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Abstract

The evolution of grains during coarsening phenomena like Ostwald ripening is a focus of recent and ongoing research.
In the present paper, a new and flexible model is proposed that describes the statistical evolution of the “typical”
individual grain size as a function of neighborhood characteristics. The grain size evolution (GSE) model defines a
stochastic process based on contemporary mathematical techniques and requires only few (natural) assumptions. It is
fitted to time-resolved experimental data of a semisolid Al–Cu alloy, in which the coarsening phase has an ultra-high
volume fraction VV = 0.93. Evaluation shows that the model describes the experimental data quite closely. The
nature of this modeling approach serves to improve the understanding of coarsening processes at the intermediate
level between coarsening mechanisms and global statistical properties. Furthermore, the model enables predictive
simulations to be performed, based on an extension of an existing 3D microstructure model (Mod. Sim. Mat. Sci.
Eng. 2015;23(6):065001) to 4D.
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1. Introduction

Ostwald ripening is a process that occurs in mul-
tiphase systems, where particles (or droplets) of one
phase are embedded in a matrix of one or more other
phases. In order to minimize the excess energy con-5

tributed by interphase boundaries, large particles grow
while small particles shrink and, ultimately, disappear.
An introduction to Ostwald ripening and its experimen-
tal and theoretical investigation can be found in, e.g.,
[1, 2, 3, 4, 5, 6], whereby the most important theoreti-10

cal treatment of Ostwald ripening is the so-called LSW
theory, presented by Lifshitz and Slyozov [7] as well
as Wagner [8] in the early sixties. The latter describes
the case of a vanishingly small volume fraction VV of
the coarsening phase, for which it is possible to treat15

every particle as an isolated object — i.e., direct inter-
actions between particles are not considered. The LSW
theory predicts a power-law growth of the mean parti-
cle size (with exponent 3) and a particle size distribu-
tion whose shape does not change over time. In par-20
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ticular, the particle size distribution normalized to ex-
pectation unity is always the same distribution (statisti-
cal self-similarity [9]). However, the situation is more
complicated for volume fractions VV that are not near
zero [10, 11, 12, 13, 14, 15], which has become a pop-25

ular topic of recent research in the field. For example,
experimental investigations [16, 17, 18, 19], analytical
theories [20, 21] and large-scale computer simulations
— based on, e.g., phase-field and Monte-Carlo meth-
ods [22, 23, 24, 25] — have focused on volume frac-30

tions of technological relevance. Results suggest that
the power-law growth and the self-similarity of particle
size distributions still hold, although the shape of the
particle size distribution changes at higher VV [22, 24],
and for VV > 0.9 the power-law exponent may man-35

ifest a crossover to that of single-phase grain growth
(exponent 2 at VV = 1.0) [22]. However, convergence
to steady-state conditions can be slow [26, 27].

The approaches mentioned above are all important
for an improved understanding of the coarsening pro-40

cess. Yet, other (complementary) approaches have their
merits, as well. For example, stochastic modeling of
microstructures helps to identify the relevant structural
characteristics of a given material, encompassing not
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only the average values of specific structural parame-45

ters but also their local fluctuations and spatial correla-
tions. A stochastic 3D microstructure model for poly-
crystalline materials has been presented in [28], where
the model was fitted to experimental data obtained for
an Al-5 wt% Cu alloy heated to 592 °C. However, in50

[28] the dynamics of microstructural evolution were
captured only at the statistical level but not for individ-
ual particles (hereafter referred to as grains). We aim
to remedy this situation in the present paper. Our new
treatment has several benefits. A stochastic description55

of individual grains and their evolution over time is use-
ful to determine simple characteristics that influence (or,
at least, are correlated with) the local evolution of grain
sizes. The stochastic modeling approach proposed in
the present paper can identify and account for such de-60

pendencies, while subsuming any additional, not-yet-
identified factors influencing evolution to the “random-
ness” of the system. Note that stochastic models de-
scribing the evolution of grains have two important ad-
vantages. First, it is possible to identify (locally esti-65

mated) parameters of the microstructure that have a high
impact on the local evolution. Second, predictive simu-
lations are possible. As mentioned in [28], the latter is
important for, e.g., the multiscale computational models
that are employed in Integrated Computational Materi-70

als Engineering (ICME) [29].
In this paper, we present a stochastic model that pre-

dicts changes in grain volume based on current grain
size and characteristics of its neighborhood. More pre-
cisely, the model not only predicts the expected evolu-75

tion of grain size but also its probability distribution —
i.e., the possible new grain sizes and their likelihoods.
We call this model the grain size evolution (GSE) model.
The latter is based on just a few assumptions — power-
law growth [7, 8], self-similarity [7, 8, 9], temporal80

and spatial Markov property [30, 31] — and a further
contemporary mathematical technique, the modeling of
multivariate distributions with copulas [32, 33]. The
GSE model describes the dynamical behavior of the
“typical”1 individual grain. In a second step, the 3D85

model for entire grain systems [28] is extended to 4D
by integrating the GSE model.

We show the capability of the model to represent phe-

1The terminology “typical grain” employed in the present paper
conveys the following mathematical concept. Consider a grain ensem-
ble, for which each grain has properties like size, shape, etc. For an
unboundedly increasing number of such grains, these properties can
all be described by probability distributions. Then, the typical grain is
a random grain whose properties have these distributions, and, thus,
the typical grain is representative of the entire grain system — see
[34] for further details.

nomena observed in real materials by fitting it to time-
resolved experimental data of a semisolid Al–Cu alloy,90

in which the coarsening phase occupies an ultra-high
volume fraction (VV = 0.93). These data were captured
in situ with synchrotron X-ray tomography. It turns out
that a large number of grains can be tracked, although
the complexity of the image data renders it laborious to95

achieve high tracking efficiencies. Fortunately, even in-
complete microstructural information suffices to estab-
lish the values of model parameters such that growth of
individual grains is predicted quite accurately.

2. Experimental data, imaging and segmentation100

In this section, the experimental sample, its time-
resolved structural characterization, and image data pro-
cessing are described.

2.1. Experimental sample and in situ 3D imaging

The experimental data considered here were drawn105

from the same measurements that were considered in
[28]; however, now the time resolution of the data is ex-
ploited. Salient facts regarding sample preparation and
3D imaging are reviewed below.

An ingot of the alloy Al-5 wt% Cu was homogenized110

at 500 °C for 24 hours in air and subsequently cold-
rolled to a thickness reduction of 50 %. Cylindrical
specimens — 8.5 mm in length and 4 mm in diameter
— were cut from the rolled plate by spark erosion. A
furnace was constructed to allow for time-resolved in115

situ tomographic characterization of such samples us-
ing X-ray radiation at beamline ID15A of the European
Synchrotron Radiation Facility (ESRF). Over the course
of 25 hours, a tomographic scan was recorded every
10 minutes while the specimen was held at 592 °C,120

which placed it in a semisolid state consisting of solid
particles surrounded by a liquid matrix. Absorption-
contrast tomography is able to distinguish between the
particles and the matrix because the liquid absorbs X-
rays more strongly than does the solid phase. This is125

due to the higher concentration of Cu dissolved in the
matrix (22.4 wt% vs. only 3.5 wt% in the solid phase)
at 592 °C. Application of the lever rule to the Al–Cu
phase diagram [35] yields a volume fraction of the solid
(coarsening) phase of VV = 0.93 at thermodynamic130

equilibrium between the particles and the liquid ma-
trix. The nominal resolution of the reconstructed tomo-
graphic data sets is given by the voxel side length of
5.36 µm.

We denote the 3D grayscale images obtained in this135

manner by It = {It(x, y, z) ∈ {0, . . . , 255} : (x, y, z) ∈
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W}, where W ⊂ N3 is the grid of voxel coordi-
nates, the grayscale values are in {0, . . . , 255}, and the
annealing times t ∈ Texp belong to the set Texp =

{200, 210, . . . , 750} (all specified in minutes). Note that140

the time span between two successive tomograms is al-
ways tstep = 10 minutes.

We make the same assumption as in [28] regarding
steady-state conditions. We cannot be sure that the sam-
ple has actually reached the steady state by 200 min-145

utes of annealing. Statistical characteristics (e.g., the
distributions of grain sizes and coordination numbers)
seem to indicate the occurrence of self-similar coars-
ening [28], but it is still possible that the sample finds
itself in a transient regime, the characteristics of which150

are evolving very slowly. In either event, it makes sense
to fit a stochastic model to the experimental data, but in
the transient case the stochastic model’s predictive abil-
ity applies only to a limited extent beyond the time span
at hand.155

2.2. Identification of grains at fixed annealing times
In order to establish the parameters of the GSE

model, we will require information regarding grain-size
trajectories [19]. As a result, we must be able to rec-
ognize the same grain at subsequent or previous time160

steps, necessitating a consistent labeling of grains over
the course of the measurements. The aim is to obtain
a large number of trajectories, each of which extends
over numerous time steps. In this section, we discuss
the identification of individual grains within 3D data165

sets. These data form the basis for the tracking of grains
across time steps, which we address in the following
section.

Image processing was performed in a similar manner
as in [28]. Ring artifacts were removed from grayscale170

data [36] (resulting image denoted by I′t ), a global
thresholding step was performed (binary image denoted
by Bt), and a smoothing step was applied (resulting im-
age denoted by B′t). The main difference with respect to
the image processing performed in [28] may be found175

in the identification of grains. We still employ a water-
shed transformation [37, 38, 39, 40], but instead of con-
sidering so-called extended regional minima, which we
introduced in [28] to reduce the occurrence of overseg-
mentation, we now adopt the following simplified ap-180

proach, which is computationally faster and therefore
better suited to a large number of 3D data sets. For ev-
ery local minimum, we can interpret the minimal dis-
tance to a grain boundary (i.e. the matrix phase) as the
radius of a sphere centered at the local minimum. We185

then increase the radius of such a sphere by 10 % and
remove every other local minimum located within that

sphere that has a smaller minimal distance than the lo-
cal minimum at the sphere center. This thinning of the
set of local minima is very simple and reduces over-190

segmentation in many cases — i.e., when the shape
of the grains that are to be detected does not deviate
too much from a spherical shape. (The deviations are
the reason for the 10 % radius increase.) The result of
a marker-based watershed transformation [38, 41] ap-195

plied to the thinned set of local minima is a binary im-
age in which any holes in the network of grain bound-
aries have been filled in. This image is called B′′t . Fi-
nally, the same postprocessing was performed as in [28],
yielding the image B′′′t . Every connected component in200

B′′′t corresponds to a single grain, which is assigned a
unique label. The labeled image is specified by Lt =

{Lt(x, y, z) ∈ {0, . . . ,Nt} : (x, y, z) ∈ W}, where the value
Lt(x, y, z) ∈ {1, . . . ,Nt} denotes the grain label, Nt is the
total number of grains at time t, and Lt(x, y, z) = 0 corre-205

sponds to grain boundary regions (i.e. the matrix phase
surrounding individual particles reduced to a thickness
of one voxel). The grains themselves are given by
Gt(i) = {(x, y, z) ∈ W : Lt(x, y, z) = i}, i = 1, . . . ,Nt.
The result is illustrated in Figure 1.210

Figure 1: Planar section through a 3D tomographic data set, with iden-
tified grains assigned random colors. Examples for over- and under-
segmentation are encircled in the bottom left and top right of the fig-
ure, respectively.

Note that regions of over- or undersegmentation re-
main. However, it is not necessary for the segmentation
to be perfect (though this would, of course, be desir-
able). For any given point in time, the statistical in-
formation contained within the grain ensemble can be215

ascertained by the procedure outlined in [28], as it is
feasible to achieve high quality in the segmentation of
a single data set. In this paper, on the other hand, it
is more important that the segmentation be highly con-
sistent with respect to time. Segmentation errors re-220

duce the length of grain trajectories, but for our pur-
poses, the relevant fact is that the measured trajectories
are reliable. The data sets are large enough to make
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non-optimal tracking efficiencies acceptable. Note that
there is no indication from a visual inspection of un-225

tracked grains that systematic bias has been introduced
by the segmentation procedure: for example, the likeli-
hood that a grain will be segmented properly appears to
be independent of the particular grain’s size class.

2.3. Extraction of grain trajectories230

Finally, based on the labeled images Lt for all time
steps t ∈ Texp, grains must be tracked. A suitable
method is proposed in [19], in which tracking is per-
formed in reverse direction with respect to time. Dur-
ing the coarsening process, grains disappear over time,235

but no new grains nucleate. Therefore, every grain
present at a given time t ∈ Texp must have existed at
all times t′ < t, as well. In particular, this is the case
for the point in time that directly precedes t — namely,
t− = t − tstep. We assume that the prior grain region240

of Gt(i) should be detected. First, possible grain can-
didates at time t− are identified by detecting all grain
regions Gt− ( j), j ∈ J ⊂ {1, . . . ,Nt− }, that have their
centroid voxel inside Gt(i). Then, Gt− ( j) is selected
such that the best agreement in grain size is obtained.245

This is explained in the following. Denote by rt− ( j) the
volume-equivalent radius of region Gt− ( j), and by rt(i)
the volume-equivalent radius of Gt(i). For j ∈ J, the rel-
ative change is defined as |rt(i) − rt− ( j)|/rt(i). This rela-
tive change must lie below a threshold of 0.012 R̄2

t /r
2
t (i),250

where R̄t is the mean radius of all grains at time t. A cen-
tral assumption is that a grain cannot change too much
in only 10 minutes of annealing; the factor 0.012 has
been selected manually (i.e., it was lowered until no im-
plausible jumps in grain sizes of trajectories were ob-255

served). If exactly one candidate j ∈ J fulfills this crite-
rion, the grain has been detected. Otherwise, either no
grain is sufficiently close in volume to rt(i) or there is
more than one candidate — in both cases, no tracking is
performed. Note that this procedure reduces the impact260

of the relative change threshold, and in [19] the same
methodology was shown to yield high grain tracking ef-
ficiencies for similar experimental data.

In this paper, the notation of grain trajectories is as
follows. There are M ∈ N trajectories, where N de-265

notes the set of positive integers. Each trajectory s(k),
k ∈ {1, . . . ,M}, is a time-indexed sequence of grain la-
bels {lk(t) ∈ {1, . . . ,Nt} : t ∈ Tk} where the trajectory is
known at time points Tk ⊂ Texp. The length |s(k)| of a
trajectory is given by the number #Tk > 0 of elements in270

the set Tk. We allow incomplete information. Therefore,
very often Tk , Texp. Note that the tracking technique
implies that the “death” of a grain is not observed, and
the resulting trajectory with endpoint at non-zero grain

radius cannot be distinguished from a failure in track-275

ing. It is clear that all time points in Tk must be sequen-
tial — time points in Texp may be missing from Tk only
before the beginning or after the end of a trajectory. (For
example, if one grain is tracked for a long time, but with
a single disruption in between, then it is represented as280

two separate grain trajectories.)
In the following analysis, an additional constraint is

enforced: a trajectory must have a length of at least 12,
i.e., it can be tracked for at least 2 hours. This additional
requirement helps to ensure the quality of trajectories,285

as it is unlikely for a long trajectory to be obtained by
chance. Figure 2(a) shows trajectories of the volume-
equivalent radii of experimental grains. Note that, as a
matter of fact, trajectories are often incomplete, which
means that there is no information for some time steps.290

Furthermore, if grains lie below a minimum size (be-
low 25 % of the mean radius), we assume that they
are too small for tracking because their size changes
more rapidly, and incorrect tracking would become in-
creasingly likely. The experimental growth rates visu-295

alized in Figure 2(b) show the same qualitative behav-
ior as in [19]. Note that the growth rates are computed
from all observed transitions, i.e., for all trajectories, ev-
ery evolution in size is considered separately for two
subsequent annealing times. The normalized radius is300

the volume-equivalent radius of a grain divided by the
global mean radius at the respective point in time. Col-
ors in Figure 2(b) indicate the values of locally normal-
ized radii, i.e., the grain radii relative to their respective
local mean, cf. Section 2.4.305

2.4. Local means

Similar as in [19], we consider a local mean radius of
the neighborhood for every grain. We define the local
mean radius as a weighted mean computed from all radii
of adjacent grains. The weights are chosen as the square310

root of the respective grain–grain contact area in the wa-
tershed segmentation. Therefore, adjacency is defined
as having a common face, i.e., a positive value for the
contact area of watershed basins (which is similar to the
Voronoi cell construction proposed in [12] to determine315

relevant neighbors). Note that, usually, one would think
of the standard (unweighted) mean or the contact area-
weighted mean of all adjacent grains. However, the non-
perfect segmentation of individual grains is a problem
when evaluating local means (problematic grains are of-320

ten small), and we obtained the best results by using
“diameters” of contact areas as weights. Nonetheless,
we take additional steps to improve the reliability of the
data.
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(a) Size trajectories of experimental grains. Note that experi-
mental trajectories are detected only as long as grains are above
a predefined minimum size. The color of a trajectory indicates
the difference in endpoint radii.
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(b) Volumetric growth rates 4πr2
t (i)

(
rt+ ( j)− rt(i)

)
/(t+ − t)

obtained from experimental grain radius transitions rt(i)
to rt+ ( j), where grain i at time t belongs to the same
trajectory as grain j at time t+; for all trajectories s(k),
k ∈ {1, . . . ,M}, and for all t ∈ Texp, t+ = t + tstep ∈ Texp.
Normalized radii are computed at time t.

Figure 2: Experimental trajectories of grain sizes and volumetric
growth rates. (For purposes of visualization, only a subset of all tra-
jectories is shown.)

First, a moving-average procedure is applied to the325

local means. For a given grain at a certain time, the
(smoothed) local mean is computed by averaging over
5 local means, namely, besides the local mean of the
given time step, the two local means of the two pre-
vious time steps and the two subsequent time steps (if330

present). This is reasonable as the local mean should
not change too much in a short time span. Then, in a
second step, a grain trajectory is rejected if the corre-
sponding local mean value changes suddenly (in spite
of the moving average smoothing), i.e., if the difference335

of two subsequent local mean values is larger than 2 %
of the global mean. In these cases, there are problems
in the neighborhood and it is better to ignore such data

altogether.
The grain radius relative to the local mean is shown340

with the help of colors for grain growth rates in Fig-
ure 2(b). This ratio is called the locally normalized ra-
dius in this paper; the term “normalized radius” without
this emphasis refers to the usual normalization with the
global mean (cf. R̄t, Appendix B). The colors indicating345

the locally normalized radii correspond roughly to the
(globally) normalized radii, as it is likely for grains that
are large (small) with respect to the global mean to be
large (small) with respect to the local mean, as well.

3. The grain size evolution model350

The proposed GSE model is essentially a stochas-
tic process that describes the dynamical behavior of
the “typical” (cf. footnote1) single grain — where, in
particular, its size is of interest. The interpretation of
the notion of the “typical grain” is that one looks at355

a random grain in the (large) ensemble of grains at
some initial time, e.g., t = 0, which has the random
(non-deterministic) volume-equivalent radius R0. We
assume that there is a stochastic process {R̊t, t ≥ 0} with
R̊0 = R0, where the random variables R̊t correspond to360

the radii of the typical grain at annealing times t > 0. If
the grain vanishes, its radius is defined to be zero (and a
grain having radius zero may never “jump” to a positive
radius again). Note that the possibility of having a ra-
dius of zero is the reason for the notation R̊t (instead of365

Rt without ring). If we want to consider the radius under
the condition that the typical grain is “alive” at time t,
we write Rt where Rt = (R̊t | R̊t > 0).

For simplicity, only discrete and equidistant time
steps are considered. In particular, the random vari-370

ables {R̊t, t ∈ Tmodel} should be described by a model,
and the set of time steps is assumed to be Tmodel =

{tmin, tmin + tstep, tmin + 2tstep, . . .} for some tmin ≥ 0 and
tstep > 0. Note that we may opt to choose the typical
grain from all grains at some annealing time tmin > 0375

instead of tmin = 0, and consider the evolution starting
from that point in time. Later on, simulation is stopped
at time tmax, i.e., we set Tsim = {t ∈ Tmodel : t ≤ tmax} =

{tmin, . . . , tmax}. We assume that R̊tmin > 0 with prob-
ability one, i.e., only grains that exist at time tmin are380

considered.
In principle, the family {R̊t, t ∈ Tsim} of finitely many

random variables could be interpreted as a random vec-
tor with dimension #Tsim. Such a random vector is de-
scribed by its multivariate (joint) distribution. However,385

assuming a so-called Markov property it suffices to con-

5



sider the pairs

(R̊tmin+itstep , R̊tmin+(i+1)tstep ), i = 0, 1, . . . ,

which is significantly easier. The assumption is that the
evolution of grains from time t to t+ = t + tstep does390

not depend on the earlier history, i.e., the grain trajec-
tory up to the time step immediately before t.2 This
type of assumption is called the Markov property, and
it can be properly defined using the theory of stochastic
processes — see, e.g., [30]. With this assumption, the395

GSE model needs only to describe the transitions from
a discrete point in time t ∈ Tmodel to the next point in
time t+ — without any knowledge of its state at previous
time points. If the distributions of all pairs (R̊t, R̊t+ ) are
known for all t ∈ Tmodel, then a trajectory {rtmin , . . . , rtmax }400

of radii of the typical grain can be simulated. First, a
realization of the typical grain radius at time tmin is ob-
tained, i.e.,

rtmin ∼ R̊tmin .

Then, the radii of subsequent time steps are obtained405

iteratively by conditional sampling, i.e.,

rtmin+tstep ∼ (R̊tmin+tstep | R̊tmin = rtmin ) ,

rtmin+2tstep ∼ (R̊tmin+2tstep | R̊tmin+tstep = rtmin+tstep ) ,
...

rtmax ∼ (R̊tmax | R̊tmax−tstep = rtmax−tstep ) .410

A second assumption is very important for the con-
struction of the model. A widely accepted belief for
grain coarsening phenomena like Ostwald ripening is
self-similarity of the particle size distribution [9]. We415

give a short definition. Suppose R̄t returns the expected
grain radius of the observable (i.e., non-dead) grains for
every time t ≥ 0, e.g., it is given by the power-law
growth formula, see formula (B.1) in the appendix. Let
{Xt, t ≥ 0} denote a time-indexed family of non-negative420

random variables with (cumulative) distribution func-
tions Ft(x) = P(Xt ≤ x), x ≥ 0, for all t ≥ 0. We

2Note that our aim is not to obtain a model that predicts future
grain size evolution based on some kind of “fit” to past behavior;
rather, we seek a model that bases its predictions solely on the current
state of the microstructure, as is the case for the physical system. (All
driving forces for coarsening follow entirely from the current state of
boundary curvatures, concentration gradients and other microstruc-
tural parameters.) Within the context of our modeling approach, our
goal is to reduce the degree of “randomness” in a single transition
(i.e. to improve the prediction) by considering additional (local) mi-
crostructure characteristics that influence coarsening behavior. We
then treat any remaining randomness as a random walk (Markov as-
sumption).

call {Xt, t ≥ 0} or {Ft, t ≥ 0} self-similar (with respect to
{R̄t, t ≥ 0}) if the relationship

Ft(y R̄t) = F0(y R̄0), y ≥ 0,425

holds for all t > 0. Now, recall that Rt = (R̊t | R̊t >
0), i.e., radii of dead grains are excluded in Rt. Then,
the assumption is that the distribution functions {FRt , t ∈
Tmodel} of the time-dependent radii {Rt, t ∈ Tmodel} for
the typical (non-dead) grain are self similar.430

3.1. Modeling the marginal distributions

Recall that we want to describe the bivariate distri-
bution of the random vector (R̊t, R̊t+ ) for all t ∈ Tmodel.
By modeling these bivariate distributions, the stochas-
tic GSE model is obtained. We propose to use copula-435

based probability distributions, for which a short intro-
duction can be found in Appendix A. A big advantage of
this approach is that one can describe the marginal dis-
tributions of R̊t and R̊t+ separately, and the copula itself
is a special bivariate distribution function that describes440

the dependency between the two components R̊t and R̊t+ .
Therefore, first, we consider the marginal distribu-

tions of the vector (R̊t, R̊t+ ). Obviously, owing to the
definition of Rt, R̊t is exactly Rt if R̊t > 0, and otherwise
R̊t = 0. The event R̊t = 0 occurs with a particular prob-445

ability qt ∈ [0, 1]. Consequently, the distribution of R̊t

is given by a weighted mixture of Rt (with distribution
function FRt ) and “dead” grains (described by a degen-
erate distribution that assigns all mass to radius zero),
whereby the weighting factor qt denotes the proportion450

of grains at time t that have died. In other words, the
distribution function of R̊t is given by

FR̊t
(x) = (1 − qt) FRt (x) + qt1{x ≥ 0}, x ≥ 0, (1)

where 1{x ≥ 0} is the radius distribution function of
dead grains, i.e., it is equal to unity for x ≥ 0. The455

quantity qt clearly depends on t and on the first con-
sidered point in time, i.e., tmin, which we assume to be
fixed. In particular, note that qtmin = 0.

Analogously to R̊t, the distribution of R̊t+ has the
same decomposition as given in (1) (with Rt+ and qt+ ).460

Note that the distributions of Rt and Rt+ are assumed
to be self-similar with respect to {R̄t, t ≥ 0}, i.e.,
FRt (y R̄t) = FRt+

(y R̄t+ ) for all y ≥ 0. Furthermore, be-
cause grains do not nucleate, R̊t+ = 0 must hold with
probability 1 if R̊t = 0. This implies qt ≤ qt+ .465

Now, at this point, the question is: is it necessary to
choose qt, t ∈ Tmodel, as a certain value to be consistent
with natural conditions to the model? It turns out that
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the answer is yes. First, recall that R̊tmin = Rtmin by defi-
nition, i.e., the typical grain selected at starting time tmin470

is not a dead grain.
Simply as a tool to obtain qt, we look at the random

vector (R̊tmin , R̊t) because we know that qtmin = 0. There-
fore, by (1), the marginal distribution functions of the
random vector (R̊tmin , R̊t) are given by475

FR̊tmin
(x) = FRtmin

(x), x ≥ 0,

FR̊t
(x) = (1 − qt) FRt (x) + qt, x ≥ 0.

(2)

It is known how the expectation of the grain radius
distribution evolves with time. Furthermore, it is clear
that the total volume of a set of grains must not change
over time. Growing grains gain volume from shrinking480

grains — but in total, no volume may be lost or added in
this process (i.e., mass conservation is assumed). There-
fore, a natural requirement is that the expected volume
remain constant — i.e.,∫ ∞

0
x3dFR̊tmin

(x) =

∫ ∞

0
x3dFR̊t

(x) . (3)485

Note that dead grains with volume zero are included on
the right-hand side, and their former volume is available
to other grains. Now, qt can be evaluated by combining
(2) and (3). First, it holds that the left-hand side of (3)
can be rewritten as490 ∫ ∞

0
x3dFR̊tmin

(x) =

∫ ∞

0
x3dFRtmin

(x)

= R̄3
tmin

∫ ∞

0
y3dFRtmin

(yR̄tmin ) ,

and the right-hand side of (3) is given by∫ ∞

0
x3dFR̊t

(x) = (1 − qt)
∫ ∞

0
x3dFRt (x)495

= (1 − qt) R̄3
t

∫ ∞

0
y3dFRt (yR̄t) .

Therefore, (3) is equivalent to

R̄3
tmin

∫ ∞

0
y3dFRtmin

(yR̄tmin ) = (1 − qt) R̄3
t

∫ ∞

0
y3dFRt (yR̄t)

⇔ R̄3
tmin

∫ ∞

0
y3dFR0 (yR̄0) = (1 − qt) R̄3

t

∫ ∞

0
y3dFR0 (yR̄0)500

⇔ R̄3
tmin

= (1 − qt) R̄3
t

⇔ qt = 1 − R̄3
tmin
/R̄3

t ,

where the first equivalence holds because of the self-
similarity of {FRt , t ∈ Tmodel}— i.e., the variable of inte-505

gration y denotes the normalized radius and FRt (y R̄t) =

FRtmin
(y R̄tmin ) = FR0 (y R̄0) for y ≥ 0. Obviously, qt ∈

[0, 1] holds because R̄t ≥ R̄tmin for t ≥ tmin.
In this section, the marginal distributions of (R̊t, R̊t+ )

have been described, and the required probability qt of510

a grain to vanish in the time interval (tmin, t] has been
determined. However, the copula capturing the depen-
dence structure still has to be specified.

3.2. Co-monotonicity copula
For an easier understanding of the modeling ap-515

proach, we first plug in the co-monotonicity copula C+

(which, to begin with, has no parameters, see Appendix
A) and simulate grain trajectories. The marginal distri-
butions of Rt, t ∈ Tmodel are chosen by using parameter
values obtained from the fitted model presented in [28]520

(see also Appendix B). There is a close relationship be-
tween seed point radii and grain radii, see [28], therefore
we simply set Rt ∼ N+(cµR̄t, c2

σR̄2
t ) (i.e., the normal dis-

tribution with expectation cµR̄t and standard deviation
cσR̄t, truncated to the interval (0,∞)). The values of the525

parameters cµ > 0, cσ > 0 and the specification of the
power-law growth formula (B.1) are given in Appendix
B. For t ∈ Tmodel, t+ = t + tstep, the bivariate distribution
of (R̊t, R̊t+ ) is assumed to be given by

F(R̊t ,R̊t+ )(x1, x2) = C+(FR̊t
(x1), FR̊t+

(x2)) , (4)530

for x1, x2 ≥ 0, where both marginal distribution func-
tions are defined as given in (1). Note that x1, x2 are
the grain radii at time t and t+, respectively, and the dis-
tribution function given in (4) specifies their relation-
ship. However, this equation does not directly describe535

the evolution from x1 to x2; rather, loosely speaking, it
essentially specifies how often x1 and x2 can occur to-
gether. The co-monotonicity copula ensures that R̊t+ = 0
holds almost surely (i.e., with probability 1) if R̊t = 0.
For the co-monotonicity copula, this is equivalent to540

qt ≤ qt+ , which is obviously fulfilled.
Figure 3(a) shows the trajectories of 100 simulated

grains. Note that the initial radii of grains are ran-
dom, but the evolution is deterministic (because the co-
monotonicity copula implements a perfect, determin-545

istic dependence). It can be observed that, in princi-
ple, the simulated grain evolution exhibits the same be-
havior as found in experimental data, cf., Figure 2(a),
or Figure 9 in [19]. Furthermore, Figure 3(b) shows
growth rates determined from simulated grain radius550

transitions. A very good qualitative agreement with the
polynomial fit curve in Figure 10 of [19] can be ob-
served. The behavior for very small grain radii is sur-
prising at a first glance, but it can be explained: the grain
radius shrinks quickly, but the (squared) absolute grain555
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radius is already very small, causing the growth rate to
tend toward zero.
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(a) Size trajectories of simulated grains. (The transition to radius
zero is not drawn because the slope would change suddenly due
to the discreteness of the time steps.)
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(b) Volumetric growth rates 4πr2
t (rt+ − rt)/tstep obtained

from grain radius transitions rt to rt+ in all simulated tra-
jectories, for t ∈ Tsim and t+ = t + tstep ∈ Tsim.

Figure 3: Simulation results for 2D GSE model with co-monotonicity
copula and parameters from [28].

At this point, we note that this simple example with
the co-monotonicity copula corresponds to the expected
behavior of grains when only the global mean radius is560

used as a criterion for evolution. Two trajectories start-
ing from different initial radii (at the same time) will
never intersect. Such idealized “globally driven” coars-
ening is interesting in its own right, although it cannot
be investigated experimentally (for high volume frac-565

tions of the coarsening phase). By using another copula
type, it is possible to introduce randomness into the in-
dividual transitions, which is closer to the experimental
situation. For this reason, the Gaussian copula (cf. Ap-
pendix A) will be used in the remainder of the paper.570

Note, however, that the Gaussian copula is but the sim-
plest possible choice — in Section 4.2, we will give rea-
sons why another copula may better be able to describe

experimental coarsening data.

3.3. Parametric model with Gaussian copula575

Instead of the co-monotonicity copula used as a first
trial in the previous section, a Gaussian copula is ap-
plied now. The bivariate Gaussian copula CGauss

Σ
:

[0, 1]2 → [0, 1] has a correlation matrix of the form

Σ =

(
1 ρ
ρ 1

)
,580

where ρ ∈ [−1, 1] controls the correlation strength. For
simplicity, we call ρ the correlation coefficient (even
though it does not need to correspond to the (Pearson)
correlation coefficient of the constructed distribution).
The correlation may be time-dependent; however, just585

for this example, we take the correlation coefficient to
be constant.

A direct (but unfortunately incorrect) approach would
be to use the Gaussian copula by setting

F(R̊t ,R̊t+ )(x1, x2) = CGauss
Σ (FR̊t

(x1), FR̊t+
(x2)), x1, x2 ≥ 0.590

This is problematic owing to the existence of vanish-
ing grains, as the Gaussian copula does not ensure that
R̊t+ = 0 holds almost surely if R̊t = 0. (Recall that
the density of normal distributions is strictly positive.
In particular, here, the first radius x1 = F−1

R̊t
(u1) is zero595

for u1 ∈ [0, qt], and the second radius x2 = F−1
R̊t+

(u2)
is non-zero for u2 ∈ [qt+ , 1], and integrating the Gaus-
sian copula density over the area [0, qt] × [qt+ , 1] yields
a positive probability.)

Therefore, we make use of the ordinal sum copula600

construction (see Appendix A). We use the indepen-
dence copula CΠ as the “lower part” C1 and the Gaus-
sian copula CGauss

Σ
as the “upper part” C2 for the ordi-

nal sum. The threshold h is chosen as qt, the resulting
ordinal sum copula is denoted by Cqt . Then, the joint605

distribution of (R̊t, R̊t+ ) is given by

F(R̊t ,R̊t+ )(x1, x2) = Cqt (FR̊t
(x1), FR̊t+

(x2)), x1, x2 ≥ 0.

This way it is ensured that a radius of zero at time t is
always mapped to radius zero at time t+ (because in-
tegrating the ordinal sum copula density over the area610

[0, qt] × [qt+ , 1] yields zero). Note that C1 could be any
copula — the ordinal sum construction itself is sufficient
to obtain this absorption property of radius zero.

To assess the effect of the randomness in transitions,
we simulated grain trajectories for a Gaussian copula615

with a very high correlation of ρ = 0.99995. Note that
conditional samples can be obtained quite easily from

8



a Gaussian copula — see, e.g., [33]. As can be seen
in Figure 4, the randomness of a transition is clearly
visible. The volumetric growth rates scatter and do not620

follow exactly the curve in Figure 3(b). With such a
model it is possible for trajectories to intersect, i.e., two
grains with the same size may evolve differently.
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(a) Size trajectories of simulated grains.
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(b) Volumetric growth rates 4πr2
t (rt+ − rt)/tstep obtained

from grain radius transitions rt to rt+ in all simulated tra-
jectories, for t ∈ Tsim and t+ = t + tstep ∈ Tsim.

Figure 4: Simulation results for 2D GSE model with Gaussian copula,
correlation coefficient ρ = 0.99995 and parameters from [28].

3.4. Extension to neighborhood description

In the previous section, the deviation of the grain evo-625

lution from the expected behavior was modeled by a
non-deterministic dependence on time. However, one
would really like to explain these deviations by other
characteristics. It is very likely that the neighborhood
of grains influences their evolution. For example, in630

[19], grain radii are considered that are normalized by
a local mean instead of the global mean radius. We im-
plement neighborhood characteristics as an additional
component to our GSE model, by extending it from two
to (in this case) four dimensions.635

Such a dependence on (only) some kind of neighbor-
hood in the modeling is essentially equivalent to the as-
sumption of a spatial Markov property — i.e., a certain
conditional independence is assumed. Suppose we have
a graph whose vertices are random variables describing640

radii of grains and whose edges represent the neighbor-
hood structure of grains. Then, the local Markov prop-
erty is fulfilled if the radius of any given grain is inde-
pendent of all other random variables, given the radii of
its neighbors. This concept is known from the theory of645

Markov random fields (also called Markov networks),
which in turn are a generalization of the Ising model —
see, e.g., [31, 42, 43].

Suppose we have some local mean radius R̄local
t , t ∈

Tmodel, of the typical grain, where R̄local
t is random be-650

cause the typical grain and its neighborhood are ran-
dom. The exact definition of “local mean” is not im-
portant at this point. Essentially, we are interested in
improving the prediction of R̊t+ from R̊t by taking R̄local

t
into account. This means that the random vector655

(R̄local
t , R̊t, R̊t+ )

would be of interest. In that case, the random radius R̊t+

can depend on both R̄local
t and R̊t.

Instead, we consider the random vector

(R̊t/R̄local
t , R̊t/R̄t, R̊t+/R̄local

t+ , R̊t+/R̄t+ ) ,660

which yields essentially the same information, but has
several advantages. First, we can assume that R̄local

t be-
haves similarly to the global mean R̄t. By considering
the quotients of the typical grain radius and the two
different normalizations, we can expect a dependence665

structure between the first two components with a very
high correlation, which makes modeling easier. Second,
the remaining two components are structured exactly in
the same way. It is necessary to predict R̊t+/R̄local

t+ , as
well, because this information is required for the next670

time step, t+ to t++ = t+ + tstep. Because R̊t+/R̄t+ and
R̊t+/R̄local

t+ are predicted (and the global mean R̄t+ is de-
terministic and known), R̄local

t+ is predicted implicitly.
Note that the definition of a local mean R̄local

t makes
sense only as long as the typical grain is alive — i.e., its675

radius R̊t is positive. If R̊t = 0, then we set R̊t/R̄local
t = 0

for consistency. As for the grain radius, we assume the
distributions of {R̄local

t , t ∈ Tmodel} to be self similar with
respect to {R̄t, t ∈ Tmodel}.

In principle, the modeling approach is exactly the680

same for a four-dimensional random vector as discussed
before in Sections 3.2 and 3.3 in the two-dimensional
case. The marginal distributions are chosen individu-
ally, then a suitable copula must be selected. A disad-
vantage of the four-dimensional GSE model is that it685
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is harder to find a suitable 4D copula in comparison to
the two-dimensional case. In particular, one challenge
is that the two-dimensional marginal distribution of the
last two components (R̊t+/R̄local

t+ , R̊t+/R̄t+ ) describing the
system at time t+ must have exactly the same distribu-690

tion as the two-dimensional marginal distribution of the
first two components (R̊t+/R̄local

t+ , R̊t+/R̄t+ ) in the next
transition from t+ to t++ = t+ + tstep.

This must be guaranteed by a suitable choice of the
copula. Unfortunately, this is not easy because stan-695

dard copula families do not have this property (except
the co-monotonicity copula, which is not useful in this
case). However, it turns out that so-called vine copulas
are very flexible — and a suitable vine copula construc-
tion that solves this problem is introduced in the follow-700

ing section.

3.5. Vine copula construction

First, we show how multivariate distributions can be
described by a decomposition into bivariate distribu-
tions (and therefore, bivariate copulas). Then, we use705

this knowledge to construct a four-dimensional copula
that has all properties as required for the GSE model
introduced in Section 3.4.

Under the assumption that an m-dimensional random
vector X = (X1, . . . , Xm) has the joint density f : Rm →710

[0,∞), it can be decomposed into

f (x1, . . . , xm) = f1(x1) f2|1(x2 | x1) f3|1,2(x3 | x1, x2)
× fm|1,...,m−1(xm | x1, . . . , xm−1) ,

(5)
where f1 is a short-hand notation for the density of X1,
f2|1( · | x1) for the density of X2 under the condition that
X1 = x1, etc. The corresponding distribution functions715

are denoted by F1, F2|1, etc. By applying Sklar’s the-
orem (Appendix A) to the density of (X1, X2) it holds
that

f1,2(x1, x2) = c1,2(F1(x1), F2(x2)) f1(x1) f2(x2)

where c1,2 is the density of the copula C1,2 of (X1, X2),720

and f2|1(x2 | x1) = f2,1(x2, x1)/ f1(x1) can be rewritten as

f2|1(x2 | x1) = c2,1(F2(x2), F1(x1)) f2(x2) . (6)

(Note that the order of the components in the den-
sity can be changed together with the arguments, e.g.,725

f1,2(x1, x2) = f2,1(x2, x1) for all x1, x2 ∈ R.) This proce-
dure can be iterated to describe all conditional densities
by bivariate copulas. For m = 4, one possible way to

rewrite the remaining conditional densities is

f3|1,2(x3 | x1, x2) = c3,1|2(F3|2(x3 | x2), F1|2(x1 | x2))
× f3|2(x3 | x2)

= c3,1|2(F3|2(x3 | x2), F1|2(x1 | x2))
× c3,2(F3(x3), F2(x2)) f3(x3)

(7)730

and

f4|1,2,3(x4 | x1, x2, x3) = c4,1|2,3(F4|2,3(x4 | x2, x3),
F1|2,3(x1 | x2, x3))

× f4|2,3(x4 | x2, x3)
= c4,1|2,3(F4|2,3(x4 | x2, x3),

F1|2,3(x1 | x2, x3))
× c4,2|3(F4|3(x4 | x3), F2|3(x2 | x3))
× c4,3(F4(x4), F3(x3)) f4(x4) .

(8)
This decomposition works for all absolutely continuous
distributions. However, note that in general the bivari-
ate copulas (e.g., c3,1|2) depend on the conditioning pa-735

rameter vector (e.g., x2). Usually, it is assumed that,
e.g., c3,1|2 does not depend on the value x2 (in fact, for
multivariate normal distributions, it can be shown that
there is no such dependence, which makes this assump-
tion more reasonable in the general case). This simpli-740

fication is important in order to keep model selection
fast and tractable [32]. Even with this constraint, this
modeling approach is very flexible — a relatively small
number of bivariate copulas can be combined to model
high-dimensional and complex data, with good control745

over the dependencies.
In particular, the (absolutely continuous) random vec-

tor X can be chosen as a random vector with uniform
marginals on [0, 1] such that the distribution function
FX is exactly a copula (denoted as C). Then, for m = 4,750

the copula density function c : [0, 1]4 → [0,∞) can
be given using bivariate copula densities c1,2, c2,3, c3,4,
c1,3|2, c2,4|3, and c1,4|1,2, which are combined together as
deduced in (5) to (8). Note that, in this case, the uni-
form marginal distributions imply f1(z) = 1, f2(z) = 1,755

f3(z) = 1, f4(z) = 1 for z ∈ [0, 1]. As a consequence, the
copula density is given by

c(x1, x2, x3, x4) = c2,1 c3,1|2 c3,2 c4,1|2,3 c4,2|3 c4,3 ,

for (x1, x2, x3, x4) ∈ [0, 1]4, where on the right-hand side
all parameters of the functions (compare previous for-760

mulas) are left out to shorten the notation.
The representation of the four-dimensional copula

density as described above is known in the literature as
a D-vine copula (see, e.g., [32, 33]). An illustration of
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Table 1: Ordinal sum copulas used as bivariate copulas for D-vine copula construction.

density lower part copula upper part copula threshold

c1,2 independence copula Gaussian copula with correlation ρ1,2 h = qt

c2,3 independence copula Gaussian copula with correlation ρ2,3(t) h = qt

c3,4 independence copula Gaussian copula with correlation ρ3,4 = ρ1,2 h = qt+

c1,3|2 independence copula independence copula h = qt

c2,4|3 independence copula independence copula h = qt

c1,4|1,2 independence copula Gaussian copula with correlation ρ1,4(t) h = qt

the hierarchical dependency structure is given in Fig-765

ure 5. Note that the decomposition of the density is not
unique — in general, other representations lead to reg-
ular vines, and the so-called D-vines are a special case.

Figure 5: Schematic illustration of the hierarchical structure of the
D-vine for the modeling of four-dimensional random vectors. The
numbers in circles denote the components of the random vector, and
the black dots correspond to bivariate copulas.

Now, consider again the four-dimensional random
vector from Section 3.4. In order to describe its de-770

pendency structure with the decomposition introduced
above, we consider the random vector with rearranged
components

(R̊t/R̄local
t , R̊t/R̄t, R̊t+/R̄t+ , R̊t+/R̄local

t+ ) ,

It follows from Sklar’s theorem that there exists a cop-775

ula C̃, which can be understood as the distribution func-
tion of a random vector U = (U1,U2,U3,U4), where all
components are uniformly distributed on [0, 1], and the
relationship of the marginals is

R̊t/R̄local
t = F−1

R̊t/R̄local
t

(U1), R̊t/R̄t = F−1
R̊t/R̄t

(U2),780

R̊t+/R̄t+ = F−1
R̊t+ /R̄t+

(U3), R̊t+/R̄local
t+ = F−1

R̊t+ /R̄local
t+

(U4),

(equality of distributions).
With the assumption that C̃ is absolutely continuous,

the decomposition of the joint density of the random785

vector U as presented at the beginning of this section is
possible. Therefore, the complexity is split up into bi-
variate copulas, which are easier to choose with regard
to desired properties. One central requirement is that

if R̊t = 0, then all components of the four-dimensional790

random vector must be zero. Therefore, all bivariate
copulas are chosen as ordinal sum copulas with a thresh-
old value of at least qt; an overview is given in Table 1.

Furthermore, the first two components must always
be simultaneously zero, and the same holds for the last795

two components (all with probability 1). This is ensured
by choosing the thresholds as qt and qt+ for c1,2 and c3,4,
respectively, which corresponds exactly to the propor-
tion of grains with radius zero in the one-dimensional
marginal distributions. For c1,2, if R̊t > 0, then we are in800

the “upper part” copula. The choice of a Gaussian cop-
ula with correlation ρ1,2 means that (R̊t/R̄local

t , R̊t/R̄t |

R̊t > 0) = (Rt/R̄local
t , Rt/R̄t) follows a Gaussian copula.

The same construction with qt+ is suitable for c3,4, and
the correlation ρ3,4 must be equal to ρ1,2 due to self-805

similarity of the non-dead grains.

The copula density c2,3 describes the dependence
structure of (R̊t/R̄t, R̊t+/R̄t+ ). Under the condition R̊t >
0, it is also modeled by a Gaussian copula, but with a
time-dependent correlation ρ2,3(t). This dependency on810

time makes sense because the growth of the mean radius
is nonlinear (i.e., power-law growth).

The bivariate copulas that model the “direct” depen-
dency of two random variables are now clear. The re-
maining conditional dependencies of the D-vine copula815

are chosen as follows. Both upper parts of c1,3|2 and
c2,4|3 are chosen as independence copulas because there
is no special reason to assume a specific kind of relation-
ship. However, it is clearly sensible to assume that there
is a relationship between R̊t/R̄local

t and R̊t+/R̄local
t+ similar820

to R̊t/R̄t and R̊t+/R̄t+ . Therefore, we choose the upper
part of c1,4|1,2 as the density of a Gaussian copula with
correlation ρ1,4(t). As for ρ2,3(t), ρ1,4(t) is a function
that returns the correlation as appropriate for the transi-
tion from t to t+. Note that although we did not impose825

a conditional dependency structure with c1,3|2 (which in-
fluences the effect of R̊t/R̄local

t on R̊t+/R̄t+ ), the remain-
ing bivariate copulas do enforce a certain dependency
structure between R̊t/R̄local

t and R̊t+/R̄t+ .
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Note that the condition mentioned at the end of Sec-830

tion 3.4 regarding the two-dimensional marginals of the
four-dimensional vectors is fulfilled. The two compo-
nents (R̊t+/R̄local

t+ , R̊t+/R̄t+ ) of the transition from t to t+

agree with the first two components (R̊t+/R̄local
t+ , R̊t+/R̄t+ )

in the next transition from t+ to t++. This is true because835

the bivariate copula c3,4 for t to t+ has exactly the same
parameters as c1,2 for t+ to t++.

The fitting procedure and the quality of fit of the GSE
model will be discussed in the subsequent section.

4. Model fitting and evaluation840

In this section, the four-dimensional GSE model as
explained above is fitted to experimental data and its
quality of fit is evaluated.

4.1. Fitting the GSE model to experimental data

We assume at this point that the parameters of the845

power-law growth parameters and the radius distribu-
tion of an experimental data set are already known. This
is described in [28], and the results for the data con-
sidered here are briefly summarized in Appendix B. As
already mentioned in Section 3.2, there is a linear re-850

lationship between the seed point radii of the Laguerre
tessellation used to approximate the microstructure and
the volume-equivalent radii of generated cells. There-
fore, the fitted distribution for seed point radii is used as
the grain radius distribution, i.e., Rt ∼ N+(cµR̄t, c2

σR̄2
t ).855

The definition of R̄local
t has yet to be specified. For

the experimental data, we introduced and evaluated a
weighted local mean, see Section 2.4. The same defi-
nition is used now. The local mean is computed from
the radii of adjacent grains weighted by the square root860

of their contact area. We determined the distribution
of Rt/R̄local

t by generating realizations of the stochastic
microstructure model for one point in time, evaluating
the (weighted) local mean radii of all cells, and fitting
a parametric distribution to the obtained data. Gener-865

ated from the 3D microstructure model, the resulting pa-
rameterization is less error-prone than the experimental
data. A mixture of two truncated normal distributions
yields a good fit. (The proportion of the first normal
distribution truncated to positive radii is α = 0.671, and,870

correspondingly, 1 − α for the second. The first normal
distribution has parameters µ1 = 0.968, σ1 = 0.304, the
second µ2 = 0.607, σ2 = 0.209.)

All remaining parameters are obtained from experi-
mental data. These are the correlation coefficients ρ1,2,875

ρ2,3(·) and ρ1,4(·). The scalar value ρ1,2 = 0.9651 is esti-
mated from the complete aggregated data set of all pairs

of globally and locally normalized grain radii (using the
sample correlation coefficient), whereas ρ2,3 and ρ1,4 are
time-dependent. For every transition from t to t′ for880

t′ > t (and t′ not necessarily equal to t+), the experi-
mental grain trajectories are used to estimate the sam-
ple correlation coefficient. We assume that the correla-
tion depends only on the relative expected radius evo-
lution z = R̄t′/R̄t. A scatter plot of this ratio to the es-885

timated correlations shows a nice relationship, see Fig-
ure 6. Non-linear regression using the regression func-
tion ρa,b,e : [1,∞)→ [0, 1] defined as

ρa,b,e(z) = exp
(
−

(
z − 1.0
a − b/z

)e)
with parameters a > 0, b ∈ [0, a), e > 0 yields good890

fits — see Figure 6. Note that ρa,b,e(1) = 1, which
makes sense for this kind of correlation function. The
obtained parameter values are a2,3 = 2.939, b2,3 = 2.0,
e2,3 = 1.695 for prediction of ρ2,3, and a1,4 = 2.103,
b1,4 = 1.5, e1,4 = 1.626 for ρ1,4. The parameter b895

has been fixed manually in both cases to obtain a good
fit for z-values near 1, which is important because we
use these functions only to compute the correlations for
transitions from t to t+ — i.e., the value zt = R̄t+/R̄t is
close to 1. Finally, we obtain900

ρ2,3(t) = ρa2,3,b2,3,e2,3 (zt) , t ≥ 0,
ρ1,4(t) = ρa1,4,b1,4,e1,4 (zt) , t ≥ 0,

with zt as given above.
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Figure 6: Empirical correlation coefficients computed from experi-
mental tracks for grain radius transitions with global (blue) and local
normalization (red). The corresponding regression curves are drawn
in black.

In practice, the sample correlation coefficients are not905

automatically good estimators for the parameters of bi-
variate Gaussian copulas in, e.g., a D-vine construction.
However, these coefficients are usually used as starting
points for numerical optimization of the parameters in

12



maximum-likelihood fitting [33]. We refrain from car-910

rying out such a complex fitting procedure because the
4D distribution already matches the original data nicely
without further optimization.

4.2. Simulation results and discussion
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(b) Volumetric growth rates 4πr2
t (rt+ − rt)/tstep obtained from

grain radius transitions rt to rt+ in all simulated trajectories, for
t ∈ Tsim and t+ = t + tstep ∈ Tsim. Colors indicate the values
of locally normalized radii, i.e., the grain radii relative to their
respective local mean.

Figure 7: Simulation results for the fitted GSE model.

As in Sections 3.2 and 3.3, trajectories have been915

simulated. 100 trajectories are generated by the GSE
model that was fitted to experimental data as described
in Section 4.1. Figure 7 shows the trajectories and the
growth rates of grains. A comparison to the experimen-
tal data in Figure 2 shows good qualitative agreement.920

Note that in both cases there are grains having the same
size whose trajectories evolve differently — e.g., one is
growing while the other is shrinking (Figures 2(a) and
7(a)). A comparison of Figures 2(b) and 7(b) reveals

that the overall transition behavior is quite similar; how-925

ever, for larger grains, the volumetric growth rates man-
ifest greater scatter in the simulated data than in experi-
ment. This can be explained by properties of the Gaus-
sian copula: The fluctuations in grain size, which are
interpreted as noise, are the same in this model for all930

grain radii. However, for larger grains, a given change in
radius has a greater effect on the volume than for smaller
grains. One could improve the model fit in this regard
by choosing another copula, for which the strength of
the “noise” term is not the same for all grain sizes.935

As a further step to evaluate the quality of fit, we
compare grain trajectories including their local means.
Figure 8 shows grain trajectories extracted from both
experimental and simulated data. Note that experimen-
tal trajectories have been transformed to start from the940

same (relative) time point; that is, each trajectory is plot-
ted against the value of R̄t′/R̄t (t′ ≥ t) for the overall
grain ensemble. (The same transformation is applied to
simulated trajectories for a direct comparison.) Again,
it can be observed that the simulated and experimental945

data agree qualitatively quite closely. The main appar-
ent difference is that most experimental trajectories are
incomplete (i.e., shorter than the simulated trajectories).

From our analysis, we believe that the local mean
is not the only quantity that influences individual grain950

evolution. Had this been the case, we would have ex-
pected a clearly visible relationship between growth
rates and the locally normalized radius. The remaining
randomness in the transitions is, in a sense, too large.
Note that (seemingly) random behavior in real or nu-955

merically simulated systems has been discussed already
in [5, 12, 44], where this phenomenon is called “locale
noise”, “locale fluctuations” or “volume flux”. The fluc-
tuations are larger for particles at or above the mean ra-
dius and for high volume fractions VV , probably ow-960

ing to stronger interactions with neighbors [5, 12, 44].
We think that the proposed modeling approach based on
copulas is an excellent choice for investigating the de-
pendency between other, yet-to-be-determined charac-
teristics of the microstructure and the individual growth965

behavior of grains.

5. 4D microstructure model

In [28], we have described a 3D microstructure model
for polycrystalline materials with a high volume frac-
tion of the coarsening phase. A brief summary is given970

in Appendix B. Although this model can be used to sim-
ulate realistic 3D microstructures for arbitrary points
in time, the dynamics of individual grains are not de-
scribed. Therefore, we proposed the GSE model of Sec-
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(a) t = 200 min (b) t = 400 min (c) t = 550 min (d) t = 600 min (e) t = 650 min (f) t = 670 min

Figure 9: Evolution of the morphology of two adjacent grains, simulated by the 4D microstructure model. The red grain is growing, and the blue
grain is shrinking — at first slowly, then faster, until it vanishes in the time interval (660, 670].
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(a) Experimental data.
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(b) Simulated data.

Figure 8: Comparison of size trajectories, for which grain radii are
normalized to the global mean of their respective initial time point. A
suitable normalization is performed for the time: it is transformed to
the relative change in global mean radius. The colors of trajectories
can vary over time as the locally normalized radius changes.

tion 3, which models the transition of a given grain to975

its next state using correlated random variables for the
grain radii (but not considering the 3D shape of individ-
ual grains). In this section, these two models are com-
bined to obtain a 4D microstructure model — i.e., their

combination describes the possible evolution of a full980

3D microstructure over time.

5.1. 3D model extension

Extension of the 3D microstructure model of
Ref. [28] (Appendix B) to 4D with discrete time steps
is straightforward. As before, we exploit the fact that985

the radii of seed points correspond almost exactly to
the volume-equivalent radii of cells. Therefore, we al-
ways work directly on the radii belonging to seed points.
The initial random microstructure in R3 is given by the
stochastic microstructure model proposed in [28]. The990

transition for each seed point is performed by a two-
step procedure. First, the GSE model is used to deter-
mine the radius evolution of each seed point; a new ra-
dius of zero means that the grain has died. Second, a
non-overlapping set of hard cores is obtained by shift-995

ing the seed points appropriately based on collective-
rearrangement (as described in [45] for an infinite num-
ber of spheres that are packed in R3). In this manner,
each seed point position is updated implicitly. Note that
the local mean of each grain can be evaluated, and this1000

information is used to predict a new grain radius. The
exact position and shape of the new grain is specified
indirectly by the predicted seed points.

5.2. Simulation algorithm

As in [28, Section 3.3], the simulation of the micro-1005

structure should be performed in a bounded simulation
window W ⊂ R3. Required are the parameters of the 3D
microstructure model and the GSE model (Section 3.4).
The algorithm to obtain a series of microstructures for
all time points Tsim = {tmin, tmin + tstep, . . . , tmax} consists1010

of 7 steps:

1. Define the plus sampling cuboid W+ ⊃ W and sim-
ulate the set of weighted seed points S t in W+ at
time t = tmin as given in [28, Section 3.3]. Note
that a periodic boundary is used for the packing1015
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of hard sphere cores in W+. The seed points are
denoted by S t = {(st(i), rt(i)), i ∈ I}, where I is a
suitable index set.

2. Set I′t = {i ∈ I : rt(i) > 0} and S ′t = {(st(i), rt(i)), i ∈
I′t }. Compute the Laguerre tessellation {Ct(i), i ∈1020

I′t } with Ct(i) = C((st(i), rt(i)), S ′t ) and a periodic
boundary on the cuboid W+.

3. Set t+ = t + tstep. Terminate if t+ < Tsim.

4. Set up the GSE model

(R̊t/R̄local
t , R̊t/R̄t, R̊t+/R̄local

t+ , R̊t+/R̄t+ ) ,1025

for a single transition from t to t+. It is convenient
to assume that the time t is the first time step, i.e.,
there are no dead grains and consequently qt = 0,
qt+ = 1 − R̄3

t /R̄
3
t+ .

5. For every grain i ∈ I′t , compute the normal-1030

ized radius rt(i)/R̄t, the local mean r̄local
t (i), and

the locally normalized radius rt(i)/r̄local
t (i). Then,

use the GSE model to obtain a realization of
R̊t+/R̄t+ under the conditions R̊t/R̄t = rt(i)/R̄t and
R̊t/R̄local

t = rt(i)/r̄local
t (i). This realization is de-1035

noted as rt+ (i)/R̄t+ . For i < I′t , set rt+ (i) = 0.

6. An updated set of seed points with radii for time
t+ is now given by {(st(i), rt+ (i)), i ∈ I}. These seed
points have to be rearranged such that their hard
cores are non-overlapping (as in step 1, respecting1040

the constraint of periodic boundary conditions).
The result is denoted by S t+ = {(st+ (i), rt+ (i)), i ∈ I}.

7. Set t = t+ and go to step 2.

The algorithm described above yields a sequence of
seed points {S t : t ∈ Tsim} and a sequence of tes-1045

sellations {Tt : t ∈ Tsim} with Tt = {Ct(i) : i ∈
I′t and Ct(i) ∩ W , ∅}, i.e., Tt consists of all cells for
grains that are “alive” at time t and that also intersect
W.

5.3. Simulation results and discussion1050

Figure 9 illustrates the simulated microstructure evo-
lution of two adjacent grains. A growing grain was se-
lected and a 3D visualization is shown together with a
small neighbor that vanishes after some time. The evo-
lution looks quite plausible, although it is difficult to1055

evaluate its validity on a quantitative basis (beyond the
investigations already performed in Section 4.2). Note
that the evolution of individual grains is based on a sta-
tistical approach: any factors that influence growth but

are not implemented in the GSE model are modeled by1060

random fluctuations, which are of course just that —
random. Therefore, we do not expect deterministic local
evolution — such as curvature-driven boundary migra-
tion — to be predicted perfectly; nevertheless, the local
evolution is correct in a statistical sense when consid-1065

ering the overall ensemble of grains. Because the po-
sitions of grains are modeled implicitly for every tran-
sition in time, grains may “wiggle” owing to changes
in their own radius and that of their neighboring grains
(which arise from the simulated noise term). Such arti-1070

facts could be suppressed by closer consideration (and
integration) of relevant factors influencing the growth
process.

6. Conclusions and outlook

In this paper, we use a parametric stochastic model1075

to describe grain trajectories that were observed experi-
mentally during Ostwald ripening. The proposed grain
size evolution (GSE) model is a flexible stochastic ap-
proach that predicts the (non-deterministic) radius tran-
sition for a typical grain from one point in time to the1080

next. The model is based on the representation of multi-
variate probability distributions by copulas. Our interest
lies in taking local characteristics into account, e.g., the
grain neighborhood, when modeling the evolution of the
size of the typical grain. Therefore, we investigated the1085

influence of the local mean radius, which was expected
to be relevant to the grain radius evolution; however, we
found that the local mean radius is insufficient to ac-
count for all aspects of the grain growth observed in the
experimental system.1090

Because the GSE model describes the radius evolu-
tion of the typical grain over time (whereby “typical” is
not restricted to typical cases only, see footnote1), the
evolution of all grains in a system can be predicted indi-
vidually. As an application, we extend our existing 3D1095

microstructure model [28] to 4D using the GSE model.
With this extension, an initial microstructure can be up-
dated to reflect possible structural evolutions. The po-
sition and shape of grains is captured implicitly. The
accuracy of such a prediction depends directly on the1100

choice of “good” local characteristics as factors influ-
encing the growth.

For this reason, the determination of relevant charac-
teristics beyond the local mean radius is a possible next
step toward improving the stochastic model. For exam-1105

ple, the volume change entailed by physical models like,
e.g., [46] for grain growth could be included. Then, the
stochastic model provides a possibility to assess the pre-
dictive power of the physical ansatz. To avoid problems
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with the processing of experimental data sets, we plan to1110

use simulated microstructures and trajectories obtained,
for example, from phase-field modeling. This offers the
advantage of allowing one to investigate structural char-
acteristics that are difficult to extract from (noisy) exper-
imental image data. With complete information on the1115

evolution of the microstructure, we could then assess —
and potentially improve upon — the choice of bivariate
copulas in the vine construction.

Appendix A. Copulas

A short introduction to the modeling of multivariate1120

distributions by copulas is given in this section. Cop-
ulas provide a flexible modeling approach (see, e.g.,
[32, 33]), where a copula is an m-dimensional distri-
bution function with uniform marginals on the interval
[0, 1] for any fixed integer m ≥ 2. As shown below, cop-1125

ulas capture the dependencies between the components
of random vectors.

Let X = (X1, . . . , Xm) be an m-dimensional ran-
dom vector that has the multivariate distribution func-
tion FX(x1, . . . , xm) = P(X1 ≤ x1, . . . , Xm ≤ xm) and1130

marginal distribution functions FXi (x) = P(Xi ≤ x) for
i = 1, . . . ,m. Then, Sklar’s theorem [32, 33] states that
there exists a copula C : [0, 1]m → [0, 1] such that

FX(x1, . . . , xm) = C(FX1 (x1), . . . , FXm (xm)) (A.1)

for all x1, . . . , xm ∈ R. Conversely, if an m-1135

dimensional copula C and m one-dimensional distribu-
tions FX1 , . . . , FXm are given, then the function FX de-
fined in (A.1) is a multivariate distribution function.

Typically, one has observations of X = (X1, . . . , Xm)
and the underlying multivariate distribution is unknown.1140

In this case, the idea is to combine a (parametric) cop-
ula C and m (parametric) one-dimensional distribution
functions FX1 , . . . , FXm to obtain a multivariate distribu-
tion function FX by formula (A.1). Using the empirical
distribution functions F̂X1 , . . . , F̂Xm of the marginals, the1145

copula is fitted to F̂X1 (X1), . . . , F̂Xm (Xm) by a maximum-
likelihood technique; this methodology is called semi-
parametric pseudo-maximum likelihood [33, 47]. The
univariate marginals are fitted separately using classical
maximum-likelihood techniques (see, e.g., [48]).1150

There are a few basic and important types of copu-
las. First, the independence copula (or product copula)
is given by

CΠ(u1, . . . , um) = u1 × . . . × um ,

which means that a random vector (X1, . . . , Xm) con-1155

structed with this copula has independent components

X1, . . . , Xm. The counterpart is a perfect linear depen-
dence (i.e., correlation of 1), which is obtained by the
co-monotonicity copula defined by

C+(u1, . . . , um) = min{u1, . . . , um} .1160

Third, the multivariate normal distribution is a well-
known and simple multivariate distribution. Its depen-
dence structure is given by the so-called Gaussian cop-
ula. Let Σ ∈ Rm×m denote a correlation matrix (i.e., a
covariance matrix whose entries are all in the interval1165

[−1, 1], and the diagonal entries of which are all equal
to unity). Then, the Gaussian copula for the correlation
matrix Σ is given by

CGauss
Σ (u1, . . . , um) = ΦΣ

(
Φ−1(u1), . . . ,Φ−1(um)

)
,

where ΦΣ is the cumulative distribution function of a1170

multivariate normal distribution with mean vector zero
and correlation matrix Σ, and Φ−1 is the inverse cumu-
lative distribution function of a (univariate) normal dis-
tribution with expectation zero and variance 1.

In this paper, we also require the possibility to1175

combine two copulas to form a new copula as il-
lustrated in Figure A.10. This is a so-called ordi-
nal sum of two copulas [49]. Let c1 and c2 denote
the density functions of two absolutely continuous m-
dimensional copulas C1 and C2, i.e., Ci(u1, . . . , um) =1180 ∫ u1

−∞
· · ·

∫ um

−∞
ci(ũ1, . . . , ũm)dũm · · · dũ1, i = 1, 2, and let

h ∈ (0, 1). Then, we define the density c : [0, 1]m →

[0,∞) of the ordinal sum copula C as

c(u1, . . . , um) =



h c1

(
u1
h , . . . ,

um
h

)
if (u1, . . . , um) ∈ [0, h]m,

(1 − h) c2

(
u1−h
1−h , . . . ,

um−h
1−h

)
if (u1, . . . , um) ∈ (h, 1]m,

0 otherwise,

for (u1, . . . , um) ∈ [0, 1]m. The ordinal sum copula C1185

can also be defined directly in an analogous way (this is
required if C1 or C2 is not absolutely continuous); how-
ever, the density is easier to interpret, cf. Figure A.10.
In this paper, we call C1 the “lower part” copula, and
C2 the “upper part” copula. It can be shown that the1190

ordinal sum copula with density c agrees with the co-
monotonicity copula C+ in the unshaded regions of Fig-
ure A.10. For, e.g., a random vector U = (U1,U2) with
uniform marginals on [0, 1] and ordinal sum copula, this
means that U1 ∈ [0, h] implies U2 ∈ [0, h] and vice versa1195

(with probability 1), and this does not depend on C1 or
C2. The same holds for the range [h, 1], of course.
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Figure A.10: Schematic illustration of (bivariate) ordinal sum cop-
ula density, which is constructed from two bivariate copulas that are
scaled to “fit” into the two gray rectangles. The density in the white
regions is zero, the threshold h ∈ (0, 1) defines the transition point
between the two copulas.

Appendix B. 3D microstructure model

In this section, the most important ideas and results
from [28] are briefly summarized. First, the Laguerre1200

tessellation is introduced, which is suitable for repre-
senting space-filling grain microstructures. The La-
guerre tessellation uses so-called seed points to gener-
ate cells for grains. By selecting a random set of seed
points, we obtain a random tessellation. This approach1205

is used to construct a stochastic model for the 3D mi-
crostructure of polycrystalline materials, which is then
fitted to experimental data.

Tessellations divide real space into cells, and, there-
fore, they are a natural choice for modeling polycrys-1210

talline data, for which grains fill space completely or al-
most completely. Each cell contains exactly one grain.
The grains in our data set are nearly convex, which sug-
gests the consideration of tessellation models with con-
vex cells. A well-known tessellation model with convex1215

cells is the Voronoi diagram [50]. In a Voronoi diagram,
every point in space is assigned to its nearest seed point.
A generalization is the Laguerre tessellation [50], which
is similar to the Voronoi model but more flexible, ow-
ing to the introductions of an additional weight for each1220

seed point.
Let S = {(si, ri), i ∈ I} ⊂ R3 × R+ denote a (locally fi-

nite) set of seed points si with positive weights ri, where
I is an index set. The Laguerre cell of (si, ri) with re-
spect to S is given by1225

C((si, ri), S ) =
{
y ∈ R3 : |y − si|

2 − r2
i ≤ |y − s j|

2 − r2
j ,

(s j, r j) ∈ S , j , i
}

The Laguerre tessellation is the family of all Laguerre
cells {C((si, ri), S ), i ∈ I}. Note that every seed point1230

(si, ri) has a geometric interpretation — it can be under-
stood as a sphere B(si, ri) centered at si with radius ri.
The weight ri influences the resulting cell size.

The idea of the stochastic model in [28] is to deduce a
random set of (weighted) seed points that generate close1235

statistical agreement between the resulting Laguerre tes-
sellation and a given experimental microstructure. A
suitable procedure for determining such seed points is
described in the following two paragraphs.

A random set of seed points results in moderately1240

overlapping spheres. The radii of the spheres are as-
sumed to follow a normal distribution truncated to the
positive numbers — i.e., Rsphere ∼ N+(µ, σ2). A hard
core radius is assigned to each seed point by multiply-
ing the original sphere radius by a factor shc ∈ (0, 1].1245

The set of hard cores is then rearranged by the appli-
cation of a dense packing algorithm. The packing it-
self is based on a collective-rearrangement algorithm for
spheres as described in [45], where the initial centers
are simulated from a homogeneous Poisson process. In-1250

stead of the packing density dhc of hard cores, the quan-
tity d = dhc/s3

hc is used as a parameter, which can be
understood as the total volume of spheres divided by the
volume of space into which they are packed. (Note that
overlapping regions are counted more than once, and d1255

can be greater than 1.) More details can be found in
[28].

Because it is assumed that the modeled microstruc-
tures have the same statistical properties at all points
in time (with only scaling factors varying over time), it1260

makes sense to index the model parameters to the an-
nealing time. In [28], this mapping is called the time
function. The mean grain radius at time t is denoted by
R̄t. The time function p : R+ → R+ × R+ × (0, 1] × R+

is given by1265

p(t) =


µt

σ2
t

shc
d

 =


cµR̄t(

cσR̄t

)2

shc
d

 ,

with power-law growth of the mean grain radius

R̄n
t = R̄n

0 + kt, t > 0. (B.1)

Therefore, the parameters of the model are cµ > 0, cσ >
0, shc ∈ (0, 1], d > 0, n > 0, k > 0 and R̄0 > 0.1270

This model was fitted to experimental data in
Ref. [28]. There, the parameters obtained for the power-
law growth formula were n = 3, k = 7197.3 µm3/min
and R̄0 = 139.95 µm. The remaining parameters were
determined to be cµ = 1.0, cσ = 0.4, shc = 0.85 and1275

d = 1.0.
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