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Stochastic microstructure modeling

Impact of the microstructure

morphology of anodes influences
electrochemical performance

I capacity and power
I degradation and aging

Laboratory experiments

expensive in cost and time
information about

I impact of processing
parameters

I but not of microstructure

Goal

cost- and time-efficient method
to find morphologies with
optimized functionality

Approach via stochastic modeling

fit parametric microstructure model
to experimental data
generate virtual morphologies
virtual materials testing via spatially
resolved transport models
identify preferable morphologies
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Parametric representation of particles

Spherical harmonics

represent particles as radius function
depending on two angles

r(θ, φ) =
∑
l=0

l∑
m=−l

cm
l Y m

l (θ, φ),

cm
l → spherical harmonic coefficients

Y m
l → spherical harmonic functions

fit multivariate normal distribution to
coefficients cm

l

sample from this distribution

J. Feinauer, A. Spettl, I. Manke, S. Strege, A. Kwade, A. Pott and V. Schmidt, Structural characterization of particle systems using spherical harmonics.
Materials Characterization 106 (2015), 123-133.
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Anodes of energy cells

Modeling idea

decompose ROI in convex polytopes
→ Laguerre tessellation

I resembles sizes and shapes of
particles

indicate which particles will be
connected → connectivity graph
place particles in polytopes
→ random spherical harmonics
delete tessellation and graph
mimic effect of binder
→ morphological smoothing
(closing)

J. Feinauer, T. Brereton, A. Spettl, M. Weber, I. Manke and V. Schmidt, Stochastic 3D modeling of the microstructure of lithium-ion battery anodes via
Gaussian random fields on the sphere. Computational Materials Science 109 (2015), 137-146.
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Anodes of energy cells

Validation

spherical contact distance distribution
geodesic tortuosity
...
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Anodes of energy cells

Electrochemical validation

use original and simulated data
as input for spatially resolved
transport models

I electrolyte concentration
I current density
I overpotential
I ...

ITWM, BEST - Battery and Electrochemistry Simulation Tool itwm.fraunhofer.de/BEST

S. Hein, J. Feinauer, D. Westhoff, I. Manke, V. Schmidt and A. Latz, Stochastic microstructure modelling and electrochemical simulation of lithium-ion
cell anodes in 3D. Journal of Power Sources (submitted).
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Anodes of power cells

Main structural differences

much lower volume fraction of solid phase
anisotropic morphology
more irregularly shaped particles

Increased variances of normally distributed coefficiencts cm
l

Energy cell anode

Power cell anode

Extracted connectivity graph
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Anodes of power cells

Match lower volume fraction

direct use of energy cell model
impossible → decreased volume fraction
would lead to atypcial particle shapes
solution: allow empty polytopes

Include anisotropy effects

solid phase is compressed vertically
solution: anisotropic connectivity graph

Handle more irregular particle shapes

solution: more flexible boundary
conditions in combination with smaller L

D. Westhoff, J. Feinauer, K. Kuchler, T. Mitsch, I. Manke and V. Schmidt, Parametric stochastic 3D model for the microstructure of anodes in lithium-ion
power cells. Computational Materials Science (under revision)
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Anodes of power cells

experimental data simulated data


Experimental.mpg
Media File (video/mpeg)


Simulation.mpg
Media File (video/mpeg)
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Anodes of power cells

Validation

volume fraction
specific surface area
geodesic tortuosity
cell potential
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Application of the model

Create virtual structures

higher volume fraction of solid phase
more pronounced anisotropy effects
no anisotropy effects
structural gradient
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Stochastic modeling of agglomerates

Aim
realistic model for the random 3D structure of agglomerates
use model to analyze breakage behavior

Requirements
spherical primary particles without
overlap
bonds: primary particles are
connected by solid bridges
parameters of the model should be
linked to the experiment

I porosity of agglomerates
I radii of primary particles
I volume of binder material
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Stochastic modeling of the 3D microstructure

1 random agglomerate shape
2 initial structure of overlapping primary particles
3 collective rearrangement of primary particles
4 bond network

A. Spettl, M. Dosta, S. Antonyuk, S. Heinrich and V. Schmidt, Statistical investigation of agglomerate breakage based on
combined stochastic microstructure modeling and DEM simulations. Advanced Powder Technology 26 (2015), 1021–1030.
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Stochastic modeling of the 3D microstructure

1 random agglomerate shape
I realization D of D
I example: D = B3(o,RD) for a random radius RD

2 initial structure of overlapping primary particles
3 collective rearrangement of primary particles
4 bond network
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Stochastic modeling of the 3D microstructure

1 random agglomerate shape
2 initial structure of overlapping primary particles

I radii ri : realizations of Ri , i = 1, 2, . . ., with Ri independent and FRp -distributed
I packing density η: realization of H
I number of particles n ∈ N:

∑n
i=1

4
3πr 3i ≈ η ν3(D)

I centers si : realizations of Si , i = 1, . . . , n, with Si independent and
U(D)-distributed

3 collective rearrangement of primary particles
4 bond network
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Stochastic modeling of the 3D microstructure

1 random agglomerate shape
2 initial structure of overlapping primary particles
3 collective rearrangement of primary particles

I deterministic procedure: application of the force-biased algorithm

4 bond network
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Stochastic modeling of the 3D microstructure

1 random agglomerate shape
2 initial structure of overlapping primary particles
3 collective rearrangement of primary particles
4 bond network

I bond radii ri,j : realizations of Ki,j ·min{ri , rj} for i , j = 1, . . . , n, with Ki,j
independent and FKb -distributed

I existence of bonds:
• (relative) total bond volume b: realization of B
• particle distance threshold `: approximate targeted total bond volume
• minimum spanning tree to ensure connectivity
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Stochastic modeling of the 3D microstructure
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3D microstructure model: real maltodextrin agglomerates

µCT data parametric
representation

fitted model

optimization
problem

(CE method)

maximum 
likelihood 
estimation

validation

Conclusion
model is suitable to describe real agglomerate structures

A. Spettl, S. Bachstein, M. Dosta, M. Goslinska, S. Heinrich and V. Schmidt, Bonded-particle extraction and stochastic
modeling of internal agglomerate structures. Advanced Powder Technology 27 (2016), 1761–1774.



16/29 Stochastic microstructure models | September 2016 | Volker Schmidt

Numerical investigation of breakage behavior

Virtual experiment
static loading: compression between two
metal plates
output:

I time-resolved microstructure up to
agglomerate breakage

I force-displacement curve
simulation method:
discrete element method (DEM) with
bonded-particle model (BPM)



16/29 Stochastic microstructure models | September 2016 | Volker Schmidt

Numerical investigation of breakage behavior

Virtual experiment
static loading: compression between two
metal plates
output:

I time-resolved microstructure up to
agglomerate breakage

I force-displacement curve
simulation method:
discrete element method (DEM) with
bonded-particle model (BPM)



17/29 Stochastic microstructure models | September 2016 | Volker Schmidt

Prediction model for breakage behavior properties
tailored

microstructures
DEM simulation of

compression

input:
structural
properties

output:
- breakage energy
- fragment sizes
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Prediction model for breakage behavior properties
tailored

microstructures
DEM simulation of

compression

input:
structural
properties

output:
- breakage energy
- fragment sizes

direct modeling

Aim: breakage probability and fragment sizes for a given stress energy

Random vector model
Example: agglomerate radius as
independent variable

breakage energies: (Xr ,Xw )
fragment sizes: (X̃r ,Xm)

Conditional distributions
For a fixed radius r and stress energy w

breakage probability:
pbreak(w) = P(Xw ≤ w | Xr = r)
fragment size distribution:
Ffragm(m) = P(Xm ≤ m | X̃r = r)
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Prediction model for breakage behavior properties

Model choice and fitting
Data: e.g. simulation results of 1000 agglomerates yield:

breakage energies: (x (i)
r , x (i)

w ), i = 1, . . . , 1000
fragment sizes: (x (i)

r , x (i,j)
m ), i = 1, . . . , 1000, j = 1, . . . , n(i)

⇒ interpretation as samples of random vectors (Xr ,Xw ) and (X̃r ,Xm), use
copula-based distributions
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Grain coarsening in polycrystalline materials

Real data
Time-resolved 3D data of Al–Cu sample during heat treatment:
Ostwald ripening at ultra-high volume fraction of the coarsening phase

initial time +400 minutes +800 minutes +1200 minutes

Properties in the steady state of the sample
Let Rt denote the typical (volume-equivalent) grain radius at time t ≥ 0 and
R̄t = ERt . For t > 0 it holds:

power-law growth: R̄3
t − R̄3

0 = kt with k > 0

self-similarity: Rt/R̄t
D= R0/R̄0



19/29 Stochastic microstructure models | September 2016 | Volker Schmidt

Grain coarsening in polycrystalline materials

Real data
Time-resolved 3D data of Al–Cu sample during heat treatment:
Ostwald ripening at ultra-high volume fraction of the coarsening phase

initial time +400 minutes +800 minutes +1200 minutes

Properties in the steady state of the sample
Let Rt denote the typical (volume-equivalent) grain radius at time t ≥ 0 and
R̄t = ERt . For t > 0 it holds:

power-law growth: R̄3
t − R̄3

0 = kt with k > 0

self-similarity: Rt/R̄t
D= R0/R̄0



20/29 Stochastic microstructure models | September 2016 | Volker Schmidt

Stochastic modeling of the 3D microstructure

1 marked point process
2 “hard cores” for marked points
3 Laguerre tessellation
4 linking time t to model parameters

A. Spettl, R. Wimmer, T. Werz, M. Heinze, S. Odenbach, C. E. Krill III and V. Schmidt, Stochastic 3D modeling of Ostwald
ripening at ultra-high volume fractions of the coarsening phase. Modelling and Simulation in Materials Science and
Engineering 23 (2015), 065001.
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Stochastic modeling of the 3D microstructure

1 marked point process
I homogeneous Poisson point process {Si}i∈N with intensity λ

I independent marks {Ri}i∈N, Ri ∼ N+(µ, σ2)
I λ is fixed by (scale independent) parameter η = λ 4

3πE(R3
1 )

2 “hard cores” for marked points
3 Laguerre tessellation
4 linking time t to model parameters
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Stochastic modeling of the 3D microstructure

1 marked point process
2 “hard cores” for marked points

I for τ ∈ (0, 1], define a hard core (Si , τRi ) for every marked point

I collective rearrangement to avoid overlapping

3 Laguerre tessellation
4 linking time t to model parameters



20/29 Stochastic microstructure models | September 2016 | Volker Schmidt

Stochastic modeling of the 3D microstructure

1 marked point process
2 “hard cores” for marked points

I for τ ∈ (0, 1], define a hard core (Si , τRi ) for every marked point
I collective rearrangement to avoid overlapping

3 Laguerre tessellation
4 linking time t to model parameters



20/29 Stochastic microstructure models | September 2016 | Volker Schmidt

Stochastic modeling of the 3D microstructure

1 marked point process
2 “hard cores” for marked points

I for τ ∈ (0, 1], define a hard core (Si , τRi ) for every marked point
I collective rearrangement to avoid overlapping

3 Laguerre tessellation
4 linking time t to model parameters



20/29 Stochastic microstructure models | September 2016 | Volker Schmidt

Stochastic modeling of the 3D microstructure

1 marked point process
2 “hard cores” for marked points
3 Laguerre tessellation

I Laguerre cell Ci for each marked point (Si ,Ri )

Ci = {x ∈ R3 : ‖x − Si‖2 − R2
i ≤ ‖x − Sj‖2 − R2

j for all j ∈ N}

I non-empty Laguerre cells form the Laguerre tessellation

4 linking time t to model parameters
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Stochastic modeling of the 3D microstructure

1 marked point process
2 “hard cores” for marked points
3 Laguerre tessellation
4 linking time t to model parameters

I express parameters µ, σ, τ , η as a function of t
I by construction: power-law growth and self-similarity

(
µ
σ2

τ
η

)
= p(t) =

 cµR̄t(
cσR̄t
)2

τ
η

 with R̄t = 3
√

R̄3
0 + kt
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Stochastic modeling of the 3D microstructure

Parameter estimation
power-law growth: least-squares fit to determine k and R̄0(

k̂̂̄R0

)
= argmin

(k,R̄0)∈R+×R+

∑
t∈Texp

(̂̄R t − 3
√

R̄3
0 + kt

)2

remaining parameters: minimum-contrast estimation ĉµ
ĉσ
τ̂
η̂

 = argmin
(cµ,cσ,τ,η)∈Ψ

∑
t∈Texp

∞∫
0

(
F̂ (t)

R (r)− F (t)
R (r)

)2
dr
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Stochastic modeling of the 3D microstructure
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Markov chain for the evolution of grain radii

Aim and approach
stochastic process {R̊t}t∈T that describes the radius evolution of the typical
grain
choose R̊0 = R0 and T discrete with T = {0, tstep, 2tstep, . . .}
Markov assumption ⇒ (time-dependent) transition kernel needed:

Pt(r ,A) = P(R̊t+tstep ∈ A | R̊t = r), t ∈ T

Known information
distribution function FRt of Rt (power-law growth and self-similarity)
FR̊t

(x) = (1− qt)FRt (x) + qt11[0,∞)(x) with qt = 1− R̄3
0/R̄3

t

Missing information
joint distribution of (R̊t , R̊t+tstep) for t ∈ T

A. Spettl, T. Werz, C. E. Krill III and V. Schmidt, Stochastic modeling of individual grain behavior during Ostwald ripening at
ultra-high volume fractions of the coarsening phase. Computational Materials Science 124 (2016), 290–303.
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Choice of copula

Requirement: absorbing state
P(R̊t+tstep = 0 | R̊t = 0) = 1

co-monotonicity copula Gauß copula vine copula

deterministic
global growth behavior

ordinal sum construction
with 2 components
random walk
(with global growth be-
havior)

extension of state space
integration of local cha-
racteristics (e. g. mean
grain radius of neighbor-
hood)
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Experimental and simulated trajectories
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Simulation of Ostwald ripening in 3D

Visualization
combination of stochastic 3D model and Markov chain model
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Further results

Problem
parametric description of cells for unknown Laguerre generator points
Laguerre inversion for perfect data
Laguerre approximation for discrete and/or noisy data

segmentation of real data Laguerre approximation

A. Spettl, T. Werz, C. E. Krill III and V. Schmidt, Parametric representation of 3D grain ensembles in polycrystalline
microstructures. Journal of Statistical Physics 154 (2014), 913–928.
A. Spettl, T. Brereton, Q. Duan, T. Werz, C. E. Krill III, D. P. Kroese and V. Schmidt, Fitting Laguerre tessellation
approximations to tomographic image data. Philosophical Magazine 96 (2016), 166–189.
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J. Feinauer, A. Spettl, I. Manke, S. Strege, A. Kwade, A. Pott and V. Schmidt,
Structural characterization of particle systems using spherical harmonics. Materials
Characterization 106 (2015), 123-133.

J. Feinauer, T. Brereton, A. Spettl, M. Weber, I. Manke and V. Schmidt, Stochastic
3D modeling of the microstructure of lithium-ion battery anodes via Gaussian
random fields on the sphere. Computational Materials Science 109 (2015), 137-146.

S. Hein, J. Feinauer, D. Westhoff, I. Manke, V. Schmidt and A. Latz, Stochastic
microstructure modelling and electrochemical simulation of lithium-ion cell anodes
in 3D. Journal of Power Souces (submitted).

D. Westhoff, J. Feinauer, K. Kuchler, T. Mitsch, I. Manke, S. Hein, A. Latz and V.
Schmidt, Parametric stochastic 3D model for the microstructure of anodes in
lithium-ion power cells. Computational Materials Science (under revision).

A. Spettl, M. Dosta, S. Antonyuk, S. Heinrich and V. Schmidt, Statistical
investigation of agglomerate breakage based on combined stochastic microstructure
modeling and DEM simulations. Advanced Powder Technology 26 (2015),
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