

Stochastic microstructure modeling of particle-based materials in 3D and 4D

Volker Schmidt Ulm University, Institute of Stochastics

September 2016

Introduction

Impact of the microstructure

• morphology of anodes influences electrochemical performance

Impact of the microstructure

- morphology of anodes influences electrochemical performance
 - capacity and power

Impact of the microstructure

- morphology of anodes influences electrochemical performance
 - capacity and power
 - degradation and aging

Impact of the microstructure

- morphology of anodes influences electrochemical performance
 - capacity and power
 - degradation and aging

Laboratory experiments

Impact of the microstructure

- morphology of anodes influences electrochemical performance
 - capacity and power
 - degradation and aging

Laboratory experiments

• expensive in cost and time

Impact of the microstructure

- morphology of anodes influences electrochemical performance
 - capacity and power
 - degradation and aging

Laboratory experiments

- expensive in cost and time
- information about
 - impact of processing parameters

Impact of the microstructure

- morphology of anodes influences electrochemical performance
 - capacity and power
 - degradation and aging

Laboratory experiments

- expensive in cost and time
- information about
 - impact of processing parameters
 - but not of microstructure

Impact of the microstructure

- morphology of anodes influences electrochemical performance
 - capacity and power
 - degradation and aging

Laboratory experiments

- expensive in cost and time
- information about
 - impact of processing parameters
 - but not of microstructure

Goal

• cost- and time-efficient method to find morphologies with optimized functionality

Impact of the microstructure

- morphology of anodes influences electrochemical performance
 - capacity and power
 - degradation and aging

Laboratory experiments

- expensive in cost and time
- Information about
 - impact of processing parameters
 - but not of microstructure

Goal

• cost- and time-efficient method to find morphologies with optimized functionality

Impact of the microstructure

- morphology of anodes influences electrochemical performance
 - capacity and power
 - degradation and aging

Laboratory experiments

- expensive in cost and time
- information about
 - impact of processing parameters
 - but not of microstructure

Goal

• cost- and time-efficient method to find morphologies with optimized functionality

Approach via stochastic modeling

• fit parametric microstructure model to experimental data

Impact of the microstructure

- morphology of anodes influences electrochemical performance
 - capacity and power
 - degradation and aging

Laboratory experiments

- expensive in cost and time
- information about
 - impact of processing parameters
 - but not of microstructure

Goal

• cost- and time-efficient method to find morphologies with optimized functionality

- fit parametric microstructure model to experimental data
- generate virtual morphologies

Impact of the microstructure

- morphology of anodes influences electrochemical performance
 - capacity and power
 - degradation and aging

Laboratory experiments

- expensive in cost and time
- information about
 - impact of processing parameters
 - but not of microstructure

Goal

• cost- and time-efficient method to find morphologies with optimized functionality

- fit parametric microstructure model to experimental data
- generate virtual morphologies
- virtual materials testing via spatially resolved transport models

Impact of the microstructure

- morphology of anodes influences electrochemical performance
 - capacity and power
 - degradation and aging

Laboratory experiments

- expensive in cost and time
- information about
 - impact of processing parameters
 - but not of microstructure

Goal

• cost- and time-efficient method to find morphologies with optimized functionality

- fit parametric microstructure model to experimental data
- generate virtual morphologies
- virtual materials testing via spatially resolved transport models
- identify preferable morphologies

Spherical harmonics

• represent particles as radius function depending on two angles

$$r(\theta,\phi) = \sum_{l=0}^{\infty} \sum_{m=-l}^{l} c_l^m Y_l^m(\theta,\phi),$$

 $c_l^m o$ spherical harmonic coefficients $Y_l^m o$ spherical harmonic functions

Spherical harmonics

• represent particles as radius function depending on two angles

$$r(\theta,\phi) = \sum_{l=0}^{L} \sum_{m=-l}^{l} c_l^m Y_l^m(\theta,\phi),$$

 $c_l^m o$ spherical harmonic coefficients $Y_l^m o$ spherical harmonic functions

Spherical harmonics

• represent particles as radius function depending on two angles

$$r(\theta,\phi) = \sum_{l=0}^{L} \sum_{m=-l}^{l} c_l^m Y_l^m(\theta,\phi),$$

 $c_l^m \rightarrow$ spherical harmonic coefficients $Y_l^m \rightarrow$ spherical harmonic functions

J. Feinauer, A. Spettl, I. Manke, S. Strege, A. Kwade, A. Pott and V. Schmidt, Structural characterization of particle systems using spherical harmonics. Materials Characterization 106 (2015), 123-133.

Spherical harmonics

• represent particles as radius function depending on two angles

$$r(\theta,\phi) = \sum_{l=0}^{L} \sum_{m=-l}^{l} c_l^m Y_l^m(\theta,\phi),$$

 $c_l^m o$ spherical harmonic coefficients $Y_l^m o$ spherical harmonic functions

• fit multivariate normal distribution to coefficients c_l^m

Spherical harmonics

• represent particles as radius function depending on two angles

$$r(\theta,\phi) = \sum_{l=0}^{L} \sum_{m=-l}^{l} c_l^m Y_l^m(\theta,\phi),$$

 $c_l^m o$ spherical harmonic coefficients $Y_l^m o$ spherical harmonic functions

- fit multivariate normal distribution to coefficients c_l^m
- sample from this distribution

J. Feinauer, A. Spettl, I. Manke, S. Strege, A. Kwade, A. Pott and V. Schmidt, Structural characterization of particle systems using spherical harmonics. Materials Characterization 106 (2015), 123-133.

4/29

Modeling idea

Modeling idea

- decompose ROI in convex polytopes
 - \rightarrow Laguerre tessellation
 - resembles sizes and shapes of particles

Modeling idea

- decompose ROI in convex polytopes
 - \rightarrow Laguerre tessellation
 - resembles sizes and shapes of particles
- indicate which particles will be connected → connectivity graph

Modeling idea

- decompose ROI in convex polytopes
 - \rightarrow Laguerre tessellation
 - resembles sizes and shapes of particles
- indicate which particles will be connected → connectivity graph
- place particles in polytopes
 → random spherical harmonics

Modeling idea

- decompose ROI in convex polytopes
 - \rightarrow Laguerre tessellation
 - resembles sizes and shapes of particles
- indicate which particles will be connected → connectivity graph
- place particles in polytopes
 → random spherical harmonics
- delete tessellation and graph

Modeling idea

- decompose ROI in convex polytopes
 - \rightarrow Laguerre tessellation
 - resembles sizes and shapes of particles
- indicate which particles will be connected → connectivity graph
- place particles in polytopes
 → random spherical harmonics
- delete tessellation and graph

Validation

Validation

• spherical contact distance distribution

Validation

- spherical contact distance distribution
- geodesic tortuosity

Validation

- spherical contact distance distribution
- geodesic tortuosity

...

Electrochemical validation	

Electrochemical validation

• use original and simulated data as input for spatially resolved transport models

ITWM, BEST - Battery and Electrochemistry Simulation Tool itwm.fraunhofer.de/BEST
Electrochemical validation

 use original and simulated data as input for spatially resolved transport models

S. Hein, J. Feinauer, D. Westhoff, I. Manke, V. Schmidt and A. Latz, Stochastic microstructure modelling and electrochemical simulation of lithium-ion cell anodes in 3D. Journal of Power Sources (submitted).

0.460

0.455

 $\begin{array}{c} \Lambda & 0.450\\ 0.445 & 0.440\\ 0.440 \end{array}$

0.435

Electrochemical validation

real

- use original and simulated data as input for spatially resolved transport models
 - electrolyte concentration

S. Hein, J. Feinauer, D. Westhoff, I. Manke, V. Schmidt and A. Latz, Stochastic microstructure modelling and electrochemical simulation of lithium-ior cell anodes in 3D. Journal of Power Sources (submitted).

Electrochemical validation

- use original and simulated data as input for spatially resolved transport models
 - electrolyte concentration
 - current density

S. Hein, J. Feinauer, D. Westhoff, I. Manke, V. Schmidt and A. Latz, Stochastic microstructure modelling and electrochemical simulation of lithium-ion cell anodes in 3D. Journal of Power Sources (submitted).

Electrochemical validation

- use original and simulated data as input for spatially resolved transport models
 - electrolyte concentration
 - current density
 - overpotential

S. Hein, J. Feinauer, D. Westhoff, I. Manke, V. Schmidt and A. Latz, Stochastic microstructure modelling and electrochemical simulation of lithium-ion cell anodes in 3D. Journal of Power Sources (submitted).

Electrochemical validation

- use original and simulated data as input for spatially resolved transport models
 - electrolyte concentration
 - current density
 - overpotential

S. Hein, J. Feinauer, D. Westhoff, I. Manke, V. Schmidt and A. Latz, Stochastic microstructure modelling and electrochemical simulation of lithium-ion cell anodes in 3D. Journal of Power Sources (submitted).

Main structural differences

Main structural differences

• much lower volume fraction of solid phase

Energy cell anode

Power cell anode

Main structural differences

- much lower volume fraction of solid phase
- anisotropic morphology

Energy cell anode

Power cell anode

Extracted connectivity graph

Main structural differences

- much lower volume fraction of solid phase
- anisotropic morphology
- more irregularly shaped particles

Energy cell anode

Power cell anode

Extracted connectivity graph

Match lower volume fraction

Match lower volume fraction

 direct use of energy cell model impossible → decreased volume fraction would lead to atypcial particle shapes

Match lower volume fraction

- direct use of energy cell model impossible → decreased volume fraction would lead to atypcial particle shapes
- solution: allow empty polytopes

Match lower volume fraction

- direct use of energy cell model impossible → decreased volume fraction would lead to atypcial particle shapes
- solution: allow empty polytopes

Include anisotropy effects

Match lower volume fraction

- direct use of energy cell model impossible → decreased volume fraction would lead to atypcial particle shapes
- solution: allow empty polytopes

Include anisotropy effects

solid phase is compressed vertically

Match lower volume fraction

- direct use of energy cell model impossible → decreased volume fraction would lead to atypcial particle shapes
- solution: allow empty polytopes

Include anisotropy effects

- solid phase is compressed vertically
- solution: anisotropic connectivity graph

Match lower volume fraction

- direct use of energy cell model impossible → decreased volume fraction would lead to atypcial particle shapes
- solution: allow empty polytopes

Include anisotropy effects

- solid phase is compressed vertically
- solution: anisotropic connectivity graph

Match lower volume fraction

- direct use of energy cell model impossible → decreased volume fraction would lead to atypcial particle shapes
- solution: allow empty polytopes

Include anisotropy effects

- solid phase is compressed vertically
- solution: anisotropic connectivity graph

Handle more irregular particle shapes solution: more flexible boundary conditions in combination with smaller L

D. Westhoff, J. Feinauer, K. Kuchler, T. Mitsch, I. Manke and V. Schmidt, Parametric stochastic 3D model for the microstructure of anodes in lithium-ion power cells. Computational Materials Science (under revision)

9/29

experimental data

simulated data

Validation

Validation

- volume fraction
- specific surface area

Validation

- volume fraction
- specific surface area
- geodesic tortuosity

1.4

11

1.2 1.3 tortuosity

1.0

Validation

- volume fraction
- specific surface area
- geodesic tortuosity
- cell potential

Create virtual structures

• higher volume fraction of solid phase

- higher volume fraction of solid phase
- more pronounced anisotropy effects

- higher volume fraction of solid phase
- more pronounced anisotropy effects
- no anisotropy effects

- higher volume fraction of solid phase
- more pronounced anisotropy effects
- no anisotropy effects
- structural gradient

- higher volume fraction of solid phase
- more pronounced anisotropy effects
- no anisotropy effects
- structural gradient

Stochastic modeling of agglomerates

Aim

- realistic model for the random 3D structure of agglomerates
- use model to analyze breakage behavior

Requirements

- spherical primary particles without overlap
- bonds: primary particles are connected by solid bridges
- parameters of the model should be linked to the experiment
 - porosity of agglomerates
 - radii of primary particles
 - volume of binder material

Stochastic modeling of the 3D microstructure

- I random agglomerate shape
- initial structure of overlapping primary particles
- Occupies a constraint of primary particles
- bond network

A. Spettl, M. Dosta, S. Antonyuk, S. Heinrich and V. Schmidt, Statistical investigation of agglomerate breakage based on combined stochastic microstructure modeling and DEM simulations. Advanced Powder Technology 26 (2015), 1021–1030.

Stochastic modeling of the 3D microstructure

In a random agglomerate shape

- ▶ realization D of \mathbb{D}
- example: $\mathbb{D} = B_3(o, R_D)$ for a random radius R_D
- Initial structure of overlapping primary particles
- O collective rearrangement of primary particles
- bond network

- I random agglomerate shape
- initial structure of overlapping primary particles

O collective rearrangement of primary particles

I random agglomerate shape

Initial structure of overlapping primary particles

- ▶ radii r_i : realizations of R_i , i = 1, 2, ..., with R_i independent and F_{R_p} -distributed
- packing density η : realization of \mathbb{H}
- number of particles $n \in \mathbb{N}$: $\sum_{i=1}^{n} \frac{4}{3} \pi r_i^3 \approx \eta \nu_3(D)$

O collective rearrangement of primary particles

I random agglomerate shape

Initial structure of overlapping primary particles

- ▶ radii r_i : realizations of R_i , i = 1, 2, ..., with R_i independent and F_{R_p} -distributed
- packing density η : realization of \mathbb{H}
- number of particles $n \in \mathbb{N}$: $\sum_{i=1}^{n} \frac{4}{3} \pi r_i^3 \approx \eta \nu_3(D)$
- centers s_i : realizations of S_i , i = 1, ..., n, with S_i independent and U(D)-distributed
- collective rearrangement of primary particles

- I random agglomerate shape
- Initial structure of overlapping primary particles
- Scollective rearrangement of primary particles

- I random agglomerate shape
- Initial structure of overlapping primary particles
- O collective rearrangement of primary particles
 - deterministic procedure: application of the force-biased algorithm
- bond network

- I random agglomerate shape
- Initial structure of overlapping primary particles
- Scollective rearrangement of primary particles
 - deterministic procedure: application of the force-biased algorithm
- bond network

- I random agglomerate shape
- Initial structure of overlapping primary particles
- S collective rearrangement of primary particles
- bond network

- I random agglomerate shape
- initial structure of overlapping primary particles
- S collective rearrangement of primary particles
- bond network
 - bond radii r_{i,j}: realizations of K_{i,j} · min{r_i, r_j} for i, j = 1,..., n, with K_{i,j} independent and F_{K_b}-distributed

- I random agglomerate shape
- Initial structure of overlapping primary particles
- Output to the second second
- bond network
 - bond radii r_{i,j}: realizations of K_{i,j} · min{r_i, r_j} for i, j = 1,..., n, with K_{i,j} independent and F_{K_b}-distributed
 - existence of bonds:
 - (relative) total bond volume b: realization of B
 - particle distance threshold ℓ : approximate targeted total bond volume
 - minimum spanning tree to ensure connectivity

- I random agglomerate shape
- initial structure of overlapping primary particles
- Occupies the second second
- bond network

3D microstructure model: real maltodextrin agglomerates

Conclusion

model is suitable to describe real agglomerate structures

A. Spettl, S. Bachstein, M. Dosta, M. Goslinska, S. Heinrich and V. Schmidt, Bonded-particle extraction and stochastic modeling of internal agglomerate structures. Advanced Powder Technology 27 (2016), 1761–1774.

Numerical investigation of breakage behavior

Virtual experiment

- static loading: compression between two metal plates
- output:
 - time-resolved microstructure up to agglomerate breakage
 - force-displacement curve
- simulation method:

discrete element method (DEM) with bonded-particle model (BPM)

Numerical investigation of breakage behavior

Virtual experiment

- static loading: compression between two metal plates
- output:
 - time-resolved microstructure up to agglomerate breakage
 - force-displacement curve
- simulation method:

discrete element method (DEM) with bonded-particle model (BPM)

Aim: breakage probability and fragment sizes for a given stress energy

Aim: breakage probability and fragment sizes for a given stress energy

Random vector model

Example: agglomerate radius as independent variable

- breakage energies: (X_r, X_w)
- fragment sizes: (\tilde{X}_r, X_m)

Conditional distributions

For a fixed radius r and stress energy w

- breakage probability: $p_{\text{break}}(w) = \mathbb{P}(X_w \le w \mid X_r = r)$
- fragment size distribution: $F_{\text{fragm}}(m) = \mathbb{P}(X_m \le m \mid \tilde{X}_r = r)$

Model choice and fitting

Data: e.g. simulation results of 1000 agglomerates yield:

- breakage energies: $(x_r^{(i)}, x_w^{(i)})$, $i = 1, \dots, 1000$
- fragment sizes: $(x_r^{(i)}, x_m^{(i,j)})$, i = 1, ..., 1000, j = 1, ..., n(i)
- \Rightarrow interpretation as samples of random vectors (X_r, X_w) and (\tilde{X}_r, X_m) , use copula-based distributions

Grain coarsening in polycrystalline materials

Real data

Time-resolved 3D data of Al–Cu sample during heat treatment: Ostwald ripening at ultra-high volume fraction of the coarsening phase

initial time

+400 minutes

 $+800 \ minutes$

 $+1200 \ minutes$

Grain coarsening in polycrystalline materials

Real data

Time-resolved 3D data of Al–Cu sample during heat treatment: Ostwald ripening at ultra-high volume fraction of the coarsening phase

initial time

 $+400 \ minutes$

 $+1200 \ minutes$

Properties in the steady state of the sample

Let R_t denote the typical (volume-equivalent) grain radius at time $t \ge 0$ and $\bar{R}_t = \mathbb{E}R_t$. For t > 0 it holds:

• power-law growth: $\bar{R}_t^3 - \bar{R}_0^3 = kt$ with k > 0

• self-similarity:
$$R_t/\bar{R}_t \stackrel{\mathrm{D}}{=} R_0/\bar{R}_0$$

- Image marked point process
- I "hard cores" for marked points
- Laguerre tessellation
- Iinking time t to model parameters

A. Spettl, R. Wimmer, T. Werz, M. Heinze, S. Odenbach, C. E. Krill III and V. Schmidt, Stochastic 3D modeling of Ostwald reprine at ultra-high volume fractions of the coarsening phase. *Modelling and Simulation in Materials Science and Engineering* 23 (2015), 065001.

Marked point process

- ▶ homogeneous Poisson point process {S_i}_{i∈ℕ} with intensity λ
- I "hard cores" for marked points
- Laguerre tessellation
- Iinking time t to model parameters

Marked point process

- ▶ homogeneous Poisson point process $\{S_i\}_{i \in \mathbb{N}}$ with intensity λ
- independent marks $\{R_i\}_{i\in\mathbb{N}}$, $R_i \sim \mathcal{N}_+(\mu, \sigma^2)$
- λ is fixed by (scale independent) parameter $\eta = \lambda \frac{4}{3} \pi \mathbb{E}(R_1^3)$
- I "hard cores" for marked points
- Laguerre tessellation
- Iinking time t to model parameters

Image: marked point process

- I "hard cores" for marked points
 - ▶ for $\tau \in (0, 1]$, define a hard core $(S_i, \tau R_i)$ for every marked point
- Laguerre tessellation
- Iinking time t to model parameters

Image: marked point process

I "hard cores" for marked points

- ▶ for $\tau \in (0, 1]$, define a hard core $(S_i, \tau R_i)$ for every marked point
- collective rearrangement to avoid overlapping
- Laguerre tessellation
- Iinking time t to model parameters

Image: marked point process

I "hard cores" for marked points

- ▶ for $\tau \in (0, 1]$, define a hard core $(S_i, \tau R_i)$ for every marked point
- collective rearrangement to avoid overlapping
- Laguerre tessellation
- Iinking time t to model parameters

- Image: marked point process
- I "hard cores" for marked points
- Laguerre tessellation

20/29

- Imarked point process
- I "hard cores" for marked points
- Laguerre tessellation
 - Laguerre cell C_i for each marked point (S_i, R_i)

$$C_i = \{x \in \mathbb{R}^3 : \|x - S_i\|^2 - R_i^2 \le \|x - S_j\|^2 - R_j^2 \text{ for all } j \in \mathbb{N}\}$$

- non-empty Laguerre cells form the Laguerre tessellation
- Iinking time t to model parameters

20/29

- Image: marked point process
- I "hard cores" for marked points
- Laguerre tessellation
 - Laguerre cell C_i for each marked point (S_i, R_i)

$$C_i = \{x \in \mathbb{R}^3 : \|x - S_i\|^2 - R_i^2 \le \|x - S_j\|^2 - R_j^2 \text{ for all } j \in \mathbb{N}\}$$

- non-empty Laguerre cells form the Laguerre tessellation
- Iinking time t to model parameters

$$\begin{pmatrix} \mu \\ \sigma^{2} \\ \tau \\ \eta \end{pmatrix} = p(t) = \begin{pmatrix} c_{\mu} \bar{R}_{t} \\ (c_{\sigma} \bar{R}_{t})^{2} \\ \tau \\ \eta \end{pmatrix} \quad \text{with} \quad \bar{R}_{t} = \sqrt[3]{\bar{R}_{0}^{3} + kt}$$

- Image: marked point process
- I "hard cores" for marked points
- Laguerre tessellation
- Iinking time t to model parameters
 - express parameters μ , σ , τ , η as a function of t
 - by construction: power-law growth and self-similarity

Parameter estimation

• power-law growth: least-squares fit to determine k and \overline{R}_0

$$\begin{pmatrix} \widehat{k} \\ \widehat{\bar{R}}_0 \end{pmatrix} = \operatorname*{arg\,min}_{(k,\bar{R}_0)\in\mathbb{R}_+\times\mathbb{R}_+} \sum_{t\in\mathcal{T}_{\mathsf{exp}}} \left(\widehat{\bar{R}}_t - \sqrt[3]{\bar{R}_0^3 + kt}\right)^2$$

• remaining parameters: minimum-contrast estimation

$$\begin{pmatrix} \widehat{c_{\mu}} \\ \widehat{c_{\sigma}} \\ \widehat{\tau} \\ \widehat{\eta} \end{pmatrix} = \underset{(c_{\mu}, c_{\sigma}, \tau, \eta) \in \Psi}{\arg\min} \sum_{t \in T_{exp}} \int_{0}^{\infty} \left(\widehat{F}_{R}^{(t)}(r) - F_{R}^{(t)}(r) \right)^{2} \mathrm{d}r$$

Markov chain for the evolution of grain radii

Aim and approach

- stochastic process $\{\mathring{R}_t\}_{t\in\mathcal{T}}$ that describes the radius evolution of the typical grain
- choose $\mathring{R}_0 = R_0$ and T discrete with $T = \{0, t_{step}, 2t_{step}, \ldots\}$
- Markov assumption \Rightarrow (time-dependent) transition kernel needed:

$$P_t(r,A) = \mathbb{P}(\mathring{R}_{t+t_{ ext{step}}} \in A \mid \mathring{R}_t = r), \quad t \in T$$

Markov chain for the evolution of grain radii

Aim and approach

- stochastic process $\{\mathring{R}_t\}_{t\in\mathcal{T}}$ that describes the radius evolution of the typical grain
- choose $\mathring{R}_0 = R_0$ and T discrete with $T = \{0, t_{step}, 2t_{step}, \ldots\}$
- Markov assumption \Rightarrow (time-dependent) transition kernel needed:

$$P_t(r,A) = \mathbb{P}(\mathring{R}_{t+t_{ ext{step}}} \in A \mid \mathring{R}_t = r), \quad t \in T$$

Known information

- distribution function F_{R_t} of R_t (power-law growth and self-similarity)
- $F_{\hat{R}_t}(x) = (1 q_t)F_{R_t}(x) + q_t \mathbb{1}_{[0,\infty)}(x)$ with $q_t = 1 \bar{R}_0^3/\bar{R}_t^3$

Markov chain for the evolution of grain radii

Aim and approach

- stochastic process $\{\mathring{R}_t\}_{t\in\mathcal{T}}$ that describes the radius evolution of the typical grain
- choose $\mathring{R}_0 = R_0$ and T discrete with $T = \{0, t_{step}, 2t_{step}, \ldots\}$
- Markov assumption \Rightarrow (time-dependent) transition kernel needed:

$$P_t(r,A) = \mathbb{P}(\mathring{R}_{t+t_{ ext{step}}} \in A \mid \mathring{R}_t = r), \quad t \in T$$

Known information

- distribution function F_{R_t} of R_t (power-law growth and self-similarity)
- $F_{\hat{R}_t}(x) = (1 q_t)F_{R_t}(x) + q_t \mathbb{1}_{[0,\infty)}(x)$ with $q_t = 1 \bar{R}_0^3/\bar{R}_t^3$

Missing information

• joint distribution of $(\mathring{R}_t, \mathring{R}_{t+t_{ ext{step}}})$ for $t \in T$

Choice of copula

Requirement: absorbing state

•
$$\mathbb{P}(\mathring{R}_{t+t_{\text{step}}}=0\mid \mathring{R}_t=0)=1$$

Choice of copula

Requirement: absorbing state

•
$$\mathbb{P}(\mathring{R}_{t+t_{\text{step}}}=0\mid \mathring{R}_t=0)=1$$

co-monotonicity copula	Gauß copula	vine copula
	ordinal sum construction	extension of state space
deterministic	with 2 components	integration of local cha-
global growth behavior	random walk (with global growth be-	racteristics (e.g. mean
	havior)	hood)
Experimental and simulated trajectories

Simulation of Ostwald ripening in 3D

Visualization

• combination of stochastic 3D model and Markov chain model

Simulation of Ostwald ripening in 3D

Visualization

• combination of stochastic 3D model and Markov chain model

Further results

Problem

- parametric description of cells for unknown Laguerre generator points
- Laguerre inversion for perfect data
- Laguerre approximation for discrete and/or noisy data

A. Spettl, T. Werz, C. E. Krill III and V. Schmidt, Parametric representation of 3D grain ensembles in polycrystalline microstructures. Journal of Statistical Physics 154 (2014), 913–928.
A. Spettl, T. Brereton, Q. Duan, T. Werz, C. E. Krill III, D. P. Kroses and V. Schmidt, Fitting Laguerre tessellation

A. Spettl, T. Brereton, Q. Duan, T. Werz, C. E. Krill III, D. P. Kroese and V. Schmidt, Fitting Laguerre tessellation approximations to tomographic image data. *Philosophical Magazine* 96 (2016), 166–189.

- J. Feinauer, A. Spettl, I. Manke, S. Strege, A. Kwade, A. Pott and V. Schmidt, Structural characterization of particle systems using spherical harmonics. *Materials Characterization* 106 (2015), 123-133.
- J. Feinauer, T. Brereton, A. Spettl, M. Weber, I. Manke and V. Schmidt, Stochastic 3D modeling of the microstructure of lithium-ion battery anodes via Gaussian random fields on the sphere. *Computational Materials Science* 109 (2015), 137-146.

S. Hein, J. Feinauer, D. Westhoff, I. Manke, V. Schmidt and A. Latz, Stochastic microstructure modelling and electrochemical simulation of lithium-ion cell anodes in 3D. *Journal of Power Souces* (submitted).

- D. Westhoff, J. Feinauer, K. Kuchler, T. Mitsch, I. Manke, S. Hein, A. Latz and V. Schmidt, Parametric stochastic 3D model for the microstructure of anodes in lithium-ion power cells. *Computational Materials Science* (under revision).
- A. Spettl, M. Dosta, S. Antonyuk, S. Heinrich and V. Schmidt, Statistical investigation of agglomerate breakage based on combined stochastic microstructure modeling and DEM simulations. *Advanced Powder Technology* 26 (2015), 1021–1030.

A. Spettl, S. Bachstein, M. Dosta, M. Goslinska, S. Heinrich and V. Schmidt, Bonded-particle extraction and stochastic modeling of internal agglomerate structures. *Advanced Powder Technology* 27 (2016), 1761-1774.

- A. Spettl, R. Wimmer, T. Werz, M. Heinze, S. Odenbach, C. E. Krill III and V. Schmidt, Stochastic 3D modeling of Ostwald ripening at ultra-high volume fractions of the coarsening phase. *Modelling and Simulation in Materials Science and Engineering* 23 (2015), 065001.
- A. Spettl, T. Werz, C. E. Krill III and V. Schmidt, Stochastic modeling of individual grain behavior during Ostwald ripening at ultra-high volume fractions of the coarsening phase. *Computational Materials Science* 124 (2016), 290-303.
- A. Spettl, T. Werz, C. E. Krill III and V. Schmidt, Parametric representation of 3D grain ensembles in polycrystalline microstructures. *Journal of Statistical Physics* 154 (2014), 913–928.
 - A. Spettl, T. Brereton, Q. Duan, T. Werz, C. E. Krill III, D. P. Kroese and V. Schmidt, Fitting Laguerre tessellation approximations to tomographic image data. *Philosophical Magazine* 96 (2016), 166–189.