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Abstract

A pluri-Gaussian model for three-phase microstructures is presented and relationships between
model parameters and microstructure characteristics are discussed. In particular, analytical formu-
las for two-point coverage probability functions in terms of covariance functions of the underlying
Gaussian random fields are considered, which allow for an efficient estimation of model parame-
ters. The model is fitted to tomographic image data obtained by FIB-tomography, which represent
porous gas-diffusion electrodes consisting of silver and polytetrafluorethylene. The considered type
of electrode is used as oxygen depolarized cathode for the production of chlorine. In order to fit
the microstructure model, the covariance functions of the Gaussian random fields are parameter-
ized, which leads to a stochastic microstructure model with five parameters. It is shown that most
microstructure characteristics of tomographic image data are well reproduced by the model despite
the low number of model parameters. Finally, limitations of the model with respect to the fit of con-
tinuous phase size distributions are discussed. Combining stochastic microstructure modeling with
numerical simulation of effective macroscopic properties will allow in future work for a model-based
investigation of microstructure-property relationships for the considered gas-diffusion electrodes.

Keywords: FIB tomography, gas-diffusion electrode, Gaussian random field, image analysis,
stochastic microstructure modeling

1. Introduction

Macroscopic properties of various functional materials, like e.g. electrode material in fuel cells [1]
and batteries [2], are strongly influenced by their underlying microstructure. For such materials,
it is thus important to investigate the quantitative relationships between production parameters
and microstructure characteristics on the one hand and between microstructure characteristics and5

effective macroscopic properties, like e.g. effective conductivity or diffusivity, on the other hand.
To do so, the generation of virtual but realistic microstructures by means of stochastic modeling
has become a powerful tool [3]. Having fitted a parametric stochastic model to tomographic image
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data representing microstructures manufactured with different constellations of production param-
eters, an interpolation of model parameters would allow for a prediction of microstructures which
have not been manufactured so far [4]. In this way, the influence of production parameters on
the microstructure can be studied. Furthermore, a large amount of various virtual microstructures
can be generated. By a combination with numerical simulation of effective macroscopic properties,5

empirical formulas have been derived, relating effective conductivity with microstructure charac-
teristics [5].

Microstructures consisting of three phases are of high importance because of their frequent
occurrence in functional materials, as e.g., in silver-based gas-diffusion electrodes (GDE) for chlor-
alkali electrolysis [6, 7] as well as in electrodes of Li-ion batteries [8, 9] and solid oxide fuel10

cells (SOFC) [10, 11]. Besides stochastic 3D microstructure models based on random geometric
graphs [12], collective re-arrangement algorithms [13, 14] and grain growth modeling with random
seed points [15], a frequently used model type is the so-called pluri-Gaussian model (PGM) fitted
to SOFC microstructures in [16, 17, 18] and mathematically described in [19, 20]. The idea of
the PGM consists of modeling the three phases by the aid of two independent Gaussian random15

fields [21]. Each point in the three-dimensional space is assigned to one of the phases according to
the values of the Gaussian random fields at this point. In the present paper, we consider a classical
generalization of the PGM for three-phase microstructures discussed in [16]. More precisely, we
use two correlated Gaussian random fields, see also [20]. We construct them from two independent
Gaussian random fields as in [22], where four-phase structures are modeled by excursion sets of20

random fields. In contrast to the interactive fitting of model parameters considered in [22, Section
4.2], we propose a method for parameter estimation by taking advantage of relationships between
model parameters and microstructure characteristics.

The practical applicability of our approach is demonstrated at the example of three-phase
microstructures occuring in silver-based GDE, which can be well described by the PGM. The model25

parameters are estimated by means of tomographic image data obtained by FIB-tomography. The
considered GDE is used as oxygen depolarized cathode (ODC), a technology for the production of
chlorine, which has the advantage to suppress hydrogen evolution and to save up to 30% of the
energy consumption [7, 23, 24] compared to industrial chlor-alkali processes [25, 26]. The electrode
consists of silver, polytetrafluorethylene (PTFE) and pores. During the chlor-alkali process electrons30

are transported through the silver phase, while water and gaseous species, and ions are transported
through the pores. Thereby, it is important for both, transport of gas and liquid, that the pore space
exhibits hydrophobic as well as hydrophilic regions, which is controlled by the spatial distribution
of PTFE being hydrophobic. Chemical reactions at the interface between silver and pores lead to
a reduction of oxygen to hydroxyl ions resulting in the suppression of hydrogen evolution. For a35

detailed description of silver-based GDE, we refer to [7]. Due to the different transport processes
taking place in the GDE, the underlying microstructure plays an important role for its performance.
Fitting the PGM to the microstructure of silver-based GDE is a first step in order to investigate
how the microstructure depends on production parameters and how it influences effective properties
of the GDE.40

The present paper is organized as follows. To begin with, the stochastic microstructure model
considered in this paper is explained in Section 2 and analytical properties of this model are consid-
ered, which are used in Section 3 to develop a method for the estimation of model parameters. The
model is then fitted to tomographic image data obtained by FIB-tomography, which describes the
microstructure of silver-based GDE. For this purpose, the manufacturing and 3D imaging processes45

2



of the considered GDE are described in Sections 4.1 and 4.2, respectively. Finally, in Section 4.3,
model fitting is discussed and a validation based on microstructure characteristics which have not
been used for model fitting is provided. Section 5 concludes the paper.

2. Model description

We consider two independent, motion invariant, i.e. stationary and isotropic, Gaussian random5

fields X = {X(t) : t ∈ R3} and Y = {Y (t) : t ∈ R3}, with covariance functions ρX and ρY .
Moreover, EX(t) = EY (t) = 0 and VarX(t) = VarY (t) = 1 for all t ∈ R3. This means that the
random variables X(t) and Y (t) follow the law of the standard normal distribution for each t ∈ R3.
For an introduction to Gaussian random fields and their applications in microstructure modeling
and geostatistics, we refer to [19] and [27].10

We consider a third random field Z = {Z(t) : t ∈ R3} given by

Z(t) =
√
mX(t) +

√
1−mY (t), (1)

for each t ∈ R3, where m ∈ [0, 1] is a certain weight parameter. By the aid of the random fields X
and Z and two further threshold parameters λX , λZ ∈ R we define three random sets Ξ1,Ξ2 and
Ξ3 by Ξ1 = {t ∈ R3 : X(t) ≥ λX}, Ξ2 = {t ∈ R3 : Z(t) ≥ λZ}∩Ξc1 and Ξ3 = (Ξ1∪Ξ2)c, which form
the pluri-Gaussian model considered in the present paper. In particular, in Section 4 we model the15

3D microstructure in silver-based GDE by such random sets, where Ξ1 denotes the silver phase,
Ξ2 the PTFE and Ξ3 denotes the pore space. Note that for m = 0, we are in the situation of the
PGM considered in [16]. Since X and Y are motion invariant, the random sets Ξ1,Ξ2 and Ξ3 are
motion invariant as well. For each i ∈ {1, 2, 3}, we denote the volume fraction of the i-th phase
by εi, i.e. εi = P(o ∈ Ξi). Here o denotes the origin in R3. Moreover, for each pair i, j ∈ {1, 2, 3}20

we consider the two-point coverage probability function by Cij , i.e. Cij : [0,∞) −→ [0, 1] with
Cij(h) = P(o ∈ Ξi, u ∈ Ξj) for each h ∈ [0,∞), where u ∈ R3 is an arbitrary vector with distance h
from the origin. Note that the values of Cij(h) do not depend on the particular choice of u due to
the motion invariance of Ξ1,Ξ2 and Ξ3. Two-point coverage probability functions are an important
tool to measure the correlation within and between random sets [27].25

In the following we consider some analytical properties of our model. For this purpose, we
follow the notation in [28] and let ϕ (t) denote the value of the probability density function of the
standard normal distribution at t. By Φ (t) , we denote the value of the distribution function of
the standard normal distribution at t. Moreover, the value of the probability density function of a
two-dimensional Gaussian random vector, both entries of which have mean value 0, variance 1 and
correlation coefficient −1 < γ < 1, evaluated at (s, t) is denoted by ϕ (s, t, γ) . It is well known that

ε1 = 1− Φ (λX) , (2)

see [27]. For the volume fraction ε2 of Ξ2, we have

ε2 = P(
√
mX(o) +

√
1−mY (o) ≥ λZ , X(o) < λX)

=

∫ λX

−∞
ϕ (t)

(
1− Φ

(
λZ − t

√
m√

1−m

))
dt. (3)

Thus, using this formula, we can estimate λX and λZ indirectly by estimating the volume fractions
ε1 and ε2. In order to estimate ρX , ρY and m the following relationships between covariance
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functions and two-point coverage probability functions are helpful. The following relationship
between ρX and C11 is well known [19, 27]. Namely, it is

C11(h) = ε2
1 +

∫ ρX(h)

0
ϕ (λX , λX , γ) dγ, (4)

for each h ≥ 0. Furthermore, C22 and C12 can be expressed by λX , λZ , ρX and ρY . Let u ∈ R3 be
an arbitrary vector of length h. Then, for C22, we have

C22(h) =P(
√
mX(o) +

√
1−mY (o) ≥ λZ , X(o) < λX ,

√
mX(u) +

√
1−mY (u) ≥ λZ , X(u) < λX)

=

∫ λX

−∞

∫ λX

−∞
ϕ (s, t, ρX(h))

∫ ∞
λZ−s

√
m√

1−m

∫ ∞
λZ−t

√
m√

1−m

ϕ
(
s̃, t̃, ρY (h)

)
ds̃ dt̃dsdt. (5)

For C12, we obtain that

C12(h) = P(
√
mX(o) +

√
1−mY (o) ≥ λZ , X(o) < λX , X(u) ≥ λX)

=

∫ λX

−∞

∫ ∞
λX

ϕ (s, t, ρX(h))

(
1− Φ

(
λZ − t

√
m√

1−m

))
ds dt. (6)

In Section 3 we show how Equations (2) – (5) can be used to estimate the model parameters from
image data. For this purpose, i.e. for fitting the model to tomographic image data, we appropriately
parameterize the covariance functions ρX and ρY see Section 4.3 below.

3. Estimation of model parameters

In this section, a method is described in order to estimate the model parameters λX and λZ as5

well as the covariance functions ρX and ρY based on one realization of the generalized PGM. To

begin with, estimators ε̂1, ε̂2, Ĉ11 and Ĉ22 for ε1, ε2, C11 and C22 are computed from image data.
Then, we solve Equations (2) – (5) numerically for the model parameters sequentially as sketched
in Figure 1 for some fixed m ∈ [0, 1]. In the next step, this procedure is repeated for several values
of m. Finally m̂ is chosen as the value of m for which the mean squared difference between Ĉ1210

estimated from image data and C12 numerically computed with the considered model parameters
using Equation (6) is minimized.

For estimating the volume fractions ε1 and ε2, we use the usual point-count method [27], i.e.
counting the voxels of the considered phase, and divide the result by the number of all voxels in
the sampling window. To estimate the two-point coverage probability functions C11 and C22 from15

image data, we use the algorithm from [29] which is based on the fast Fourier transformation.
Then, λX can be estimated via

λ̂X = Φ−1(1− ε̂1). (7)

In the next step, λZ and ρX are estimated by plugging the estimators ε̂1 and Ĉ11(h) into Equations
(3) and (4) and solving for λZ and ρX(h) for each h > 0. Note that the right-hand sides of
Equations (3) and (4) are monotonous in λZ and ρX(h) for each h > 0, respectively. Thus, both
equations can be numerically solved using the method of bisection. For numerical computation of20
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Image Data

ε̂1 λ̂X

ε̂2 λ̂Z

Ĉ22

Ĉ11 ρ̂X ρ̂Y

Eq. (2)

Eq. (4)

Eq. (3)

Eq. (3)

E
q.

(5)
Eq. (5)

Eq. (5)

Figure 1: For fixed m ∈ [0, 1], the values of λX , λZ as well as ρX and ρY are estimated sequentially by the aid of
Equations (2) - (5). Therefore, ε1, ε2, C11 and C22 are estimated from image data.

the one-dimensional integrals in Equation (3) and (4), we use the adaptive quadrature described
in [30]. Plugging the estimators Ĉ11, λ̂X , λ̂Z and ρ̂X(h) into Equation (5) and solving for ρY (h),
we obtain an estimator ρ̂Y (h) for ρY (h) for each h > 0. Since the right-hand side of Equation (5)
is monotonously increasing in ρY (h) the method of bisection can also be used here. For numerical
computation of the two-dimensional integral in (5), the method described in [31] is used. To5

compute the distribution function of the bivariate normal distribution of (Y (o), Y (u)), appearing
in Equation (5), we use the MATLAB [32] implementation of methods developed in [33] and [34].

This approach allows for a fast estimation of the model parameters based on image data, since
it does not involve any simulation of the complete 3D structure. The estimation is only based on
volume fractions and two-point coverage probability functions, which can be easily estimated using10

tomographic image data. Note that even 2D images are sufficient to estimate these characteristics,
which is a big advantage. However, taking the full 3D information into account leads to a larger
data basis for the estimation and thus reduces the variances of the estimators.

4. Application to tomographic image data

We show that the model presented in Section 2 is appropriate to describe the microstructure15

of porous silver-based GDE treated with PTFE. After a description of the material and 3D image
acquisition in Sections 4.1 and 4.2, the model parameters are estimated using a suitable parametric
model for the covariance functions ρX and ρY , see Section 4.3.

4.1. Description of material

The considered cathodes are produced by a wet preparation process. For a detailed description,20

the reader is referred to [7]. A suspension with the silver catalyst, PTFE as an organic binder
and a methyl cellulose solution as a pore building agent and thickener is applied on a conductive
supporting material. The 1 wt% methyl cellulose solution is prepared by mixing hydroxyethylmethyl
cellulose (WALOCELTMMKX 70000 PP 01) with demineralized water and stirring the solution for
several hours with an Ultra Turrax at 1650 rpm. After complete dissolving the solution remains25

stable and can be used for multiple production batches. The catalytic silver particles (SF9ED,
Ferro GmbH) were dispersed in the methyl cellulose solution under the addition of water. For a
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homogenous distribution of the particles the suspension is stirred three times for five minutes with
an Ultra Turrax at 17500 rpm. In between the mixing intervals the dispersion rests to cool down. An
aqueous PTFE suspension with 59 wt% PTFE (PTFE Dispersion TF 5060GZ, 3MTMDyneonTM)
was added under stirring at lower rotational speed. To avoid agglomeration the suspension is stirred
permanently.5

The suspension is applied by hand spraying on the conductive supporting material, a nickel mesh
(106 µm×118 µm mesh size, 63 µm thickness, Haver & Boecker OHG), using a spraying piston with
a 0.6 mm pin hole. The nickel mesh is fixed on a heating plate which allows simultaneous drying
while spraying. Multiple layers are applied, each new layer after sufficient drying of the previous
one. After every tenth layer the electrode is rotated to avoid sticking on the heating plate and to10

generate a homogeneous surface. This procedure is repeated until a silver loading of 150 mg/cm2 is
reached. To improve the physical properties the electrode is pressed with a pressing load of 15 MPa
at 130◦C for five minutes. After pressing the electrode is heat treated at 330◦C for 15 minutes to
burn out the methyl cellulose and improve the mechanical stability through PTFE sintering. The
heating rate of the sintering process is 3◦C/min while after several heating steps the temperature15

is kept constant for 15 minutes. After a cooldown step the electrode thickness and catalyst load is
verified.

4.2. 3D FIB-SEM imaging

To investigate the 3D microstructure of the electrodes described in Section 4.1, 3D FIB-
tomography is performed, which is challenging for porous materials. Filling the pores with material20

can change the sample structure or cause contrast problems. Especially regarding the contrast of
the PTFE and the filling material. For tomographies of large volumes (more than 10003 voxels),
long exposures, which would lead to a better signal to noise ratio and thus to a better material
contrast, are not practical. The main problem here is the long time stability of the FIB-SEM
system. For the silver-based GDE analyzed in the present paper, pore filling was tested with the25

epoxy-resin based EpoThinTM2 and Technivit 5071 and the silicon based Wacker Elastosil RT 601
resulting in no satisfactory material contrasts.

In the present work, we use an alternative technique without pore filling for FIB-tomography. A
FIB-tomography on porous materials requires much more post processing than a FIB-tomography
on embedded materials. Reconstruction has to be done very carefully removing shine-through30

artifacts and classifying only the cutting surface of the sample.
A 3× 1 mm2 segment is cut out of the center of the electrode. For stabilization, the segment is

then embedded into EpoThinTM2 mixing the epoxy resin and the epoxy hardener with a 20:9 ratio.
To prevent the adhesive from entering the pore system of the sample, the mixture is applied after
3 hours in a partly cured state. After full adhesive curing, an edge of the sample is mechanically35

grinded and polished perpendicularly to the surface normal of the sample. The applied polishing
procedure leads to a cross-section of the sample making a FIB-tomography of a representative part
in the center of the sample possible. For final mechanical polishing, a colloidal silica suspension
(OP-U NonDry) is used. Note that polishing porous silver results in a smearing of the silver material
into the pores which makes a non-mechanical polishing step necessary. Further polishing the sample40

with a Bal-Tec RES 101 argon ion mill with an acceleration voltage of 3 KeV and a current of 1.5
mA for 2 hours at a glancing angle of 5 degrees removes the upper most layer of smeared silver and
uncovers the final cross-section of the electrode for FIB-tomography.

FIB-tomography is performed using the Zeiss Crossbeam 340 microscope. Gallium ion milling
parameters are set to an acceleration voltage of 30 KeV and a current of 7 nA. 1300 slices with45
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a track spacing of 30 nm are scanned over a time period of 6 hours. The voxel size is 30 nm
in all directions. An 1103 × 979 × 690 voxel volume has been reconstructed successfully. For
further analysis a good correction of the intensity gradients is important. Due to the U-shape of
the premilled volume during preprocessing, the intensity gradient of the tomographed slices only
changes vertically. A maximum projection of the resliced volume (from left to right) leads to an5

excellent volume-flatfield and thus to a precise normalization of the silver phase. The pore space is
reconstructed using a machine learning approach based on the ideas proposed in [35, 36] utilizing
SE2-detector shadow effects in milling direction. Hence the drift corrected image set is denoised
using the non-local means filter [37] and the discrete derivatives of first and second order in milling
direction have been analyzed and segmented with the ImageJ software package Fiji [38]. After10

classification of the pore space, the PTFE- and the silver-phase have been separated by applying
an Otsu-threshold [39].

Figure 2: 3D visualization of tomographic image data (left) and one model realization (right). The silver phase and
PTFE are represented in blue and red, respectively.

4.3. Model fitting and validation

In this section, the results of model fitting to tomographic image data are described. Recall
from Section 2 that the silver phase, PTFE and the pore space are modeled by the random sets15

Ξ1,Ξ2 and Ξ3, respectively, which are constructed by Gaussian random fields. This approach is
appropriate to model microstructures of GDE, manufactured as described in Section 4.1, for two
reasons. First, note that the pluri-Gaussian model is hierarchical in the sense that we begin with
determining Ξ1 before its complement is subdivided into Ξ2 and Ξ3. This subdivision corresponds
to the sintering in the last step of the manufacturing process of the considered GDE, when the silver20

phase remains unchanged and the PTFE accumulates around the silver phase. Second, the model
has the advantage that we can control how strong the PTFE accumulates around the silver phase
by adjusting the model parameter m. Mathematically speaking, the correlation between Ξ1 and
Ξ2, quantified by the two-point coverage probability function C12, can be controlled by a suitable
choice of m.25
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For parameter estimation, we only consider every second voxel in order to reduce the computa-
tional effort. Finally, the goodness of model fit is validated by computing structural characteristics
for both, 10 model realizations and tomographic image data. For this purpose, discretized model re-
alizations are generated, which can be performed by the simulation of the two independent Gaussian
random fields X and Y as described in [16].5

Table 1: Model parameters estimated from tomographic 3D image data.

λX λZ αX αY m

-0.21 -0.20 0.99 µm−1 2.02 µm−1 0.86

In order to fit the model to the tomographic image data representing the microstructure of
cathodes, described in Section 4.1, we use a parametric model for the covariance functions ρX , ρY
of X and Y . In particular, after having estimated C11 and C22 non-parametrically from image data
we compute non-parametric estimates of ρX and ρY , as described in Section 3, denoted by ρ̂X and
ρ̂Y , respectively. It turned out that a good fit is obtained for Ĉ11 and Ĉ22 when assuming ρX and10

ρY to be Gaussian covariance functions, i.e. ρX(h) = exp(−(αXh)2) and ρY (h) = exp(−(αY h)2)
for each h > 0, where αX , αY > 0. This means that, in the following, we consider a parametric
stochastic model with the five parameters λX , λZ , αX , αY and m for three-phase microstructures.
Using the approach presented in Section 3, we then estimate these model parameters. The obtained
values are listed in Table 1 and a realization drawn from the model with the fitted parameters is15

visualized in Figure 2.

Figure 3: Comparison of volume fractions (left), specific surface areas (center) and specific surface areas of pairwise
interfaces (right) for tomographic (red) and simulated (blue) image data. For the simulated, we consider the average
of 10 model realizations.

To begin with, we consider volume fractions, specific surface areas and the specific surface areas
of pairwise interfaces. Note that the specific surface area of each phase is defined as its expected
surface area per unit volume. Analogously, we define the specific surface area of pairwise interfaces
between two phases. For the estimation of surface areas from image data, we use the algorithm20

described in [29]. Furthermore, an analytical expression can be derived for the specific surface area
of the silver phase denoted by SΞ1 . Indeed, using Equation (6.164) of [27] and Remark 7 of [28],
we get that

SΞ1 = aX
2
√

2

π
e−λ

2
X/2. (8)

This means that for a fixed volume fraction of the silver phase, its specific surface area depends
linearly on the model parameter aX . Plugging the estimated model parameters given in Table 1 into25
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Figure 4: Comparison of tomographic and simulated image data with respect to estimated two-point coverage prob-
ability functions C11, C22, C33 (top row, from left to right) and C12, C13, C23 (bottom row, from left to right). The
functions corresponding to tomographic image data and to all 10 model realizations are drawn in red and blue,
respectively. Recall that index 1 indicates the silver phase, index 2 the PTFE, and index 3 the pore space.

Equation (8) leads to SΞ1 = 0.872 µm−1, which is in good accordance with the corresponding value
of 0.866 µm−1 estimated from discretized model realizations. A comparison of volume fractions,
specific surface areas and specific surface areas of pairwise interfaces is given in Figure 3. Here one
can observe that the volume fractions, which have been used for model fitting, are nearly identical
with those of simulated images drawn from the fitted model. In general, the specific surface areas5

are also well reproduced by the model. Only the specific surface area of the silver phase is slightly
underestimated by the model. Thus the specific surface areas of pairwise interfaces between silver
and PTFE as well as between silver and pores are also slightly underestimated.

Figure 5: Comparison of continuous phase size distributions of pore space (left), PTFE (center) and the silver phase
(right) for tomographic image data (red) and simulated data (blue). For the model, we consider the continuous phase
size distributions of all 10 realizations.

Figure 4 shows that the model is able to nicely mimic the considered tomographic image data
with respect to two-point coverage probability functions. While the estimators of C11, C22 and10
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C12 computed from tomographic image data are used for model fitting, the good accordance be-
tween model realizations and tomographic image data regarding C33, C13 and C23 can be seen as a
validation of the model. Moreover, the estimators of two-point coverage probability functions are
nearly identical for the different model realizations, which leads top the conclusion that the chosen
sampling window is representative for this type of microstructures.5

On the other hand, there are microstructure characteristics which match less perfectly than
those considered in Figures 3 and 4. For example, as a further microstructure characteristic, we
estimated the continuous phase size distribution (CPSD) [40]. For each i ∈ {1, 2, 3}, the value P (r)
of the CPSD of Ξi at r > 0 is defined as the volume fraction of the morphological opening [41] of
Ξi with radius r, i.e., the volume fraction of the subset of Ξi that can be represented by spheres10

with radius r being completely contained in Ξi. Formally, the CPSD of Ξi is defined as the function
P : [0,∞)→ [0, 1] with

P (r) = P(o ∈ (Ξi 	B(o, r))⊕B(o, r)), (9)

for each r ≥ 0, where B(o, r) denotes the ball with radius r centered at the origin. Moreover, ⊕ and
	 denote the Minkowski-addition and the Minkowski-subtraction of sets, respectively [27]. Note
that the continuous phase size distribution of Ξi coincides with the size distribution of Ξi with15

respect to the spherical granulometry of mathematical morphology [42, Section 7.3].
The plots presented in Figure 5 show that the continuous phase size distribution of the pore space

estimated from model realizations differs significantly from the one estimated from tomographic
image data. More precise, the model overestimates the occurrence of larger pores. The results
shown in Figure 5 also indicate that the fraction of the silver phase that can be covered by spheres20

of radii larger than 1 µm is smaller in the model compared to tomographic image data. However,
the continuous phase size distribution of PTFE is well reflected in the model.

Table 2: Transport-relevant microstructure characteristics τ, rmin, rmax and β estimated for tomographic image data
and compared to the mean value and standard deviations of these characteristics estimated for 10 model realizations.

τ rmin[µm] rmax[µm] β

Pore space (tomographic image data) 1.09 0.42 0.52 0.65

Pore space (model realizations) 1.12± 0.00 0.42± 0.01 0.62± 0.00 0.47± 0.01

Silver phase (tomographic image data) 1.07 0.73 0.99 0.53

Silver phase (model realizations) 1.06± 0.00 0.72± 0.02 0.89± 0.01 0.065± 0.02

Since transport of gas and liquid through the pores as well as charge transport through the silver
phase is important for the functionality of the considered GDE, we still compare the transport-
relevant microstructure characteristics mean geodesic tortuosity τ and constrictivity β of the pore25

space and the silver phase for tomographic image data and model realizations. The mean geodesic
tortuosity is defined as the expected length of shortest paths trough from one side of the material
to the opposite one divided by the thickness of the material. Note that τ does only depend on the
geometry of the microstructure in contrast to definitions of effective tortuosities considered in the
literature. For an overview on different tortuosity concepts, we refer to [43]. The constrictivity,30

which was introduced in [44] for complex microstructures, is a descriptor of the strength of bottle-
neck effects within a microstructure. It is defined by β = r2

min/r
2
max, where rmax is the maximum

radius such that the value of the continuous pore size distribution is still larger than half of the vol-
ume fraction and rmin can be considered as the radius of the characteristic bottleneck. For a formal
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definition of τ, rmin, rmax and β and the corresponding estimators in the framework of stationary
random closed sets, we refer to [45]. Note that in [5, 46, 47] it was shown that these microstructure
characteristics have a strong impact on effective conductivity and permeability of porous materials.
The values of τ, rmin, rmax and β computed for for the tomographic image data considered in the
present paper as well as the mean values and standard deviations of these descriptors for the 105

model realizations are given in Table 2. One can observe that the standard deviations of the char-
acteristics estimated from the 10 different model realizations are negligibly small, which indicates
that the sampling window is also large enough with respect to τ and β. Moreover, the model shows
a good fit with respect to τ and rmin. In particular the values of rmin are nearly identical for model
realizations and tomographic image data. Note that such a good fit of rmin was not possible to10

obtain when fitting the model with m = 0 to tomographic image data representing the microstruc-
ture of SOFC-anodes in [18]. However, in accordance with the results presented in Figure 5, rmax

is overestimated by the model for the pore space and underestimated for the silver phase. This
results then in slightly different values for β, which means that the strength of bottleneck effects is
not yet completely captured by the generalized model considered in the present paper.15

In summary, evaluating the goodness of fit of the PGM described in Section 2 to tomographic
image data of silver-based GDE, it can be said that the model with only 5 parameters is able to well
reproduce basic microstructure characteristics like volume fractions of phases, two-point coverage
probability functions as well as specific surface areas. Taking more sophisticated microstructure
characteristics into account we observe on the one hand that slight discrepancies between the20

continuous pore size distributions of model realizations and tomographic image data occur which
result in different values of rmax and β, while on the other hand, a good fit with respect to the
radius of the characteristic bottleneck rmin and the mean geodesic tortuosity τ is obtained.

5. Conclusions

A stochastic 3D microstructure model based on excursion sets of Gaussian random fields is25

presented to model three-phase microstructures. The excursion sets are constructed by two corre-
lated Gaussian random fields, the correlation of which is controlled by a certain weight parameter.
Analytical relationships between model parameters and both, volume fractions as well as two-point
coverage probability functions of the three-phasesare considered, which allow for an efficient esti-
mation of model parameters.30

The model is fitted to image data of silver-based GDE used as ODC to produce chlorine, where
the image acquisition is performed by 3D FIB-tomography. For this purpose, we parameterize the
covariance functions of the Gaussian random fields ending up in a 3D microstructure model for three-
phase materials which possesses five parameters. Despite the low model complexity, microstructure
characteristics such as the volume fractions of phases, their specific surface areas as well as two-35

point coverage probability functions are well reflected by the model. Furthermore, we consider
two further transport-relevant microstructure characteristics, namely mean geodesic tortuosity and
constrictivity. Mean geodesic tortuosity is fitted well by the model. Although the radii of the
characteristic bottlenecks of the pore space and the silver phase are nearly perfectly reproduced
by the model, slightly different values of constrictivities are observed for model realizations and40

tomographic image data. The reason for that are some discrepancies in the continuous phase size
distributions.

In future work the model can be used in order to investigate the microstructure influence on
effective macroscopic properties of the GDE, e.g. regarding effective conductivity of the silver phase
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and permeability of the pore space, which are important for the overall efficiency of the electrode
and thus for the chlorine production. However, before doing so, the stochastic microstructure model
considered in the present paper still has to be validated in terms of effective macroscopic properties,
which can be achieved by computing the latter ones by means of numerical simulations. If it is
necessary to have a better fit of constrictivity in order to adequately reproduce effective macroscopic5

properties, we can proceed as in [18], where an additional fine-tuning of model parameters has been
performed in order to simultaneously fit permeability and effective conductivities of two phases
within three-phase microstructures. In this way the present paper can be considered as a first step
towards a model-based investigation of microstructure-property relationships for an optimization
of the microstructure of silver-based GDE.10
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