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Abstract
Understanding and optimizing effective properties of porous functional materials,
such as permeability or conductivity, is one of the main goals of materials sci-
ence research with numerous applications. For this purpose, understanding the
underlying 3D microstructure is crucial since it is well known that the materials’
morphology has a significant impact on their effective properties. Because tomo-
graphic imaging is expensive in time and costs, stochastic microstructure modeling
is a valuable tool for virtual materials testing, where a large number of realistic
3D microstructures can be generated and used as geometry input for spatially-
resolved numerical simulations. Since the vast majority of numerical simulations
is based on solving differential equations, it is essential to have fast and robust
methods for generating high-quality volume meshes for the geometrically complex
microstructure domains. The present paper introduces a novel method for gen-
erating volume-meshes with periodic boundary conditions based on an analytical
representation of the 3D microstructure using spherical harmonics. Due to its gen-
erality, the present method is applicable to many scientific areas. In particular, we
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present some numerical examples with applications to battery research by mak-
ing use of an already existing stochastic 3D microstructure model that has been
calibrated to eight differently compacted cathodes.

1 Introduction

Porous media can be found in many natural as well as artificial physical, biolog-
ical and chemical systems. From the composition of soils [1, 2], through which
liquids seep into the ground water, to the mechanical stiffness of cements [3, 4],
from battery electrodes [5, 6, 7], in which lithium ions are stored, to sponge-
based filtration materials [8]: the porous microstructure of the respective system
has a crucial impact on the overall behavior [9]. For example, the morphology
of electrodes in lithium-ion batteries significantly influences the electrochemical
properties [10, 11, 12, 13], which is the main reason why tailored structuring and
manufacturing of anodes and cathodes is one promising approach to improve the
performance of the cell [14, 15, 16]. Thus, it is a major issue in many research
areas to design the microstructure in such a way that the overall performance,
e.g. permeability, electrical conductivity, mechanical stiffness, energy density and
further quantities, is optimized.

1.1 Mathematical background

From a mathematical point of view, the impact of the 3D morphology of porous
media on their macroscopic behavior, e.g., the flow rate of water through soil
or the flux of lithium ions through a battery electrode, can be studied with ho-
mogenization techniques. A prominent and mathematically sound tool is periodic
homogenization theory [17], which assumes that the porous medium, given as a
certain domain Ω, is a periodic repetition of some representative volume element
ω, see Fig. 1. This method allows to derive a set of partial differential equations
(PDEs) for which the porous microstructure is not spatially resolved anymore.
This significantly reduces the numerical complexity of the problem. The method
is based on an asymptotic expansion of the balance equation in terms of ε, which
is the ratio between a macro-scale length L and the cell-scale length `, i.e., ε = `

L
.

In the asymptotic limit, where ε → 0, a set of homogenized balance equations is
then obtained, together with some porous media parameters.

Consider the decomposition Ω = ΩE ∪ ΩS, where the set ΩE is simply connected
and corresponds exemplarily to an electrolyte phase, and ΩS is multiply connected,
denoting exemplarily a solid phase. The interface between ΩE and ΩS is denoted
by ΣE,S. As already mentioned above, Ω is a periodic repetition of the unit cell
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ω = ωE ∪ ωS, and the common interface σE,S = ωE ∩ ωS.
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Figure 1: Sketch of a periodic porous medium in which a balance equation has to be
solved (left). Homogenized porous medium subject to the homogenized
balance equation (right).

For a scalar balance equation with surface reactions, we have the general model

PDE1 :

{
∂u
∂t

= divx (ju) for all x ∈ ΩE ,

ju · n = ε · r
s
u on ΣE,S .

This problem is formally solved via the introduction of a multi-scale expansion
u(x, t) = u0(x,y, t) + ε · u1(x,y, t) +O(ε2), where y = x

ε
, which yields a sequence

of PDEs to determine the unknown functions uj in the orders εj of the scaling
parameter ε. Briefly summarized, with periodic homogenization [18, 17, 19] one
obtains the following statements:

Order ε0 yields essentially u0(x,y, t) = u0(x, t), i.e. , the leading order function
u0 is independent of the micro-scale y.

Order ε1 yields u1(x,y, t) = (χ1
E, χ

2
E, χ

3
E)
T · ∇xu

0 as well as the condition

CP1 :





divy∇yχ
k
E = 0 for all y ∈ ωE,

∇χkE · n = nk on σE,S,

χkE periodic ,
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for the (geometrical) corrector function ~χE. The typeface ~χE = ~χE(y) emphasizes
that ~χE is a (numerical) solution of the cell problem CP 1, which depends thus
only on the micro-scale y. Since u0 and thus also ∇xu

0 depend only on the macro-
scale x, i.e. ∇xu

0 := ~h(x), the result u1 = ~χE(y) · ~h(x) for the first successive
term u1 is a separation between microscopic geometrical effects and macroscopic
gradients of the leading order term u0(x). This is a central feature of (periodic)
homogenization theory and we show in Section 4 how χE is related to the tortuosity
of a microstructure.

Order ε2 yields the PDE

ψE

∂u0

∂t
= divx

(
ψEπE · j0u

)
+ aE,Sr

s
u for all x ∈ Ω (1)

for the leading order term u0 and the leading order flux j0u, where the porous media
parameters are given by

1. the porosity (or phase fraction) of ΩE,

ψE =
1

vol(ω)

∫

ωE

1dV ,

2. the interfacial area of ΣE,S,

aE,S =
1

vol(ω)

∫

σE,S

1dA ,

3. and the (flux) corrector,

πE =


1− 1

vol(ωE)

∫

ωE

∇


χ1
E

χ2
E

χ3
E


 dV


 . (2)

After the homogenization procedure the index 0 of the leading order term is typi-
cally dropped and considered as the macroscale variable. If ju is a diffusion or heat
flux, e.g., ju = Du ·∇u, the corrector πE yields the effective diffusion coefficient (or
conductivity) Deff

E = πE ·Du. The corrector πE is thus also related to the tortuosity
of the porous medium.

For the Stokes problem in a similar manner we obtain
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PDE2 :





∇p− ε2µdiv∇v = f for all x ∈ ΩE,

divv = 0 for all x ∈ ΩE,

v = 0 on ΣE,S,

where periodic homogenization leads to the Darcy flow

v =
1

µ
κE(f −∇p) for all x ∈ ΩHom

E ,

divv = 0 for all x ∈ ΩE,

v · n
∣∣
∂ΩHom

E

= 0 .

The corrector κE is frequently called a permeability tensor, where

(κE)j,k =
1

vol(ωE)

∫

ωE

∇wj · ∇wk dV,

and determined from the cell problem [20]

CP2 :





∇yqk − divy∇ywk = ek for all y ∈ ωE,

div wk = 0,

wk = 0 on σE,S,

qk,wk periodic, k = 1, 2, 3.

1.2 Basic idea of mesh generation

For every PDE problem, e.g., PDE1 or PDE2 described above, periodic homoge-
nization leads to a different cell problem, i.e., CP1 or CP2, which has to be solved
in order to determine the effective porous media parameters. However, all of these
cell problems do have in common that some stationary PDE system has to be
solved on the periodic representative volume element ω. Since this is analytically
possible only for a very tiny amount of geometries, the cell problems have in gen-
eral to be solved numerically. And, in order to so, adequate discretizations of ω
are required.
Various approaches for the discretization of the representative volume element ω
exist and we briefly review exclusively those which ensure the periodicity of ω.
The most simple approach is a voxel based discretization of ω, with equal edge
length of the voxel in all three dimensions. This format of discretization is widely
used in 3D imaging. However for the purpose of numerical calculations voxel based
meshes are inappropriate, (i) because the computational degrees of freedom scale
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with O(N)3 for N equally sized voxels [3], or (ii) because local refinements (or
coarsening), leading to O(N)3−α, α > 0, lead to hanging nodes1, which are nu-
merically very problematic. To get rid of these problems a mesh for numerical
calculations in 3D is typically built by tetrahedra, with which a 3D geometry can
be discretized and locally refined without producing hanging nodes. This yields
far more efficient numerical calculations and the corresponding meshes are said to
be of high quality. Numerical simulations of 3D microstructures allow then for a
virtual materials testing [21, 22].

The generation of volumetric meshes for realistic microstructures is an inter-
disciplinary topic and various approaches are found throughout the literature
[23, 24, 25]. A central aspect is the assumption regarding the geometrical shape
of the particles or inclusions in the microstructure. For example a rather general
approach of modeling inclusions in matrix materials assumes ellipsoidal shapes
[26], which is explicitly exploited in the periodic mesh generation. However, tomo-
graphic imaging methods have shown that realistic 3D microstructures of various
functional materials are significantly more complex. A flexible tool to model and
simulate the morphology of such particle systems is hence desirable and we propose
a complete pipeline for this issue.

1.3 Outline

In this paper, we propose a robust mesh generation for periodic representative
volume elements of realistic microstructures, see Fig. 2, with geometrically more
flexible star-shaped particles.

1A hanging node is a node of a mesh
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(a) Colors encode the number of inter-
sections with the periodicity box: 0
(blue), 1 (magenta), 2 (green), 3 (red).

(b) Intersection free surface mesh, with
periodic repetitions of the particle seg-
ments intersecting the periodicity box.

Figure 2: Cutout of a porous battery electrode, consisting of several active parti-
cles, and the periodicity box.

The method is based on a description of the microstructure in terms of spherical
harmonics, a subsequent surface mesh generation of ∂ωE and ∂ωS, and finally a
volume mesh generation based on TetGen [27]. The proposed method can be
applied to a broad spectrum of scenarios arising in different fields of research
since numerous scientific problems involve solving a system of differential equations
on periodic porous media. Another advantage of the presented approach is that
periodic boundary conditions can be easily applied in x-, y- and z-direction as well
as to an arbitrary subset of directions. This can be used for example in battery
research, where the size of electrodes is typically several orders of magnitudes
larger in in-plane direction compared to the thickness of the electrode such that it
is reasonable to consider periodic boundary conditions in two directions.
The rest of this paper is organized as follows. In Section 2, we describe the
generation of periodic 3D microstructures based on spherical harmonics and a
stochastic microstructure model. Then, in Section 3, the generation of a quality
volume mesh on the basis of the representation of the particle system via spherical
harmonics is explained. In Section 4, some numerical examples are presented.
Finally, in Section 5, the paper is concluded by a summary of the main results and
an outlook to possible future research is given.

2 Generation of periodic porous 3D microstructures

To generate a periodic representative volume element ω, we use the stochastic mi-
crostructure modeling approach described in [21], which basically consists of three
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a) b) c)

Figure 3: a) Generation of a non-overlapping sphere packing, see Section 2.1. b)
Construction of the periodic connectivity graph (red: sphere, blue: con-
nection of two spheres). c) Subsequent modeling of non-spherical parti-
cles via spherical harmonics accounting for the connectivity graph.

steps. First, a non-overlapping sphere packing is generated, where the volume frac-
tion of the solid phase ψS = 1− ψE as well as the particle size distribution R can
be preset. More precisely, the radii of spheres are drawn from the predefined par-
ticle size distribution R until the target volume fraction is achieved. Initially, the
midpoints of the spheres are chosen uniformly on the sampling window W ⊂ R3,
which typically leads to a system of overlapping spheres. In order to obtain a
non-overlapping sphere packing, a rearrangement algorithm is used, which will be
described in detail in Section 2.1. Each sphere acts as a placeholder and models
the location as well as the size of a non-spherical particle, which will finally replace
the underlying sphere. The second step is the construction of a connectivity graph
G = (V,E), where V is the (random) set of sphere midpoints obtained in the first
step. If there is an edge e = (v1, v2) between two vertices v1, v2 ∈ V , then the cor-
responding particles are forced to touch each other. Finally, in the third step, each
sphere is replaced by a non-spherical particle generated via spherical harmonics,
which fulfils the requirements of the connectivity graph. This modeling approach
described in [21] is visualized in Figure 3, where periodic boundary conditions are
taken into account. The representation of particles based on spherical harmonics
will be discussed in detail in Section 2.2.

2.1 Force-biased sphere packing algorithm

As already mentioned above, a rearrangement algorithm will be used in order
to completely remove the overlap between the spheres. For this purpose, the
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algorithm considered in [28] is used, which is based on the force-biased algo-
rithm for equally sized spheres [29]. For convenience, the basic idea of this
force-biased algorithm will be explained shortly at this point. Given a set of
radii r1, ..., rN > 0 and the initial midpoints x

(0)
1 , ...,x

(0)
N , we additionally con-

sider an inner radius rin and an outer radius rout, which are changing during the
execution of the iterative algorithm. The inner radius at time t is defined by

r
(t)
in = min

{
‖x(t)

i −x
(t)
j ‖

ri+rj
: i, j = 1, ..., N, i 6= j

}
, where ‖x‖ denotes the Euclidean

norm of x. The collective rearrangement algorithm will terminate if r
(t)
in ≥ 1,

which implies that the sphere system is non-overlapping. The outer radius r
(t)
out

decreases over time, where a certain parameter τ controls the speed of shrink-
ing. The following equation describes the rule for updating the midpoints of the
spheres:

x
(t+1)
i = x

(t)
i +

ρ

ri

N∑

j=1, j 6=i

ρijrirj

(
4 ·
‖x(t)

i − x
(t)
j ‖2

(ri + rj)2
− (r

(t)
out)

2
) x

(t)
i − x

(t)
j

‖x(t)
i − x

(t)
j ‖

Since ρij = 1(B(x
(t)
i , r

(t)
outri)∩B(x

(t)
j , r

(t)
outrj) 6= ∅), where 1(B) denotes the indicator

of the set B, the force acting on the i-th sphere only depends on spheres in a certain
local neighborhood around x

(t)
i , which is essential for an efficient implementation of

the algorithm. Furthermore, since it is crucial to obtain a periodic microstructure,
we take periodic boundary conditions into account when computing the distance
‖x(t)

i −x
(t)
j ‖. More precisely, for x

(t)
i = (x

(t)
i,1, x

(t)
i,2, x

(t)
i,3),x

(t)
j = (x

(t)
j,1, x

(t)
j,2, x

(t)
j,3) ∈ R3 it

holds that

‖x(t)
i − x

(t)
j ‖ =

√√√√
3∑

k=1

min
{
|x(t)
i,k − x

(t)
j,k|, sk − |x

(t)
i,k − x

(t)
j,k|
}2
, (3)

where s1, s2, s3 > 0 denote the size of the observation window W in x-, y- and
z-direction, respectively. In addition, the periodic boundary conditions have to be
applied when the updated position x

(t+1)
i is no longer contained in the sampling

window W ⊂ R3. Since the non-overlapping sphere system is periodic by defini-
tion, the final system of non-spherical particles fulfils periodic boundary conditions,
too. However, this step also allows to implement periodic boundary conditions only
with regard to certain directions. For this purpose, the summands of Eq. (3) are

replaced by |x(t)
i,k − x

(t)
j,k| for those directions k ∈ {1, 2, 3}, for which no periodic

boundary conditions are applied. A visualization of the working principle of this
force-biased collective rearrangement algorithm can be found online as supplemen-
tary material. Finally, note that the sphere packing algorithm described above is
only capable of generating packing densities up to approximately 65%, where for
packing densities of more than 60%, a so-called core-shell ratio is used, see [21] for
further details.
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2.2 Representation of particles via spherical harmonics

In order to generate non-spherical particles, we make use of spherical harmonics
[30], which are a frequently used mathematical tool in a variety of research areas,
ranging from quantum mechanics [31] to heat transfer [32]. Assuming star-shaped
particles, which is reasonable in a wide range of applications, one can analytically
describe the shape of a single particle by its center b ∈ R3 and the radius function
R : (0, 2π] × (0, π] → R since the spherical harmonic functions {Y m

` : [0, π] ×
[0, 2π) → [0,∞) : ` ∈ N0,m ≤ `} form a basis for the family of square integrable
functions defined on the unit sphere S = {x ∈ R3 : ‖x‖ = 1}, see [33]. More
precisely, for any (θ, ϕ) ∈ (0, 2π]× (0, π] it holds that

R(θ, ϕ) =
√

4π
∞∑

`=0

∑̀

m=−`

cm` Y
m
` (θ, ϕ) ≈

√
4π

L∑

`=0

∑̀

m=−`

cm` Y
m
` (θ, ϕ)

=
√

4π ·
( L∑

`=0

c0
`Y

0
` (θ, ϕ) + 2 ·

∑̀

m=1

Re(cm` )Re(Y m
` (θ, ϕ))

− Im(cm` )Im(Y m
` (θ, ϕ))

)
,

with coefficients cm` ∈ C, spherical harmonic functions Y m
` : (0, 2π] × (0, π] → C

and the series expansion parameter L ≥ 0. It is important to note that differ-
ent definitions of spherical harmonics are used within different fields of research,
where the most common source of confusion is the multiplicative factor (−1)m,
which is often called the Condon-Shortley phase, see [34]. Note that due to the
multiplication of the double sum with

√
4π, a spherical particle with radius r is

solely represented by the first coefficient c0
0 = r. In addition, it is possible to

estimate the complex coefficients cm` from voxelized image data by the method
described in [35] such that an analytical representation of non-spherical particles
is obtained. The degree of smoothness can be controlled by the choice of the series
expansion parameter L, see Figure 3 in [35]. Finally, a particle system consisting
of N particles can thus be uniquely described by a list of centroids and the corre-
sponding coefficients cm` . In order to generate a system of non-spherical particles
in a stochastic manner, Gaussian random fields on the sphere are used [36]. Note
that each isotropic Gaussian random field {T (x), x ∈ S} exhibits the so-called
Karhunen-Loève expansion

T (x) ≈
L∑

`=0

C0
` Y

0
` (x) + 2 ·

∑̀

m=1

Re(Cm
` )Re(Y m

` (x))− Im(Cm
` )Im(Y m

` (x)),

where we once again truncated the infinite sum by the parameter L. The complex
random variables {Cm

` , ` ∈ {0, ..., L},m ≤ `} are independent and Re(Cm
` ) as
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well as Im(Cm
` ) are normally distributed [37]. This finally allows for simulating

non-spherical particles by drawing the coefficients cm` from a multivariate normal
distribution, see [38] for further technical details. Finally, the complex geometrical
features of non-spherical particles can be described by the so-called angular power
spectrum A(1), ..., A(L) ≥ 0, which can be estimated from tomographic image data
and used for simulating virtual but realistic particle systems, see e.g. [21, 38, 39].
This concludes the stochastic modeling of periodic 3D microstructures, where the
analytical representation of the microstructure in terms of spherical harmonics is
the basis for the construction of a quality volume mesh, as it is described in the
next section.

3 Periodic mesh generation

We now discuss the mesh generation for the microstructures described in Section 2,
yielding discrete approximations for ω and ωE. Recall that the microstructure to
be meshed has the representation (x0

n, Rn)n, n = 1, . . . , N , where N is the number
of particles. The surface of each particle Pn is parametrized by

x
s
n = x0

n +Rn(θ, ϕ) · er , er =




sin θ · cosϕ
sin θ · sinϕ

cos θ


 , for θ ∈ (0, π], ϕ ∈ (0, 2π] , (4)

with x0
n being the midpoint and Rn the radius function of Pn. As explained in the

previous section, Rn is expanded in terms of spherical harmonic functions, where
the coefficients cm` are deduced from a stochastic model described, e.g., in [21].

As a surface mesh M of a single particle, we consider a tupel (v, f) with v ∈ RMv×3

and f ∈ NMf×3, where Mv is the number of vertices (or node points) and Mf

the number of faces of the mesh M. A face fj = (fj1, fj2, fj3) is the j-th row
of f , defining a triangle tj = (xfj1

,xfj2
,xfj3

). A volume mesh MV is a tupel
(v,g) with v ∈ RMv×3 and g ∈ NMg×4. One entry of g describes a tetrahedron
gj = (gj1, gj2, gj3, gj4). Note that the boundary of a volume mesh is a (closed)
surface mesh. In particular, a discrete approximation of particle Pn, or, more
precisely, a discrete approximation of its parametrized surface, is denoted by
Mn = (vn, fn), with nodes vin = x

s
n(θi, ϕi), i = 1, . . . ,Mv and faces fn, where

the definition of the angles (θi, ϕi) ∈ (0, 2π] × (0, π] will be described later on in
Section 3.1.

The microstructure is supposed to be periodic with respect to the bounding box
B = {Bk}k=1,...,6, built by the (infinite) planes B1 = {(x, y, z) ∈ R3 : x = xmin},

11



B2 = {(x, y, z) ∈ R3 : y = ymin}, and so forth, following the numbering of a classi-
cal 6-sided dice. The corresponding rectangle B̄k is the plane Bk bounded by the
other planes, e.g., B̄1 = {(x, y, z) ∈ R3 : x = xmin, ymin ≤ y ≤ ymax, zmin ≤ z ≤
zmax}.

We seek a volume mesh MV
ω of the unit cell ω, and, in particular, MV

ωE of the
connected domain ωE, which is achieved in the following steps:

1. Initial meshing of each particle Pn,

2. Pairwise intersection of particles (Pn,Pk) and local deformation to ensure
non-intersection,

3. Intersection of particles Pn with the box B = {Bk}k, yielding intersection
curves γn,k,

4. Meshing of the particles Pn and planes Bk subject to the intersection curves
γn,k,

5. Building of a closed surface mesh M accounting for the periodic repetitions
of all particles,

6. Construction of a quality volume MV from the intersection free, closed sur-
face mesh M.

The workflow of the mesh generation is shown in Fig. 4. A central feature of
the algorithm is a constrained Delaunay surface triangulation, which is achieved
via appropriate rotations and stereographic projections. The algorithm has been
implemented in Matlab and extensively tested at random microstructures, which
were generated by the method explained in Section 2.
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yes

Local remeshing/deformation 
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1

3

2

Consistent mesh (vn,fn)  of each
particle Pn  with boundary box

intersection arcs 𝛄n,k

Generate volume mesh based
on M with TetGen

Figure 4: Workflow map of the mesh generation.

3.1 General methods

The following methods are frequently used in the mesh generation procedure pro-
posed in this paper. Some methods of the iso2mesh toolbox [40] are frequently
used during the surface mesh generation.

3.1.1 Meshing a single particle

Meshing a single particle Pn is essentially obtained in three steps, see also Fig.5:

1. Determine angles (θi, ϕi) such that the points eir = er(θi, ϕi) are equidis-
tributed on the unit sphere.

2. Compute the convex hull f of the meshpoints (eir)i.

3. Compute the corresponding meshpoints on the particle surface given in
Eq. (4) yielding the surface mesh Mn = (vn, fn) with fn = f .

The equidistributed meshpoints on the unit sphere ensure that the triangles built
by the convex hull operation are of almost equal size, shape and not degenerated
(no agglomeration of meshpoints around the poles, no sharp or obtuse angles). Sev-
eral methods exist to construct equidistributed meshpoints on a sphere, e.g., via
geodesic polyhedrons and their projections onto the unit sphere [41]. However, for
a prescribed number Mv of meshpoints the method proposed by Deserno is rather
convenient. It places points on the sphere such that that their distance in two or-
thogonal directions is locally always the same [42]. We use this method throughout
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the present paper to compute the angle vectors (θ,ϕ) = {(θi, ϕi)}i=1,...,Mv for a
prescribed number of meshpoints Mv. Note that the 3D microstructure, which
is analytically described by spherical harmonic functions, can be represented as
precisely as desired by increasing Mv, i.e., there is no limitation by a certain
resolution.

convex hull of the 
meshpoints 

equidistributed points on 
the sphere

projection onto the particle!
yielding the surface mesh 

Figure 5: Mesh generation for a single particle based on the convex hull of a
geodesic unit sphere.

The convex hull f of the equidistributed points on the sphere is computed with
the quickhull algorithm proposed by Barber et. al [43], which is implemented in
Matlab’s convhull function [44]. We call the tupel (x, f) icosphere with Mv mesh-
points and Mf ≈ 2 ·Mv facets.

Evaluating the spherical harmonics representation given in Eq. (4) for (θ,ϕ) of
the icosphere is straightforward by an explicit implementation of the first spherical
harmonics functions Y`,m(θ, ϕ),m = 0, .., `, ` = 0, . . . , L, where we put L = 10.
This yields the initial surface mesh Mn = (vn, fn) with fn = f of each particle
Pn, n = 1, . . . , N .

3.1.2 General surface-surface intersections

To determine the intersection of two surface meshes (M1,M2) we rely on an algo-
rithm proposed by Möller [45] for fast triangle-triangle intersections and its Matlab
implementation Surface Intersection provided by Tuszynski [46]. This method
is widely used in computational geometry and determines the intersection points
of two triangles in 3D in a robust and efficient manner. However, robustness is-
sues can arise when triangles are nearly co-planar and a superior algorithm was
recently proposed [47], which could in principle also be used within our pipeline.
The method determines the NI intersection points v1,2 ∈ RNI×3 of the intersecting
facets as well as an edge graph c1,2 ∈ NMI×2 for the intersection points (see Fig. 6).
The tupel (v1,2, c1,2) forms a discrete, oriented family of curves {γj1,2}j=1,...,Nj

with
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γj1,2 = (v1,2, c
j
1,2), where Nj is the number of arcs arising from the intersection,

obtained by splitting the edge graph c1,2 accordingly.

a) b)M1
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intersection points

Figure 6: a) Intersection of two surface meshes (M1,M2). b) Outcome of the
triangle-triangle surface intersection: discrete curve γ1,2 = (v1,2, c1,2).

Note that the triangle-triangle intersections algorithm computes the intersection
points on each arc of all intersecting triangles, resulting in a very fine boundary
arc γ, i.e., a discretization much finer than the average arc length of original
mesh. This would result in far too finely resolved meshes near the intersection
edge. To avoid this, we use a coarsening step on all arcs determined by Surface

Intersection. We parametrize γ according to its arc length s by interpolating
the arc points vγ accordingly, yielding a curve function γ = γ(s). Then we re-
evaluate γ(s) at equidistant arc length points si, yielding a proper discretization
of the intersection curves.

3.1.3 Constrained Delaunay surface triangulations

A constrained Delaunay triangulation (CDT) is a special form of triangulation,
where some conditions on the triangulation have to be fulfilled. Consider, for
example, a (non-convex) polygon γ = (vγ, cγ) and points vin which lie inside the
polygon. We seek a triangulation of v = (vγ,vin) which ensures that the boundary
of the triangulation is indeed γ. This can be achieved with constrained Delaunay
triangulations [48, 49], where γ is prescribed as edge constraint. For 2D problems,
i.e., points in the plane bounded by a curve, this is rather straightforward and
many implementations exist, where we mention, e.g., the well-known Matlab im-
plementation delaunayTriangulation.

However, for non-convex polygons on a 2D hyper-surface embedded in the 3D
space the situation is much more complex. Here we seek a surface triangulation
M of points on a surface bounded by a curve which lays on the surface. Note that
this is very different from the “tetrahedralizations” of a 3D point cloud, forming
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tetrahedra, bounded by a (closed) hyper-surface and resulting in a volume mesh
MV . The problem arises when intersections between two particles or between a
particle and the bounding box are considered. Since the particles are parametrized
in terms of spherical harmonics, we can exploit this by conformal mappings from
the sphere onto the plane.

A given arc γ = (vγ, cγ) on the sphere forms a non-convex spherical polygon. Note
that for a spherical triangle with the vertices a,b, c on the unit sphere, the area e
and the centroid d can be computed as follows, see e.g. [50]:

e = arccos (na,nb + arccos (nb,nc) + arccos (nc,na)− π ,

d =
1

2se

(
nc arccos (a,b) + na arccos (b, c) + nb arccos (c, a)

)
,

where

nc =
a× b

‖a× b‖ , na =
b× c

‖b× c‖ , nb =
c× a

‖c× a‖ ,

and s = sign〈a,b× c〉 accounts for the orientation of the surface triangle, i.e., an
inner or outer triangle. Furthermore, consider a spherical polygon with vertices
{vi}i=1,...,N . Then, for each i = 1, . . . , N − 1, let di denote the centroid of the
spherical triangle with vertex set {vi,v mod (i+1,N),vN}, ei its area and si its sign.
The spherical centroid v̄ is then given by

v̄ =
1

2

∑N−1
i=1 sieidi∑N−1
i=1 siei

,

and its projection onto the sphere by n = v̄
‖v̄‖ .

a) b) c) d)

centroid

Figure 7: Spherical polygon and its centroid (a), stereographic projection (b), 2D
constrained Delaunay triangulation (c), constrained surface mesh (d).

For a given arc γ = (vγ, cγ) and interior points vin we consider the following
sequence of steps to generate a constrained surface mesh, see Fig. 7:
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1. Compute the centroid v̄ of the spherical polygon γ and project it onto the
sphere, resulting in a point n within2 the spherical polygon.

2. Rotate the sphere such that −n becomes the north pole (1, 0, 0).

3. Project the spherical polygon and its interior points onto the plane via the
stereographic projection given by

u =
x

1− z and v =
y

1− z .

4. Perform a 2D constrained Delaunay triangulation in the (u, v)-plane resulting
in a triangulation f .

5. Consider (v, f) as constrained surface mesh M.

We call this method “constrained surface Delaunay triangulation via stereographic
projections”. It will be extensively used in the following.

3.2 Generating quality volume meshes from surface meshes

3.2.1 Particle-particle intersections

In order to generate a volume mesh MV from a surface mesh M, it is of ultimate
importance that M is intersection free. For two particles P1 and P2 this yields two
possibilities: (i) an intersection and local re-meshing to form a unified, intersected
particle, or (ii) a local deformation of P1 and P2 to ensure non-intersection. We
decided for variant (ii) since it seems physically more meaningful, but switching
to (i) is technically possible as well.

Based on the method described in Section 3.1.2, the intersection of two surface
meshes M1 and M2 yields the intersection arcs γj1,2 = (vj1,2, c

j
1,2). For each j

we determine the normal plane approximating the 3D point cloud vj1,2, yielding
the corresponding normal vector nj. In the following, we drop the superscript j
and determine the rotation matrix R such that R · n = (1, 0, 0), where we rotate
the particles accordingly. Next, the exterior mesh fi,o, i = 1, 2 of each particle is
determined, which consists of all faces that do not intersect γ1,2. However, the
boundary of fi,o is itself a closed, oriented curve, denoted by γi. We then translate

2In rare cases, simultaneous intersection with two planes can produce a strongly non-convex
spherical polygon where the centroid is not inside. However, starting from the centroid, a
point can be found nearby which is located on the intersection line of the two planes and
additionally within the spherical polygon, which serves then as n.
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γ1,2 by some distances d1 and d2 into P1 and P2, respectively, yielding the curves
γ1

1,2 and γ2
1,2.

Intersect initial meshes 
P1 and P2  of  two

particles

Determine intersection arcs
𝛄1,2 , the adjacent open

edges 𝛄1  and 𝛄2 and the
outer meshes f1,o and f2,o

Determine the
normal plane

of  𝛄1,2, rotate
particles and

shift  𝛄1,2

Sterographic
projections with

n and -n as north
pole

Compute 2D
constrained Delauney

triangulation
fi,𝛄  between 𝛄i
and 𝛄1,2 (i=1,2)

Combine fi,o and  fi,𝛄 to
form the new non

intersecting meshes
of P1 and P2

Generate intersection free
surface meshes of (Pk ,Pm )

𝛄2 
𝛄1 

𝛄1,2

projected
𝛄1,2

projected
𝛄2

Figure 8: Detailed workflow map of the particle-particle intersection.

Then we use the method described in Section 3.1.3 to compute the surface con-
strained Delaunay triangulation of γi1,2 bounded by the curve γi. This yields a
triangulation fi,γ of the former intersecting part of Pi. Uniting fi,γ with the un-
modified exterior fi,o yields a new surface triangulation Mi of particle Pi, ensuring
a non-intersection between P1 and P2. The workflow is shown in Fig. 8.

3.2.2 Intersections of particles with the bounding box

Next the particles are intersected with the bounding box B. Recall that Fig. 2a
shows an initial mesh of a microstructure and, color-coded, the number of inter-
sections of each particle with the rectangles B̄1, . . . , B̄6 forming the bounding box
B. Let in ∈ {0, 1, 2, 3} denote the number of intersections of particle Pn with the
rectangles B̄1, . . . , B̄6. The number kn of periodic repetitions of Pn (including the
particle Pn itself) is then given by kn = 2in .
Furthermore, for in ≥ 1, let S1, . . . , Skn denote the sectors arising in this way.3

If a particle Pn intersects the box B, we proceed with the following strategy to
determine the intersection arcs γn,k of each sector Sk, see also Fig. 9:

3Consider the half-spaces

V +
x (x0) = {x = (x, y, z) ∈ R3 : x ≥ x0} and V −

x (x0) = {x = (x, y, z) ∈ R3 : x ≤ x0} ,

and V ±
y (y0), V ±

z (z0), accordingly. Now consider V ±
x (x0)∩ V ±

y (y0) = V ±±
xy (x0, y0), and V ±±

yz ,
V ±±
zx , accordingly as well as V ±

x (x0) ∩ V ±
y (y0) ∩ V ±

z (z0) = V ±±±
xyz (x0, y0, z0). These are the

principal sectors of intersections for the orthogonal planes crossing (x0, y0, z0). For an inter-
section number i = 2 with, for example, the planes B1 (i.e., x = xmin) and B2 (i.e., y = ymin),
the sectors are S1 = V ++

xy (xmin, ymin), S2 = V +−
xy (xmin, ymin), S3 = V +−

xy (xmin, ymin), S4 =
V −−
xy (xmin, ymin). For i = 1 and i = 3 the sectors are defined accordingly.
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1. Intersect the surface mesh Mn of Pn with a coarse, local surface mesh Mk of
the planes Bi, i = 1, . . . , in, applying the method described in Section 3.1.2.

2. Get the intersection arcs βn,i on the planes Bi, i = 1, . . . , in.

3. Consider pairwise intersections of βn,i, βn,j, i = 1, . . . , in, j = 1, . . . , in, i 6= j
and determine the common intersection points vij ∈ R3.

4. Determine the arcs γn,k of each sector Sk, k = 1, . . . , 2in from the plane
intersection arcs βn,i, i = 1, . . . , in.

5. Determine the centroid of γn,k.

6. Determine the points vin of the initial surface mesh M = (vn, fn) which are
inside the surface polygon.

7. Project vin and γn,k onto the unit sphere and perform a stereographic pro-
jection with respect to the centroid.

8. Perform a 2D constrained Delaunay triangulation for the projection (using
the method explained in Section 3.1.3), which yields the triangulation fn,k.

9. Consider (vin, fn,k) as surface mesh Mn,k of the sector Sk.

10. Performing the above steps for all sectors k = 1, . . . , 2in yields the new
closed surface mesh Mn = ∪kMn,k for particle Pn, ensuring the intersection
constraints.

Intersect initial mesh¬
PQ=(YQ,fQ)¬of a particle
Zith the bounding bo[

planes

Determine the¬intersection
arcs Q,N¬and interioir

points¬YQ,N¬of a segment N

Project onto sphere
and determine
centroid¬cQ,N¬
of the surface

spherical pol\gon

Sterographic
projection

Zith
- cQ,N as
north pole

Compute 2D
constrained
delaune\

triangulation fQ,V3D constrained surface
triangulation (YQ,N,fQ,N)N

¬of bo[ ntersecting particles

Surface mesh (YQ,N,fQ,N)
of the segment N¬Zith

open edge¬ Q,N

cQ,N¬

Mesh bounding bo[ -
particle intersections

‹n,1

‹n,2

“n,k

S1S2

S3 S4

intersecting

Delaunay

Figure 9: Detailed workflow map of the bounding box-particle intersection.
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3.2.3 Meshing of the planes Bi

In order to get a closed surface mesh of ∂ωE, we need a triangulation of the planes
Bi, i = 1, . . . , 6, intersected with all particles. However, we already know the
particle-plane intersections, i.e., the arcs βn,i. However, these arcs have to be
intersected with the bounding curve of the rectangle B̄i, yielding the exterior arc
αi of the plane Bi, see Fig. 10. A 2D CDT for the interior mesh-points (u`1, u

`
2)

of the plane Bi subject to the boundary arcs αi and βi = ∪nβn,i yields a surface
triangulation Mi for the intersected bounding box plane Bi, and by a repetition of
the procedure for all sides i = 1, . . . , 6 a surface mesh MB of the intersected box
B.

Figure 10: Detailed workflow map of the bounding box-particle intersection.

3.2.4 Building of a common surface mesh

Based on the surface mesh MB of the intersected box B and the surface meshes
Mn = ∪kMn,k of all particles Pn we can now build a closed surface mesh for ∂ωE.
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Figure 11: Periodic arrangement of the intersected particle mesh Mn = ∪kMn,k

with respect to the periodicity box B (left). Closure of the open surface
mesh MP by the open bounding box surface mesh MB (right).

The sectorial parts Mn,k are distributed according to the periodicity condition of

the bounding box B, denoted by M̂n,k, see Fig. 11a. This yields the periodic open

surface mesh MP = ∪Nn=1∪2in
k=1M̂n,k of all particles. This mesh is now closed by the

surface mesh MB of the intersected box B, see Fig. 11b, forming a closed surface
mesh M = MP ∪MB of the microstructure.

3.2.5 Construction of a quality volume mesh

We now have a periodic, closed surface mesh M = MP ∪MB of the 3D mi-
crostructure. Essentially this is a discrete representation of ∂ωE. In order to obtain
a (discrete) parametrization of ωE, we rely on a well-established method for 3D
constrained Delaunay tetrahedralizations, implemented in TetGen [27, 51]. Note
that TetGen is a software package that generates tetrahedral meshes of any 3D
polyhedral domain. It generates exact constrained Delaunay tetrahedralizations,
boundary conforming Delaunay meshes, and Voronoi partitions. For a closed, in-
tersection free surface mesh M, TetGen generates a high quality volume mesh MV .
Since our surface mesh is perfectly periodic, we force TetGen by flags (-pqYQA)

to keep the initial surface mesh as boundary, whereby the resulting volume mesh
MV is also periodic, see the user manual [52] for technical details. In this way,
we have a robust method to generate a high quality volume mesh MV from a
representation {(x0

n, Rn)}n=1,...,N of a periodic microstructure, based on spherical
harmonics.
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Figure 12: Closed, periodic surface mesh M of a particulate microstructure rep-
resented by spherical harmonics (left). High quality volume mesh MV

generated with TetGen from the surface mesh M (right).

4 Numerical results

In this section we discuss three examples of microstructures to provide an impres-
sion of the proposed method. The first example considers simple morphologies
of equally sized spherical particles, where the porosity is varied and the result-
ing porous media parameters are compared to the Bruggeman approximation, see
Section 4.1. The second example, considered in Section 4.2, deals with a porous
microstructure consisting of N particles, where the particle radii are polydisperse.
Such microstructures can be found, for example, in porous battery electrodes. The
box-size is varied to show some kind of convergence of the porous media param-
eters, frequently known from stochastic homogenization [53]. The third example
ties on this kind of microstructures, where the porosity is varied, see Section 4.3.
This is achieved by considering virtually generated microstructures of differently
compacted battery electrodes using the stochastic model proposed in [39].
All numerical calculations for the 3D cell problem (CP1) considered in this paper
are carried out with COMSOL 5.2 [54] based on the meshes generated by the al-
gorithm explained in Section 3.
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4.1 Equally sized spherical particles

Figure 13: Unit cells ω of simple cubic (sc), body centered cubic (bcc), and face
centered cubic (fcc) microstructures. The colors encode the number of
unit cells shared by a sphere, i.e., blue = 0, magenta = 2, red = 4.

We consider three different Braviais lattices of the cubic crystal system as mi-
crostructure. The unit cells ωE are built by simple cubic (sc), body centered cubic
(bcc), and face centered cubic (fcc) structures of spheres with some fixed radius
R > 0, see Fig. 13, where ω = [0, b]3. We seek to vary the porosity ψE in this
simple example and discuss the porous media parameters πE and aE,S in terms of
ψE. This can be achieved in two ways, (i) by varying the sphere radius R while
keeping the box size b constant, or (ii) by varying the box size b while keeping the
radius R constant. Note that these two approaches are, from a materials perspec-
tive, completely different. Increasing the box size basically means dispersing the
particles in a given volume, while decreasing the particle radius corresponds, e.g.,
to different synthetization processes leading to smaller particles. For the sake of
completeness, we discuss both approaches in parallel, emphasizing, however, that
second approach is more realistic.

4.1.1 Variation of the sphere radius, keeping the box size fixed

Consider particles of fixed radius r ∈ (0, R), where R is some prescribe maximum
radius. For a sequence of increasing values r̃ = r

R
∈ (0, 1) we seek to compute the
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effective porous media parameters. The box volume V is given by

V = b3, where b =





2 ·R, for lattice sc,
4√
3
·R, for lattice bcc,√

8 ·R, for lattice fcc,

which corresponds to the closest packing when r = R. The porosity ψE of the
corresponding material is calculated as

ψE =
1

V

∫

ωE

1dV =





1− π
6

(
r
R

)3
< 1− 0.5236, for lattice sc,

1−
√

3π
8

(
r
R

)3
< 1− 0.6802, for lattice bcc,

1− π
3
√

2

(
r
R

)3
< 1− 0.7405, for lattice fcc,

and the interfacial area computes as

aE,S =
1

V

∫

σE,S

1dA =





1
2
π · r̃2 1

R
< 1.57 1

R
, for lattice sc,

3
√

3
8
π · r̃2 1

R
< 2.04 1

R
, for lattice bcc,

1√
2
π · r̃2 1

R
< 2.22 1

R
, for lattice fcc.

Note that we can also express the dimensionless radius r̃ in terms of the porosity
ψE which yields the following expressions for the interfacial area:

aE,S =





1
2
π
(

6
π
(1− ψE)

)2
3 1
R
, where 1− ψE ∈ (0.4764, 1), for lattice sc,

3
√

3
8
π
(

8√
3π

(1− ψE)
)2

3 1
R
, where 1− ψE ∈ (0.3198, 1), for lattice bcc,

π√
2
π
(

3
√

2
π

(1− ψE)
)2

3 1
R
, where 1− ψE ∈ (0.2595, 1), for lattice fcc.

We can now define the interfacial area factor θE,S = aE,S ·R which depends solely on
the microstructure, i.e., the type of sphere packing, and on the porosity ψE via the
particle radius r. As expected, the face centered cubic crystal structure (ffc) has a
larger interfacial area factor θE,S than the less packed simple cubic structures, see
also Fig. 15c.

4.1.2 Variation of the box size, keeping the sphere radius fixed

Next, consider a variation of the box size while keeping the spherical particles at
fixed radius R. Note that this corresponds to a dispersion of the particles. The
porosity ψE of the resulting microstructure is calculated as

ψE = 1− N · 4πR3

3b3
,
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and the interfacial area as

aE,S =
N4πR2

b3
,

where N = 1 (sc), N = 2 (bcc), and N = 3 (fcc). From the two equations given
above we get that

aE,S = 3(1− ψE)
1
R
, (5)

which is independent of the actual microstructure. This seems to be quite surpris-
ing, but the different packings are actually encoded in b3. In Section 4.2 below,
where microstructures with polydisperse particle radii Rn are considered, these
examples serve as a kind of reference.

Figure 14: Volume mesh generated by the algorithm presented in Section 3 (lower
parts). Numerical solution of χ1

E(y1, y2, y3)
∣∣
y3=0.9

(upper parts).

4.1.3 Diffusion corrector and tortuosity

For the sequence of increasing r̃-values considered in Section 4.1.1, we generate
3D meshes of the periodic unit cells ω (meshdata available online) with the algo-
rithm explained in Section 3 and solve the cell problem CP1 numerically, i.e., we
determine ~χE. The corresponding volume meshes as well as a slice of a numerical
solution of χ1

E(y1, y2, y3)
∣∣
y3=0.9

are shown in Fig. 14, where the diffusion corrector

πE is computed a posteriori from Eq. (2). Note that from the definition of πE,
i.e.,

πE =
(
1− 1

vol(ωE)

∫

ωE

∇~χE dV
)
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it follows that πE is actually independent of the particular choice of the approaches
(i) or (ii). For all three examples of microstructures consider in Section 4, the dif-
fusion corrector πE essentially reduces to a scalar, i.e., πE = πEI, where Id denotes
the identity matrix. In Fig. 15a, results of the numerical computation of πE with
respect to the porosity ψE are visualized.

Note that, quite commonly, the (scalar) tortuosity corrector τE is introduced via
the effective diffusion coefficient Deff

u of the underlying porous medium. For this,
the homogenized transport equation (1) for a simple diffusion flux Ju = Du∇u is
considered, i.e.,

ψE

∂u

∂t
= divx

(
ψEπE ·Du︸ ︷︷ ︸

=Deff
u

∇u
)

+ aE,Sr
s
u .

Newman, Wood and others introduce τE (implicitly) via Deff
u = ψE

τE
Du, which simply

yields in our notation τE = (πE)
−1 [55, 56, 57, 58]. Estimation of τE in terms of the

porosity ψE is performed via the Bruggeman approach [59], claiming that τE = ψ−αE ,
where α is a microstructure-specific constant. It has been computed as non-linear
least squares fit for the lattices sc, bcc and fcc, yielding

α(sc) = 0.4111 , α(bcc) = 0.3500 , α(fcc) = 0.3410 .

Fig. 15b displays the results of the numerical computation of τE and, in dashed line,
the Bruggeman fit. For microstructures of cubic crystal structures the Bruggeman
approximation is, apparently, qualitatively and quantitatively acceptable. How-
ever, a major drawback is the underlying assumption of equally sized particles,
which is not the case for realistic microstructures. The particle radii within the
representative volume element are rather polydispersely distributed, allowing for
more dense packing structures and thus smaller values of ψE. But the simple cubic
crystal structures, as well as their Bruggeman approximations, can be considered
as a benchmark for the discussion of realistic microstructures.
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Figure 15: Porous media parameters based on the cell problem CP1: diffusion
corrector πE (a), tortuosity τE = (πE)

−1, together with Bruggeman fit
πE = ψαE (b), and dimensionless interfacial area factor θE,S (c).

4.2 Varying the number of particles

The examples considered in this section deal with the influence of the size of
the sampling window and, thus, the number of particles on the porous media
parameters. To begin with, in Section 4.2, we consider a system of spheres with
a given radius distribution. Afterwards, in Section 4.2.2, we consider a system of
non-spherical particles represented by spherical harmonics. In both cases, one unit
of length corresponds to 0.44µm.

4.2.1 Spherical particles with polydisperse radii

Obviously, the examples discussed in Section 4.1 are rather of theoretical interest
than applicable to realistic porous media since a microstructure described by a
single fixed radius is not able to describe complex particle systems. Thus, we now
consider a system of N non-overlapping spheres, where the radii R1, ..., RN follow
a certain probability distribution. For this particular case, it obviously holds that

ψE = 1−
4
3
π
∑N

n=1R
3
n

b3
and aE,S =

4π
∑N

n=1 R
2
n

b3
.

Hence, we can rewrite aE,S as

aE,S = 3(1− ψE)

∑N
n=1 R

2
n∑N

n=1 R
3
n

= 3(1− ψE)
R̄
∑N

n=1R
2
n∑N

n=1R
3
n︸ ︷︷ ︸

=η

1

R̄
=

6(1− ψE)

d3,2

, (6)

where d3,2 = 2 ·
∑N

n=1 R
3
n∑N

n=1 R
2
n

is known as Sauter diameter or surface area weighted mean

diameter [60, 61]. Thus, by comparing Eq. (6) with Eq. (5), one can observe
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that replacing the fixed radius R considered in Section 4.1 by the mean R̄ of a
certain radius distribution requires us to introduce the factor η, which depends
on the radius distribution. If η < 1, then the interfacial area aE,S is smaller
compared to the microstructure consisting of a single sphere with R̄ as radius.
From another point of view, one has to exchange the radius R by the Sauter
diameter divided by 2, when considering a distribution of particle radii instead of
a single fixed radius. To investigate the influence of the number of spheres N and
the standard deviation of the underlying radius distribution on the interfacial area,
we exemplarily consider particle radii that are distributed according to a shifted
and truncated Birnbaum-Saunders-distribution yielding a mean particle radius of
R̄ = 7.2. This particular choice is motivated by the stochastic 3D microstructure
model presented in [39], which will be also used in Section 4.2.2 below. More
precisely, we draw N = 10 and N = 10000, respectively, radii from Birnbaum-
Saunders distributions with a fixed mean value of µ = 7.2 and variance σ2, where
σ has been varied from 10−2 to 10. As expected, if we increase the number of
particles, the volatility of η decreases, see Fig. 16. In particular, for N = 10000
particles, η decreases with increasing σ. However, for N = 10, one can obtain
values of η > 1 implying a larger interfacial area compared to a single spherical
particle whose radius is given by the empirical mean of these 10 radii.

N = 10000
N = 10

σ

η
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Figure 16: Influence of standard deviation and number of particles on η.

The influence of the particle size distribution on effective tortuosity is beyond the
scope of the present paper and will be discussed in a separate (forthcoming) study.

4.2.2 Star-shaped particles represented by spherical harmonics

In this example, we focus on realistic 3D microstructures of a battery electrode
consisting of non-spherical particles. For this purpose, we make use of the para-
metric stochastic microstructure model presented in [39]. For a prescribed cube
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of side length b, the model yields an analytical expression for the position and
radius function of N particles, i.e., {(x0

n, Rn)}n=1,...,N , see Section 2.2. Note that
the number of particles N scales approximately with O(b3). In particular, the
so-called compaction load is fixed to 100 MPa within this subsection, whereas the
influence of varying the compaction load (and thus varying the porosity) is dis-
cussed in Section 4.3 below. The distribution of volume-equivalent radii follows
the same shifted Birnbaum-Saunders distribution as in the previous example. To
investigate the influence of the size of the bounding box on the resulting porous
media parameters, ten model realizations have been generated for each box size
b ∈ {25, 50, 75, 100, 125, 150, 175, 200} and, subsequently, a periodic volume mesh
has been determined by using the methodology described in Section 3. The corre-
sponding surface and volume mesh files are available as supplementary material.
Figure 17 shows the histogram as well as the periodic surface mesh generated by
a single model realization using the box sizes b ∈ {50, 100, 150, 200}.

Figure 17: Histogram of the particle radii for an increasing box size and periodic
surfaces meshes for box sizes b ∈ {50, 100, 150, 200}.

Based on the volume meshes of ten model realizations for each box size b, the
porosity ψE, interfacial area aE,S and (diffusion) corrector πE have been computed.
Fig. 18 shows the results for 10 realizations per box size, where each plus sign
corresponds to one realization and the patch is the convex hull of all realizations
per box size. As the box size increases, this variation declines and we obtain some
kind of convergence of the parameters. This effect is also known in stochastic
homogenization, where the parameters of simulated microstructures converge to
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some effective parameters as the representative volume element increases. Fur-
thermore, one can observe that a box size of at least 75 drastically reduces the
variation within the parameters of different model realizations compared to a box
size of 25 and 50, respectively. In addition, the Bruggeman relation seems to lead
to a slight, systematic overestimation of the diffusion corrector, which in turn leads
to a slight underestimation of effective tortuosity.
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Figure 18: Porous media parameters for various box sizes: diffusion corrector π1,1
E

(a), tortuosity τ 1,1
E = (π1,1

E )−1 (b) and interfacial area θE,S (c). The
patch displays the convex hull of the corresponding values for the 10
realizations and each box size b.

4.3 Star-shaped particles with different degrees of compaction

In this section we consider a series of electrode morphologies, where the degree
of compaction and thus the porosity ψE is varied. In [39], a stochastic model
was fitted to tomographic image data of eight differently compacted cathodes.
This model has been adopted to the periodic case, see Section 3, and again 10
realizations have been generated for each of the eight different compaction loads
m = 0 MPa, 100 MPa, . . . , 1000 MPa with a box size b = 100. Note that, as in
Section 4.2 one unit of length corresponds to 0.44µm. The mesh files are available
online via the supplementary information.

Once again, the porous media parameters have been computed based on the 3D
solution of the cell problem CP 1, see Fig. 19. As expected, the diffusion correc-
tor decreases with decreasing porosity ψE and stays below the Bruggeman (bcc)
approximation. In addition, the largest changes with regard to the diffusion cor-
rector as well as tortuosity can be observed for low compaction loads, whereas
higher compaction loads have only a minor influence on the porous media param-
eters. This pattern can also be observed with regard to the 3D microstructure,
see [62]. Since the computation of porous media parameters is carried out with
ten realizations of the stochastic 3D microstructure per compaction load, we are
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also able to gain some insights on the variability of the corresponding effective
properties, which is also observed experimentally [63]. It can be observed that
different degrees of compaction and thus different porosities can lead to the same
interfacial area factor θE,S. This shows that the porosity alone might not be suffi-
cient to estimate the interfacial area factor, which is crucial for the electrochemical
performance. Nevertheless we find, within the variance of the realizations, that the
interfacial area factor θE,S increases with decreasing porosity ψE and the reference
interfacial area factor θRE,S of equally sized spheres remains an upper bound for
θE,S. Note further that for a fixed compaction load, this characteristic also shows
some variability, which is caused by the stochastic nature of the underlying 3D
microstructure model. Our method can thus be considered as versatile tool to in-
vestigate the variablility of microstructures, and their corresponding porous media
parameters, (i) for a fixed process parameter by considering different realizations
and (ii) for a series of 3D microstructures that arise from a manufacturing process
with different process parameters.
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Figure 19: Porous media parameters for various compaction loads: diffusion cor-
rector π1,1

E (a), tortuosity τ 1,1
E = (π1,1

E )−1 (b) and interfacial area factor
θE,S (c). The patch displays the convex hull of the corresponding values
for the 10 realizations and each compaction load.

5 Conclusion and outlook

In this paper, we presented a novel, robust method for generating high-quality
volume meshes based on the spherical harmonics representation of particulate mi-
crostructures. For this purpose, a stochastic 3D microstructure model has been
used in order to generate virtual, but realistic two-phase microstructures as struc-
tural input for the mesh generation procedure. In addition, the presented method
is able to handle periodic boundary conditions in a predefined set of directions as
well. After the generation of the volume mesh, partial differential equations can
be solved numerically, where the mesh itself can be generated as precise as desired
by increasing the number of mesh points since the underlying microstructure is de-

31



scribed analytically. We applied the proposed method exemplarily to cathodes in
lithium-ion batteries which have been manufactured for eight different compaction
loads. However, due to its generality, our approach is applicable to a broad range
of functional materials for which effective properties are of interest. In general, the
combination of numerically solving physically-motivated partial differential equa-
tions using volume meshes and stochastic 3D microstructure modeling allows to
systematically investigate the impact of the materials’ morphology on the result-
ing performance. This approach, called virtual materials testing, can be used to
facilitate the design of functional materials with optimized effective properties just
at the cost of computer simulations. In particular, in a forthcoming study, we plan
to systematically quantify the influence of microstructural characteristics such as
volume fraction, specific surface area and constrictivity on porous media parame-
ters via an extensive simulation study with several thousands virtually generated
battery electrodes.
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