the overlapping spheres.

One common approach to packing spheres is to employ so-called collective-

rearrangement algorithms [56], which repeatedly displace individual spheres with the

aim of reducing and finally eliminating sphere overlap. For example, the force-biased

algorithm [57,58] is a popular collective-rearrangement algorithm, which we use during

simulations restricted to a bounded window (Section 3.3). However, first we introduce

a stochastic model for sphere packings defined on R3—i.e., a stationary model that is



Stochastic 3D modeling of Ostwald ripening 13

not restricted to (bounded) subsets of R3.

The idea of (stationary) random sphere packing models in Rm, m ≥ 2, is described

in [59]. Based on a (locally finite) stationary point process involving e.g. spheres (with

random radii) as marks and a given collective-rearrangement rule, conditions can be

formulated such that iterative application leads to convergence to a non-overlapping and

stationary (random) system of spheres. In particular, for sets of spheres an avoidance

algorithm can be determined, which is a minor modification of the force-biased algorithm

and leads to the same results in practice. For our stochastic model, we use exactly this

technique. A homogeneous Poisson process with intensity λ > 0 gives us the initial

random configuration of points, and points are independently marked with spheres

following a chosen distribution for the radii, i.e., radii are drawn from independent

copies of a random sphere radius Rsphere > 0. We assume that each sphere contains a

hard-core region in which no overlap with other hard-core regions is permitted. The

radius of each hard core is computed by applying a (constant) scaling factor shc ∈ (0, 1]

to the corresponding sphere radius. The avoidance algorithm rearranges the set of hard

cores to remove overlap. Note that for a given sphere radius distribution (of the random

variable Rsphere) and a given value for the scaling parameter shc, the intensity λ and

packing density dhc (with respect to the hard cores) are related to each other through

the relation

dhc = λ · E
(

4

3
π(shc ·Rsphere)

3

)
,

which assumes that sphere radii are not modified by the collective-rearrangement

algorithm. Furthermore, we denote by d = dhc/s
3
hc the expected ratio of the sum of all

individual sphere volumes to the volume of the simulation window. It is not a packing

density, because, typically, the spheres will overlap (in the case of shc < 1). However, we

will use d instead of dhc in the discussion below, as the meaning of d can be interpreted

without making reference to the hard core scaling factor shc. For example, d = 1 means

that the volume of all spheres taken together is identical to the overall volume of the

simulation window (which suggests that there should be a close relationship between

the sphere volume and its generated Laguerre cell volume).

In real polycrystalline microstructures, the grain diameter distribution (computed

using equivalent-volume sphere diameters) is often found to have the shape of a log-

normal or gamma distribution [60]—i.e., one observes right-skewed distributions. For

our experimental data, this effect is only slightly evident. Therefore, we choose the

truncated normal distribution for the distribution of sphere radii: Rsphere ∼ N+(µ, σ2),

where the index “+” emphasizes the (natural) constraint Rsphere > 0. Note that µ and

σ2 are the parameters of the underlying normal distribution (i.e., without truncation).

A remarkable fact is that a certain skewness in the cell size distribution is obtained

automatically from the subsequent random packing of spheres, as smaller spheres have

a tendency to generate slightly larger cells in comparison to their radius, because in this

case the free space between spheres has a larger impact.
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3.3. Algorithm for simulation

Given a bounded simulation window W ⊂ R3, and the 3D model parameters Rsphere,

shc and d introduced in Section 3.2, the algorithm to obtain a realization of our random

Laguerre tessellation model has the following steps:

1. Define a suitable cuboidW+ ⊃ W to avoid edge effects inW , where an appropriately

enlarged W is completely contained in W+ (plus-sampling). In practice, for our

case of Rsphere ∼ N+(µ, σ2), it is suitable to dilate W using a sphere b(o, µ+ 2σ) as

structuring element, and to take the bounding cuboid of the resulting set.

2. Initialize the set of spheres: S = {}.
3. Choose the center x′ of a new sphere candidate uniformly inside the simulation

window W+, and draw a realization r′ from an independent copy of the random

sphere radius Rsphere.

4. If
(∑

(x,r)∈S
4
3
πr3 + 4

3
π(r′)3

)
/ volW+ ≤ d, then S = S ∪ {(x′, r′)} and repeat

beginning with step 3, else proceed with step 5.

5. Apply the force-biased algorithm [57, 58] to the set of hard (spherical) cores

Shc = {(x′, shc · r′) : (x′, r′) ∈ S} in the cuboid W+ with periodic boundaries, which

rearranges them iteratively until overlap between hard cores has been eliminated.

Subsequently, transfer the new sphere centers from Shc to S.

6. Compute the Laguerre tessellation using the set S as (weighted) seed points;

determine the intersection of the cells with W .

Note that the technique used to obtain the initial configuration in steps 3 to 4 does

not correspond to a Poisson process directly, because the number of points in W is not

Poisson distributed. By definition of the model on the complete space (i.e., R3) there

may be regions with fewer and regions with a greater number of spheres in a given

realization before applying the iterative rearrangement algorithm. But, for relatively

high packing densities dhc, the rearrangement rule would (with enough iterations) shift

spheres from regions with a greater degree of overlap to regions with less overlap.

Consequently, even when computed within relatively small windows the final packing

density does not vary much with location. Therefore, for a given bounded simulation

window, we directly determine the number of spheres required to obtain the desired

packing density almost exactly.

3.4. Summary of the stochastic 3D microstructure model

According to the algorithm presented above, we can generate random packings of spheres

having hard cores. The sphere radii follow a (truncated) normal distribution. The

centers and radii of these spheres are used as weighted seed points for the Laguerre

tessellation. In total, this constitutes a stochastic 3D model having 4 parameters: the

mean µ and the variance σ2 of the normal distribution as well as the parameters shc and

d controlling the packing procedure. It is clear that the mean value µ is directly related
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to the mean size of cells, which depends on the coarsening state. For this reason, the

model can be adapted readily to the dynamic process of coarsening, as described in the

following section.

4. Dynamic microstructure model

In Section 3, we introduced a stochastic model for (static) polycrystalline

microstructures observed at a given point in time. In the present section, we aim to

describe Ostwald ripening using an extension of this stochastic model. As Ostwald

ripening is a dynamic process, we construct a dynamic stochastic model. In the

following, we define a time function that adheres to power-law growth as well as to

self-similarity of the particle size distribution (cf. Section 1). The time function maps

from the annealing time to the parameters of the 3D model. The time function itself

is parametric, and it separates the scale-dependent aspects of particle coarsening from

the scale-invariant 3D particle morphology.

Obviously, we require the power-law equation for grain growth given in Eq. (1)

to obtain the mean particle radius R̄(t) at arbitrary times t > 0. The formula has

three parameters, n > 0, k > 0 and R̄(0) > 0. If we wish our model to be consistent

with Eq. (1), we must determine suitable values for the parameters of the static 3D

model introduced in Section 3 at any t such that the mean cell size matches R̄(t). For

a fixed coarsening state, the parameters of our stochastic 3D model are µ ∈ R and

σ2 of the (truncated) normal distribution of sphere radii and the packing parameters

shc and d. Any parameters that depend on the scale will have to be adjusted with t,

whereas scale-invariant parameters can be treated as constants. As it is clear that shc

and d are scale invariant, we treat them as constants, estimating their values by a fitting

procedure. The remaining two parameters, µ and σ2, determine the overall scale of the

final tessellation; together, they establish the value for R̄(t) according to a functional

relationship that is to be determined.

4.1. Parametric time function

We define the time function p : R+ → R+ × R+ × (0, 1]× R+ by setting

p(t) =


µ

σ2

shc

d

 =


cµ · R̄(t)(
cσ · R̄(t)

)2

shc

d

 with R̄n(t) = R̄n(0) + k · t,

where cµ > 0, cσ > 0, shc ∈ (0, 1], d > 0, n > 0, k > 0 and R̄(0) > 0 are parameters

of the dynamic model. In the event of self-similarity, it is clear that the factors cµ > 0

and cσ > 0 cannot depend on t. Note that the parameter cµ is not a true parameter of

the dynamic model, as it is merely a correction factor needed to obtain the “correct”

expectation value; cµ could be expressed as an (unknown) function of the other scale-

invariant parameters—i.e., cµ = cµ(cσ, shc, d). In other words, for a given packing
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Table 1. Overview of model parameters and their physical interpretation.

parameter scale invariant? physical interpretation

R̄(0) > 0 mean particle radius at time t = 0

n > 0 scaling exponent for coarsening; determined by

the mechanism for coarsening (n = 3 has been

reported for a wide variety of Ostwald ripening

systems)

k > 0 growth rate constant; governs speed of coarsening

kinetics

cµ = cµ(cσ, shc, d) yes technical parameter; relates µ to the mean particle

radius R̄(t) through the relation µ = cµ · R̄(t)

cσ > 0 yes determines the standard deviation of the particle

radii

shc ∈ (0, 1] yes scaling factor to obtain the hard core radii;

controls the magnitude of overlapping allowed for

spheres during the packing procedure

d > 0 yes sum of individual sphere volumes relative to the

volume of the simulation window; governs the

packing density of hard cores through the relation

dhc = d · s3
hc

scenario and a given shape of the radius distribution, we can estimate the factor cµ
that is required to obtain µ from R̄(t). An overview of these parameters including their

physical interpretation is provided in Table 1.

4.2. Self-similarity

It may be asked whether the time function defined above fulfills the criteria for self-

similarity—i.e., whether the family of truncated normal distributions of sphere radii is

self-similar. Consider a random variable X ∼ N(µ, σ2). The density function of its

truncated version Y with Y > 0 is given by

fY (y) = fX(y |X > 0) =

{
fX(y)

1−FX(0)
if y > 0,

0 otherwise
,

where FX(x) = Φ
(
x−µ
σ

)
is the cumulative distribution function of X, and Φ denotes

the cumulative distribution function of the standard normal distribution. Consequently,

the question is simplified to whether FX(0) = Φ
(

0−µ
σ

)
takes on the same value for all

time steps (where X, or more precisely, µ and σ are rescaled). If that is the case, then

the distribution X will always be truncated at the same quantile—i.e., the shape of the

distribution of Y stays the same. By definition of the time function p, we see that in
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our case, Φ
(−µ
σ

)
becomes

Φ

(
−p(t)µ√
p(t)σ2

)
= Φ

(
−cµ · R̄(t)

cσ · R̄(t)

)
= Φ

(
−cµ
cσ

)
= const .

Therefore, the family of truncated normal distributions {R(t)
sphere, t > 0} used to generate

radii for the spheres is self-similar.

We wish to emphasize that not only is the particle radius distribution self-similar,

but so, too, is the complete family of (random) 3D morphologies generated by this

model. This is easy to see, because the annealing time influences only the mean particle

radius; all other parameters are scale invariant and independent of the current annealing

time. In particular, this implies that all characteristics of model microstructures are self-

similar, not only the distribution of particle radii.

5. Model fitting and validation

In previous sections, we described the processing and segmentation of experimental data

and our approach to stochastic modeling. The dynamic stochastic model is based on

a (static) 3D model and a time function that maps the coarsening state to the model

parameters. By construction, this model evolves in a self-similar manner. In this section,

we fit the proposed dynamic model to experimental (time-resolved) data. Subsequently,

we validate the dynamic model by means of various characteristics estimated from

experimental and simulated data; as part of the validation process we also consider

experimental time steps that were not used in model fitting.

5.1. Fitting of dynamic model

The dynamic model consists of a random 3D tessellation, the parameters of which are

computed from a time function that assumes power-law grain growth. We assume that

coarsening is diffusion controlled in our experimental system, which leads to a scaling

exponent n = 3 [19]. Therefore, we fit only the parameters k and R̄(0) in Eq. (1) to our

experimentally obtained mean grain sizes. Then, we estimate values for the parameters

cµ, cσ, shc and d that are required to obtain the desired grain sizes and grain shapes

from the 3D model.

The power-law growth formula with fixed n = 3 is a function of the parameters

k > 0 and R̄(0) > 0, in which k describes the coarsening dynamics and R̄(0) the mean

grain radius at time t = 0. First, we compute estimates ̂̄R(t) of the mean radii R̄(t)

for t ∈ T from experimental data sets. Then, we perform parameter regression by

minimizing the sum of squared errors, i.e.,(
k̂̂̄R(0)

)
= arg min

(k,R̄(0))T∈R+×R+

∑
t∈T

(̂̄R(t)− 3

√
R̄3(0) + k · t

)2

.
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Figure 7. Power-law growth of mean cell radii: points from experimental data and

fitted function.

This non-linear function is minimized using the Levenberg-Marquardt algorithm [61,62].

Experimental mean radii and the fitted power-law growth function are displayed in

Figure 7. Note that we consider only the time steps t ∈ T = {200, 400, 600, 750, 1000}
during model fitting. The time step t = 900 will be used for validation purposes. The

minimization procedure yields the estimates k̂ = 7197.3 (µm)3/s and ̂̄R(0) = 139.95µm

for the parameters of the power-law growth formula.

To obtain values for the remaining parameters, cµ > 0, cσ > 0, shc ∈ (0, 1] and

d > 0, we make use of so-called minimum-contrast estimation [51]. The latter technique

determines optimal parameter values by traversing the (discretized) parameter space P

(see Table 2) and evaluating the goodness-of-fit using a contrast function. The contrast

function defines a certain distance between experimental and simulated data, usually

by comparing some characteristics. In our case, we choose to optimize the fit of the cell

size distribution for all time steps t ∈ T at once. Therefore, the values of the parameters

cµ, cσ, shc and d are estimated by solving the following minimization problem:
ĉµ
ĉσ
ŝhc

d̂

 = arg min
(cµ,cσ ,shc,d)∈P

∑
t∈T

∞∫
0

(
F̂

(t)
R (r)− F (t)

R (r)
)2

dr ,

where F̂
(t)
R (r) denotes the (empirical) cumulative distribution function of volume-

equivalent radii of grain regions at time t, and F
(t)
R (r) denotes the cumulative distribution

function of volume-equivalent radii of Laguerre cells at time t, which depends on the

vector (cµ, cσ, shc, d). Note that the cumulative distribution functions are estimated from

interior cells only; that is, any grains touching the surface of the (real or simulated)

sample are ignored.

The discretized parameter space P and the values of the parameters cµ, cσ, shc

and d that were obtained by minimum-contrast estimation are quoted in Table 2. The

optimal parameter values are interesting in their own right: without having imposed
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Table 2. Discretized parameter space for minimum-contrast estimation and the

resulting optimal parameter values.

parameter min max step constraint optimal

cµ 0.7 1.3 0.02 1.0

cσ 0.25 0.5 0.05 0.4

shc 0.7 1.0 0.05 0.85

d 0.55 1.25 0.05 dhc = d · s3
hc < 0.65 1.0

Table 3. Mean values and standard deviations of characteristics at t = 900 min. (This

time step was not considered during model fitting.)

experimental data simulated data

mean sd mean sd

cell radius 210.5µm 77.4µm 206.8µm 81.0µm

number of faces 13.2 4.4 13.2 5.1

number of edges 33.7 13.1 33.7 15.3

sphericity 0.84 0.06 0.83 0.10√
face area 217.6µm 98.6µm 209.4µm 97.9µm

edge length 174.7µm 99.4µm 165.7µm 94.1µm

such a condition explicitly, we obtained the result that the collective volume of all spheres

is identical to that of the overall simulation window (d = 1), which also means that the

cell volumes of the Laguerre tessellation are good approximations to the corresponding

volumes of the spheres used as seed points, leading to cµ ≈ 1.

5.2. Model validation

After fitting the proposed model to experimental data, we validate the model by

assessing the extent to which it captures the microstructures observed in experiment.

To evaluate the quality of the model fit, we compare various characteristics estimated

from experimental data and model realizations. Edge effects are reduced by omitting

grains touching the sample surface. In the following, we choose the time steps t = 400,

600 and 900 min for visualization of characteristics in figures. Note that t = 900 min is a

time step that was not used during fitting to determine optimal model parameters.

A 3D visualization of the data is provided by the cylindrical cut-outs shown in

Figure 8. For t = 900 min, Table 3 illustrates the excellent agreement that was obtained

between experiment and model for the mean values and standard deviations of several

characteristics of the microstructure.

We now examine distributions of these microstructural characteristics, which

contain more information than only the first and second moments. Figure 9 shows

distributions for the normalized cell radius and the number of cell neighbors, plotted

using the corresponding density functions. We see that the 96% point-wise confidence

band for the normalized cell radius and the number of cell faces matches the experimental
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(a) (b) (c)

Figure 8. Small cylindrical regions cut out of 3D microstructures extracted from

(top) experimental data and (bottom) model realizations at (a) t = 400, (b) t = 600

and (c) t = 900 min.

data nearly perfectly. Variations in experimental data from time step to time step have

several possible sources. First, it is possible that the system has not yet reached the

state of self-similar evolution. However, as discussed in Section 2, we assume that all

characteristics lie within the range of statistical uncertainty about their steady-state

values. Second, the number of observed grains decreases steadily. Later points in time

correspond to larger and, therefore, fewer grains in the cylindrical sample, which leads

to an increase in statistical fluctuations and to a growing influence of the sample surface

(i.e. edge effects): there are 1011 grains at t = 400 min, 765 grains at t = 600 min, and

547 grains at t = 900 min (counting performed after removal of grains in contact with

the sample surface). From the excellent agreement evident in Figure 9(a) with respect

to the measured and simulated normalized grain size distributions—combined with the

close match between mean grain and cell radii shown in Figure 7—we conclude that our

model correctly reproduces the non-normalized grain size distribution at each time step.

In turn, this implies that the model accurately captures the total number of (interior)

grains, as well.

Another important characteristic is the shape of the cells. To evaluate the shape,

we computed the cell sphericity [63]. Sphericity is defined as the ratio of the surface

area of the volume-equivalent sphere to the surface area of the corresponding grain

or cell. High values for this ratio imply that the shape is quite similar to that of a

sphere, whereas small values signify larger discrepancies—e.g. the true shape could be

elongated in a particular direction. Figure 10(a) shows the density functions estimated

for cells obtained from the fitted dynamic model and from convex polyhedra extracted

from experimental data. The shapes of the distributions do not coincide perfectly, but

they are fairly close together, and their values for expectation and variance are quite
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Figure 9. Plots of the density function of the distributions of the (a) normalized

cell radius and (b) number of cell neighbors. The curves correspond to experimental

data, whereas the gray shading denotes the 96% point-wise confidence bands of the

dynamic model. Note that the confidence bands are quite similar for all time steps

(and theoretically identical) due to self-similarity.
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Figure 10. Plots of the density function of the distributions of (a) cell sphericity

and (b) edge lengths. The curves correspond to experimental data, whereas the gray

shading denotes the 96% point-wise confidence bands of the dynamic model.

similar. The same is true for the distribution of cell edge lengths (Figure 10(b)).

Although radius, number of neighbors, sphericity and edge lengths are the most

important characteristics, we evaluated further characteristics, as well, including the

distribution of face areas, the number of edges per cell and 2D joint distributions of

quantities like the cell radius and sphericity. To assess spatial dependencies, we looked at

pair and mark correlation functions [52] of cell centroids (with volume-equivalent radius

as the mark) and the correlation of cell sizes with neighborhood degree (i.e., direct

neighbors, indirect neighbors with the shortest path crossing through one, two or more

cells). The pair and mark correlation of centroids were found to be strongly influenced

by the packing of cells and their size distribution; therefore, these characteristics are not

very meaningful. With respect to the neighborhood degree, it is somewhat surprising

that we observed no correlation between cell sizes, even for direct neighbors.

6. Conclusions

In this paper we presented a dynamic stochastic simulation model for 3D particle

microstructures undergoing the coarsening phenomenon known as Ostwald ripening.
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We analyzed time series of 3D images that were recorded in situ in polycrystalline Al-

Cu alloys manifesting an ultra-high volume fraction of the coarsening (Al-rich) phase.

Using this information we developed a dynamic model for the 3D morphology of the

coarsening grains at arbitrary time steps. Our stochastic approach is based on random

Laguerre tessellations and is by definition self-similar—i.e., it depends only on the mean

grain radius, which in turn can be estimated at each point in time. Our validation of

the model shows that it provides a faithful representation of the statistical features of

the experimental data, even for time steps not used in the model fitting. This is rather

surprising, given that the model contains only three scalar parameters that influence

grain size and shape. Furthermore, we conclude that self-similarity is a reasonable

assumption for this particular set of experimental data—not only for the particle size

distribution, but also for the complete 3D morphology. To our knowledge, this is the first

discussion of systematic self-similarity—a feature that can be established with the help

of stochastic models—for microstructures generated by Ostwald ripening, which is more

general than looking at the scaling behavior of individual structural characteristics.

In the future, it would be interesting to fit our dynamic model to additional samples

having comparable as well as different values for VV . In principle, the only model

parameters that depend on the constituent materials of a given specimen are the power-

law parameters describing the growth of the mean grain size. The (scale-invariant)

3D morphology—and the corresponding parameter values—ought to be similar for all

samples sharing the same volume fraction of a solid coarsening phase embedded in a

liquid matrix. If this supposition proves to be true, then our proposed model would be

able to predict the full 3D morphology for a wide range of Ostwald ripening scenarios,

provided the model parameters have been calibrated against VV . Furthermore, we intend

to develop a “full” 4D model in which dynamics are integrated not only at the statistical

level but also at the level of individual grains. In particular, we plan to employ the

particle tracking algorithm presented in [18] to capture the dynamics of individual grains

in a stochastic model. For the evolution of individual grains, the local neighborhood is

important, as the configuration of nearby grains has a strong effect on whether a given

grain loses or gains volume. Such effects will be incorporated into the 4D model based

on a statistical analysis of local grain environments in experimental data.
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Zeitschrift für Elektrochemie, 65(7):581–591, 1961.

[9] P. W. Voorhees and M. E. Glicksman. Ostwald ripening during liquid phase sintering—Effect of

volume fraction on coarsening kinetics. Metallurgical Transactions A, 15(6):1081–1088, 1984.

[10] N. Akaiwa and P. W. Voorhees. Late-stage phase separation: Dynamics, spatial correlations, and

structure functions. Physical Review E, 49:3860–3880, 1994.

[11] K. G. Wang, M. E. Glicksman, and C. Lou. Correlations and fluctuations in phase coarsening.

Physical Review E, 73:061502, 2006.

[12] S. P. Marsh and M. E. Glicksman. Kinetics of phase coarsening in dense systems. Acta Materialia,

44:3761–3771, 1996.

[13] S. P. Marsh and M. E. Glicksman. Ostwald ripening in non-spherical morphologies. Materials

Science and Engineering A, 238(1):140–147, 1997.

[14] R. T. DeHoff and C. V. Iswaran. The usefulness of integral mean curvature measurements in the

study of the kinetics of coarsening. Metallurgical Transactions A, 13(8):1389–1395, 1982.

[15] S. C. Hardy and P. W. Voorhees. Ostwald ripening in a system with a high volume fraction of

coarsening phase. Metallurgical and Materials Transactions A, 19:2713–2721, 1988.

[16] D. J. Rowenhorst, J. P. Kuang, K. Thornton, and P. W. Voorhees. Three-dimensional analysis of

particle coarsening in high volume fraction solid-liquid mixtures. Acta Materialia, 54:2027–2039,

2006.
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