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Abstract

We identi�ed tomographic reconstruction of a scanning electron microscopy tilt series
recording the secondary electron signal as a well-suited method to generate high contrast
3D data of intermediate �lament (IF) networks in pancreatic cancer cells. Although the
tilt series does not strictly conform to the projection requirement of tomographic recon-
struction, this approach is possible due to speci�c properties of the detergent-extracted
samples. We introduce an algorithm to extract the graph structure of the IF networks
from the tomograms based on image analysis tools. This allows a high-resolution analysis
of network morphology, which is known to control the mechanical response of the cells
to large-scale deformations. Statistical analysis of the extracted network graphs is used
to investigate principles of structural network organisation which can be linked to the
regulation of cell elasticity.
Keywords : cytoskeleton, intermediate filaments, SEM-tomography, net-
work morphology

1 Introduction

The cytoskeleton of eucaryotic cells is composed of three biopolymer systems: the network
of actin �laments, the system of microtubuli and the network of intermediate �laments
(IF). This study focusses on the network of IFs, which have a diameter of between 10 and
12 nanometres(nm) (Coulombe & Omary, 2002) and are formed by a heterogenous group of
proteins with a tissue speci�c expression. In epithelial cells and their tumors like the human
pancreatic cancer cells considered in this study, IFs mainly consist of keratins K8 and K18
(Fuchs, 1994).
IFs possess a particularly high extensibility and resistance to breakage (Herrmann et al., 2007
and references therein). Therefore, they govern the elastic properties of a cell when it is ex-
posed to deformations of large scale and override the impact of the actin network (Beil et al.,
2003; Suresh et al., 2005). IF as well as actin networks are formed of semi�exible polymers.
It is known from numerical simulations and experimental studies that networks composed
of semi�exible polymers exhibit a much stronger interplay between network morphology and
elasticity than observed in �exible polymer networks (Heussinger & Frey, 2006 and 2007;
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Gardel et al., 2004). It is therefore of interest to develop methods for the visualization and
image analysis of IF networks, which allow for detailed assessment of morphological network
characteristics. In previous studies this was done based on 2D scanning electron microscopy
(SEM) (Beil et al., 2005 and 2006). This is an appropriate technique for networks observed
in the cell periphery, which exhibit an almost planar structure. Nevertheless, in other cellular
compartments IF networks can possess a genuinely 3D architecture. Numerical simulations
revealed that the mechanical behavior of 3D biophysical networks can be intrinsically tied
to morphological characteristics of 3D nature (Huisman et al., 2007). These characteristics
comprise connectivity and segment length, which for non-planar networks can only be ad-
equately assessed from 3D image data. In this study we introduce a method that allows
to monitor the 3D structure of IF networks and we statistically investigate the interplay of
certain mechanically relevant network characteristics in pancreatic cancer cells.
Since the diameter of IFs and inter�lament distances are smaller than the di�raction limit of
light microscopy, an analysis of network morphology at the level of single �laments and their
cross-links cannot be achieved by �uorescence imaging of living cells (Windo�er et al., 2004;
Wöll et al., 2007). A widely applied electron microscopical method to visualize cytoskeletal
�lament networks such as IFs, is detergent extraction of the cells, followed by chemical �xa-
tion and critical point drying. The samples are then coated with a thin layer of heavy metal
or carbon and can be visualized either in the SEM or, after replication, in the transmission
electron microscope (TEM; e.g. Svitkina & Borisy, 1999).
The natural approach to obtain 3D image data of IF networks would be tomographic re-
construction of a TEM or scanning TEM (STEM) tilt series. Transmission images are
appropriate for tomography since they are projections of the specimen as required by all
tomographic reconstruction algorithms. However, the volume-dependent transmission elec-
tron signal yields rather low contrast of the thin �laments in comparison to the strong signal
of non-IF cytoplasmic components that are not completely removed during extraction. We
therefore suggest an approach using the surface-dependent secondary electron signal, which
is relatively strong from the �laments. Due to the extraction protocol single �laments are
visible on secondary electron images under most tilt angles. Thus, these tilt images can be
viewed as a good approximations for projections of a modi�ed density, which highlight the
�lamentous structures. Reconstructions of secondary electron tilt series yielded substantially
increased �lament contrast in comparison to TEM and STEM.
Although scanning electron microscopy also comprises techniques which do not use secondary
electrons such as STEM, for the ease of wording, we will somtimes replace the term `secondary
electron' by the simple pre�x `SEM'. Thus, in this work, whenever the term `SEM' is used,
we refer to secondary electron data such as single tilt images or tomograms.
Analysis of network morphology requires the extraction of the network connectivity graph
from the tomograms. For this purpose we combined standard techniques from image analysis,
namely thresholding and skeletonization, with a speci�cally designed algorithm that reduces
artefacts arising from errors in continuity tracking and tomographic reconstruction of sec-
ondary electron tilt series. Based on this data, we statistically investigated the morphology
in di�erent samples of IF networks. This statistical analysis revealed principles of network
organization, which can be linked to the regulation of cell elasticity.
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2 Material and Methods

2.1 Cell culture

Panc1 human pancreatic cancer cells (American Type Culture Collection, Manassas, VA,
USA) were grown as a monolayer on glow discharged sapphire discs coated with carbon as
described by Buser et al. (2007).

2.2 Cell preparation

The preparation of cells to visualize the keratin network by high-resolution SEM by a pre�x-
ation extraction method (Ris, 1985) was partially based on the protocol of Svitkina & Borisy
(1998). After washing with phosphate-bu�ered saline (PBS; pH 7.3), the cells were extracted
for 25 minutes at around 8◦C with 1% Triton-X 100 (in PBS). Cells were washed again with
PBS and �xed with 2.5% glutar aldehyde (in PBS, with distilled water and 1% saccharose)
for 1 hour at room temperature. After washing with PBS, the cells were contrasted with
OsO4 (2% in PBS) for 1 hour at room temperature. After another washing step with PBS,
the samples were gradually dehydrated in 30%, 50%, 70%, 90%, and 100% propanol (for
5 minutes at each step). Then the cells were critical-point dried using carbon dioxide as
translation medium (Critical Point Dryer CPD 030, BalTec, Principality of Liechtenstein).
Finally, the samples were perpendicularly coated with a thin layer of carbon by electron beam
evaporation (5nm; BalTec Baf 300).

2.3 Electron microscopy

To analyze the �lamentous structure of the keratin network, the grids were imaged with a
Hitachi S-5200 in-lens SEM (Tokyo, Japan) at an accelerating voltage of 5 kilovolts (kV )
using the secondary electron signal. Since the stage of the SEM allows only a maximal tilt of
40◦, we mounted the samples on a pretilted (35◦) specimen holder. After having recorded the
series from +60◦ to 0◦, the sample was rotated by 180◦ and remounted in order to record the
second series from 0◦ to −60◦. (At tilt angles above 60◦ contrast became very poor most likely
due to self-shadowing e�ects.) Tilt series were recorded with 2◦ step size at a magni�cation
of 50, 000. In total 11 tomograms were recorded. Tomograms were reconstructed by weighted
backprojection (WBP) with the IMOD software (Kremer et al., 1996) (Fig. 5 (a) and (b)).

3 Image segmentation

3.1 Image processing in Avizo

As a �rst step towards extracting the graph structure of the IF network from the tomograms,
image �lters provided by the Avizo software package (Mercury computer systems, 2008)
were applied. Noise was reduced by an edge-preserving smoothing algorithm which consists
of Gaussian �ltering followed by an anisotropic di�usion, which guarantees that di�usion
stops at edges within the image. Afterwards the image was binarised by thresholding and
subsequent elimination of small islands in the foreground phase as well as some smoothing
of the boundary (Fig. 5(d) and 1(a)). Since due to shadowing e�ects the secondary electron
signal from �laments in lower layers of the cell tends to be weaker than the signal from
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(a) Detail of a tomogram af-
ter thresholding

(b) Skeleton of the fore-
ground phase

(c) Extracted network
graph after all processing
steps, cross-links highlighted
by spheres

Figure 1: Extraction of the graph structure from a detail section of a secondary electron
tomogram

upper parts of the network, thresholding was done semiautomatically, i.e. thresholds were
adapted manually to the brightness level of the di�erent network components, which were then
automatically identi�ed based on connectivity. In a next step a homotopic, i.e. connectivity-
preserving, skeleton of the �lamentous phase was computed by the skeletonisation package of
Avizo (Fourard et al., 2006) (Fig. 1(b)). The skeletonisation result was reduced to its graph
structure and exported as vector data, where the �lament trajectories were represented as
polygon tracks. The subsequent steps of image processing were based upon the graph of the
skeletonisation result obtained in this way and implemented in the Geostoch software library
(Mayer et al., 2004). An example of a �nal segmentation result can be seen in Fig. 1(c).
Several corrections were applied to the graph structure obtained from the Avizo software
in order to compensate for artefacts resulting from binarisation, skeletonisation or missing
information which would have been needed for unbiased tomographic reconstruction.

3.2 Removal of loops and linearisation of �laments

The images of the tilt series suggested that loops, i.e. �laments starting and ending at
the same point had to be regarded as artefacts. Therefore, all loops were removed from
the network graph. Moreover, since �laments exhibited only negligible curvature, network
vertices of degree 2, i.e. nodes joining exactly two edges, were removed from the graph unless
the corresponding line segments enclosed an angle of less than 270◦. Whenever a vertex of
degree 2 was removed, the corresponding connection was replaced by a single line segment.

3.3 Optimisation of segment positions

Although the �laments on the tilt series images exhibited hardly any curvature, the line seg-
ments of the graph representing the �laments still had to be regarded as linear approximations
of the actual �lament shapes. Since they were constructed as straight connections between
�lament linking points their position did possibly not optimally resemble the �lament trajec-
tories in the threshold images. An algorithm was designed in order to improve the position
of all line segments within the �lamentous phase of the tomograms. Details are given in Ap-
pendix A. The algorithm takes particular care to center the extracted network segments in
z-direction within the �lamentous phase since binarised tomograms exhibited some �lament
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Figure 2: Merging of closely located cross-links

pro�les whose height exceeded their width by up to factor 3, although in reality the pro�le
of IFs is circular. This inaccuracy of the resolution in z-direction is a consequence of the
limited tilt range in electron tomography (the missing wedge problem see e.g. Bartesaghi et
al. (2008) and Midgley & Dunin-Borkowski (2009)) and a certain oversegmentation in upper
network layers, which could not be avoided if threshold values were used which still allowed
for identi�cation of lower network components exhibiting reduced contrast. The optimisa-
tion algorithm for segment positioning was repeated after each step of graph modi�cation
described below.

3.4 Merging of closely located cross-links

Since some �laments are entangled in such a way that they enclosed small angles, �lament
links located very closely to each other were regarded as artefacts. Therefore, as suggested
in Beil et al. (2005), such pairs of �lament links were merged into a single one located in
their center of gravity (Fig. 2). Taking into account that after carbon coating �laments had
a diameter between 20nm and 25nm merging was performed for network nodes of a distance
less than d = 36nm apart in ascending sequence, i.e. link pairs of smaller distance were
merged �rst. Afterwards segment positions were optimized as described in Section 3.3.

3.5 Dead ends

In SEM images of IF networks one hardly observes �lament ends which are not connected to
other network components. In spite of this, in the network graphs extracted from the SEM
tomograms such dead ends occurred. A certain fraction of these were well-known artefacts
of the skeletonization algorithm (Soille, 1999). However, some dead ends also resulted from
principle limitations of the technique of SEM tomography. In contrast to TEM, the SEM tilt
series does not consist of projections of the specimen but measures the surface-dependent sec-
ondary electron signal. As a consequence, due to shadowing e�ects in areas of dense network
structure lower �lament layers were partially not visible or only at less contrast. Therefore,
some trajectories of lower level �laments were truncated in the binarised tomograms (Fig. 3).
These artefacts were reduced by an algorithm which establishes extrapolations of dead ends
within the network graph and checks them for plausibility. A detailed description of the algo-
rithm can be found in Appendix B. Dead ends which did not have a plausible extrapolation
as de�ned by this algorithm were regarded as skeletonisation artefacts and removed from the
network graph unless they were close to the boundary of the observation window.

4 Statistical analysis of network morphology

By means of 3D numerical �nite element simulations of semi�exible polymer networks, corre-
lations between network sti�ness and the three morphological characteristics network density,
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Figure 3: Extrapolation of a dead end

de�ned in terms of �lamentous polymer concentration in the system, average segment length
and connectivity have been demonstrated (Huisman et al., 2007). These results motivated
our choice of network characteristics for the analysis of IF networks in Section 5. Their
de�nitions will now be made precise. Since after preparation of the cells and tomographic
reconstruction the actual 3D volume of the cellular compartments is hard to be estimated, we
de�ned network density as the total network length per base area. It should be emphasized
that this de�nition of network density purely focusses on the amount of polymers forming the
network and not on network architecture. Since the amount of �lamentous polymers is con-
trolled by synthesis and phosphorylation status of IF proteins (Coulombe & Omary, 2002),
network density de�ned in this way can be directly linked to biological processes. Other mea-
sures of density such as cross-link density are not only tied to the amount of polymers but to
structural characteristics of network architecture, which in this study are assessed separately
by mean segment length and connectivity.
If mean segment length is measured as the total network length divided by the number of
segments, one obtains a biased estimator. This is due to the fact that the length of �laments
protruding the observation window is underestimated. In order to avoid these edge e�ects
the mean was only taken with respect to segments whose center was located in a smaller
sampling window. The base of this sampling window was chosen as the central 1.84×1.2µm2

of the observation window, its height was not restricted since �laments did not protrude the
observation window in the third dimension.
Network connectivity was measured by considering the mean vertex degree of the network,
where the degree of a vertex (i.e. a cross-link in the network) is de�ned as the number of
segments emanating from it.
Network density, mean segment length and mean vertex degree were computed for 11 tomo-
grams of IF networks in pancreatic cancer cells. Our statistical analysis primarily focusses
on the interplay of these characteristics, namely their mutual correlations. These can be
exploited to infer the relation of di�erent principles applied by the cells in order to vary
network architecture, and thus change their elasticity. When working with relatively small
sample sizes, estimated values for correlation coe�cients of two random variables can be
misleading due to stochastic variability. Meaningful results concerning the correlation of
di�erent morphological network characteristics can however be obtained by testing if the
measure of correlation signi�cantly di�ers from zero. Standard tests for correlation exploit
the distribution of Pearsons's correlation coe�cient. However, the latter depends on the bi-
variate distribution of the sample vectors to be investigated, which at small sample sizes can
hardly be inferred. Naturally, for small sample sizes also asymptotic tests are inappropri-
ate. As a remedy, instead of Pearson's correlation coe�cient we considered Spearman's rank
order correlation coe�cient ρS and Kendall's coe�cient of concordance τ (for a de�nition
see e.g. Sheskin, 2000). Under the assumption of uncorrelated, identically and continu-
ously distributed sample vectors (X1, Y1), . . . , (Xn, Yn) the distributions of Spearman's ρS
and Kendall's τ do not depend on the distribution of the sample vectors. Therefore, for
both of these measures of correlation nonparametric statistical tests are available, which can
already be applied at small sample sizes (Sheskin, 2000). The detailed construction of the
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tests can be found in Hollander & Wolfe (1973). The tests can be used to detect dependencies
of the following type:

(a) There is a tendency of the larger values of X1, . . . , Xn to be paired with the larger
values of Y1, . . . , Yn.

(b) There is a tendency of the larger values of X1, . . . , Xn to be paired with the smaller
values of Y1, . . . , Yn.

The null hypothesis of the tests is `no correlation between the two samples', i.e. H0 : ρS = 0
or H0 : τ = 0, respectively. H0 can be tested against the one-sided alternative of positive
correlation (i.e. (a)), against the alternative of negative correlation (i.e. (b)) or against the
two-sided alternative (i.e. (a) or (b)).

5 Results

We investigated several preparation and imaging protocols for preservation and recording of
the 3D IF network. The �rst one was high-pressure freezing, freeze substitution, embed-
ding and thin sectioning. We analyzed these samples with regular TEM, 300kV Scanning
TEM (STEM) and 30kV STEM (Sailer et al., 2009). It turned out, however, that on these
samples it was di�cult to track the individual �laments in the very complex context of all
the retained cellular structures of unextracted cells. We analyzed, therefore, intermediate
�lament networks from detergent-extracted cells. When imaging these samples with a 300kV
STEM, the signal of the thin �laments was relatively poor, it could be increased by using
a 30kV STEM, but still the signal of the �laments was insu�cient compared to the strong
signal of non-IF cytoplasmic components that were not completely removed during extraction
(Fig. 4(a)). Therefore, we used the secondary electron signal, which is surface-dependent and
relatively strong from thin �laments (Fig. 4(b)). As a consequence of detergent extraction
even single �laments in some depth are clearly visible under most tilt angles. Therefore, they
are captured by tomographic reconstructions of secondary electron tilt series (Fig. 5(c)). The
datasets were recorded by tilting the sample similar to TEM-tomography. The tilt series was
then back-projected into a three-dimensional model.
In our setting the input signal of the reconstruction algorithm was not a projection of the

specimen as required by the mathematical theory of WBP, but a surface dependent signal
(Joy & Pawley, 1992). Simulated signals were used to clarify the impact of the violated pro-
jection requirement on the reconstruction of single �laments. In the parallel beam geometry
of single-axis electron tomography the reconstruction of a 3D volume is done by separate re-
construction of parallel 2D slices from their 1D projections. In most orientations of a �lament
with respect to the tilt axis its intersection with a 2D slice of the considered volume is an
ellipse. Therefore, we simulated the surface dependent and the projection signal of a 2D circle
and compared the corresponding WBP reconstructions. The diameter was chosen as 11 pixel
lengths, which is comparable to the diameter of an IF at the resolution used for this study.
The surface dependent signal at a pixel of a tilt image was modeled to be proportional to the
boundary length hit by a beam whose width was chosen as one pixel length. The value of a
simulated projection at a particular pixel was chosen to be proportional to the area within
the circle that got projected onto the pixel. Both signals were normalized in order to obtain
the same total signal strength for projections and surface rendering.
Fig. 6 illustrates that the WBP reconstruction based on a surface dependent signal (Fig. 6(b))
does not di�er substantially from the reconstruction obtained from projection data (Fig. 6(a)).
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(a) STEM dark �eld image at 30kV (b) SEM image at 30kV

Figure 4: STEM dark �eld and SEM secondary electron images taken from the same intra-
cellular location at 0◦ tilt. STEM images provided a rather low signal of IFs in comparison
to the strong signal of non-IF cytoplasmic leftovers after extraction of the cells. Secondary
electron imaging enhanced the signal of IFs.

The main di�erence is a slightly more faded interior of the circle in the reconstruction based
on the surface signal in comparison to the one obtained from projections. In backprojections
of experimental SEM tilt series the fading in the interior of the �laments was less noticeable
than for the simulated data. This is plausible since in the WBP reconstruction of an imper-
fectly aligned tilt series the relatively high density, which under ideal alignment is found along
the boundary of the reconstructed object, is spread over a larger area. This is a consequence
of the superposition of backprojections under di�erent tilt angles in the WBP algorithm
(Buzug, 2008).
In order to monitor the impact of shadowing e�ects, WBP reconstructions were computed
from the simulated SEM tilt series of the circle where the signal was set to zero over a variety
of tilt ranges. Fig. 7 (d)-(e) illustrate the e�ect of shadowing for the central part of the
tilt range, where the information of the central 40◦, 60◦, and 80◦ is missing, respectively.
The missing information results in decreased contrast. Furthermore, the reconstruction of
the circle approaches a square. Fig. 7 (a)-(c) depict the most frequent shadowing scenario
occurring for �laments in deeper network layers of our experimental data, namely shadowing
at high tilt angles. In this setting the reconstruction of the circle exhibited an oval shape at
decreased contrast to the background. The loss in contrast was more extreme than observed
in the experimental data, where WBPs were computed from tilt series with small imperfec-
tions in alignment. As discussed above, density was therefore more evenly spread over the
�lament pro�les than on a WBP under ideal alignment such that contrast was increased.
Morphological network characteristics were computed for 11 tomograms, where sampling

regions were chosen at random throughout the entire cytoplasm. Network densities var-
ied between 0.0082nm−1 and 0.0133nm−1 with mean 0.01nm−1 and standard deviation
0.0019nm−1 (Fig. 8(a)). The spread between minimal and maximal network density ob-
served was thus equivalent to 51% of the mean value of the network densities.
The mean segment length in the tomograms varied between 93nm and 137nm, its mean and
standard deviation being 111nm and 13.6nm, respectively. The spread between maximum
and minimum mean segment length corresponds to 40% of the average mean segment length
(Fig. 8(b)).
Measurements of the mean vertex degree indicated substantial variability of network connec-
tivity. Values varied between 3.5 and 4.2 with a standard deviation of 0.23. This spread

8



3D analysis of IF networks using SEM-tomography

(a) SEM image at 0◦ tilt (b) Horizontal cut through an SEM tomogram

(c) Vertical cut through an SEM tomogram (d) Tomogram after binarisation (top view)

(e) Network graph extracted from the tomogram, top view (left), rotated by 40◦ around central axis
(right)

Figure 5: IF network in a detergent extracted Panc1 cell visualized at a magni�cation of
50,000. Filaments in some depth are clearly visible at good contrast in the secondary electron
tomogram. The graph extracted from the tomogram exhibits a genuinely 3D structure.
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(a) WBP from simulated
TEM signal

(b) WBP from simulated
secondary electron signal

Figure 6: WBP reconstructions of a circle (diameter 11 pixel lengths) from simulated projec-
tions (corresponding to TEM) and from a simulated surface dependent signal (corresponding
to the secondary electron signal of SEM). The tilt range was chosen from −60◦ to +60◦ at
an increment of 2◦.

(a) Shadowing for tilt an-
gles in (−60◦,−50◦) and
(50◦, 60◦)

(b) Shadowing for tilt an-
gles in (−60◦,−40◦) and
(40◦, 60◦)

(c) Shadowing for tilt an-
gles in (−60◦,−30◦) and
(30◦, 60◦)

(d) Shadowing for tilt angles
in (−20◦, 20◦)

(e) Shadowing for tilt angles
in (−30◦, 30◦)

(f) Shadowing for tilt angles
in (−40◦, 40◦)

Figure 7: WBP reconstructions of a circle (diameter 11 pixel lengths) from a simulated
secondary electron signal with shadowing e�ects. The tilt range was chosen from −60◦ to
+60◦ at an increment of 2◦.

10



3D analysis of IF networks using SEM-tomography

corresponds to 20% of the average mean vertex degree with respect to all tomograms, which
was 3.7. Maximum connectivity was measured for tomogram 3, which exhibited increased
relative frequencies of vertices of degree 4 and even higher (Fig. 9(a)). Vertex degrees above
4 were observed if several IFs were linked by microgel structures (Fig. 10). Degree distri-
butions with pronounced increases in relative frequencies of higher vertex degrees could also
be observed in tomograms 4, 10 and 11. On the other hand, tomograms with extremely low
connectivity such as samples 1, 2 exhibited a high frequency of vertices of degree 3.
Since connectivity was assessed by vertex degrees it was important to monitor if the results
were distorted by the merging parameter d in the segmentation algorithm, which ensures
that network vertices of less than a distance d apart are replaced by a single cross-link (Sec-
tion 3.4). Fig. 11 shows that the mean vertex degree depended on the merging parameter.
However, ranking of the di�erent tomograms with respect to the mean vertex degree was
rather stable. As a consequence, the test results for the rank-based correlation coe�cients
ρS and τ discussed below were hardly a�ected by the merging parameter. For these inves-
tigations d was not chosen smaller than 20nm, since this would be less than the �lament
diameter after carbon coating and thus, shorter network segments can clearly be regarded as
segmentation artefacts.
In order to assess whether changes of network density, mean segment length, and connectivity
exhibit interdependencies, two statistical tests were performed for each pair of characteristics.
The �rst one tested the null hypothesis that Spearman's rank-order correlation coe�cient ρS
was equal to 0 whereas the second one tested the analogous hypothesis for Kendall's τ . In
both tests the alternative hypothesis was chosen as two-sided, i.e., any kind of correlation
no matter if positive or negative leads to a rejection. As also suggested by the scatterplot in
Fig. 12(a) the hypothesis that there is no signi�cant correlation of network density and mean
segment length is not rejected for Spearman's ρS (p = 0.99) and for Kendall's τ (p = 1.0).
The tests also did not reject the hypothesis of uncorrelated changes of network density and
mean vertex degree (Tab. 5.1, see also Fig. 12(b)). At the level of signi�cance α = 0.1 varia-
tions of the merging parameter d did not change test results (all p-values were above 0.29).
Thus, independently of d the correlation coe�cients did not signi�cantly di�er from 0.
Tests however indicated a signi�cant negative correlation between mean segment length and
mean vertex degree (Fig. 12(c)). More precisely, the null hypothesis of correlation coe�cients
being equal to zero was rejected at the 10%-level although not at the 5%-level (Tab. 5.1).
The tests for correlation of mean segment length and mean vertex degree were also applied
in their one-tailed version for negative correlation, i.e., H0 was rejected if and only if the
correlation coe�cient (which was either ρS or τ) was less than its α quantile. In that case
H0 was even rejected at the 5% level (p = 0.026 and p = 0.043 for ρS and τ , respectively).
At the 10% level, signi�cant correlation was found for all merging distances d ≥ 28nm. For
d = 24, p-values increased to 0.16 for ρS and to 0.1 for τ . A merging distance of d = 20 did
not exhibit signi�cant correlation of mean segment length and mean vertex degree. Since we
identi�ed d = 36nm as a reasonable merging parameter to suppress artefact formation, one
can conclude that test results behaved stable for suitable choices of d.

6 Discussion

The architecture of the IF network plays a pivotal role for cell migration by regulating cell
viscoelasticity (Beil et al., 2003). In networks formed by semi�exible polymers such as IF
even small alterations of network architecture can signi�cantly change the elasticity of the
network and, hence, the mechanical properties of cellular compartments (Morse, 1998; Gardel
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Figure 8: Boxplots of network density, mean segment length and mean vertex degree that
were computed for 11 tomograms. Bold lines depict medians, whereas dashed lines indicate
the sample means, whose values can be found to the left of the boxes.
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Figure 9: Fractions of vertices with degree 3, 4 and ≥ 5 (with respect to all vertices of degree
at least 3)
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(a) Section of a thresholded tomo-
gram

(b) Extracted graph structure

Figure 10: Filaments connected by a microgel structure
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Figure 11: Mean vertex degree as a function of the merging distance d in the segmentation
algorithm

p-values mean segment mean vertex
length degree

network density 0.99 0.85
1.0 1.0

mean segment length 0.05
0.09

Table 5.1: Test results for the hypothesis of uncorrelated changes in the depicted pairs
of network characteristics. The table contains p-values of tests for H0 : ρS = 0 (upper
values) and H0 : τ = 0 (lower values) against the two-sided alternative. The hypothesis of
uncorrelated variation of two characteristics is rejected at a level of signi�cance α, once the
corresponding p-value does not exceed α. Hence both tests detect a signi�cant correlation
of mean segment length and mean vertex degree at the level of α = 0.1, whereas there is no
signi�cant correlation between network density and each of the other two characteristics.
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Figure 12: Scatterplots displaying the correlation between network characteristics
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et al., 2004). Numerical studies and physical models for networks in 2D can provide valuable
information on the relation between 2D network morphology and the elastic shear modulus
of the networks (Head et al., 2003; Heussinger & Frey, 2006 and 2007; Fleischer et al., 2007).
Nevertheless, although IF networks in the cell periphery often exhibit an almost planar struc-
ture (Beil et al. 2005), in less �at cellular compartments the IF cytoskeleton can clearly form
a genuinely 3D biophysical network (Fig. 5 (c)), which in comparison to the 2D case possesses
additional degrees of freedom with respect to morphology and mechanical behavior (Huisman
et al., 2007). The methodology of this study allows one to investigate IF network morphology
in 3D at high resolution. This way, we were able to compute network characteristics from
a tomographic data set, which for non-planar networks can only be assessed from 3D image
data. These comprise connectivity and the length of network segments, which in a correlative
numerical study have been identi�ed as relevant parameters for the elasticity of semi�exible
polymer networks (Huisman et al., 2007).
There exist a number of papers discussing detergent extraction for TEM replicas (e.g. Svitk-
ina, 2007). These datasets still represent the generally accepted standard on which the
textbook models of cytoskeleton structures as e.g. in Alberts et al. (2008) are based. For
actin networks artefact formation caused by detergent extraction, such as �lament branching
and visibility of the helical arrangement of G-actin subunits has been discussed in Resch et al.
(2002) and Walther (2008). Therefore, alternative methods, such as cryo-TEM were intro-
duced. In pioneering work by Medalia et al. (2002) the actin �lament network in a very thin
protrusion of the slime mould dictyostelium was tomographically visualized by cryo-TEM.
This method is currently restricted to very thin samples; compartments of Panc 1 cells with
non-planar IF networks would be too thick. In future work, we plan to combine detergent
extraction with freeze drying methods (Walther, 2008) in order to reduce the danger of arte-
fact formation. Data obtained by detergent extraction and critical point drying needs to
be interpreted with care. However, �rst experiments with freeze-dried samples do not show
obvious structural di�erences with respect to network structure.
A notable phenomenon on our images is that �laments appear considerably thicker (20 to
25nm) than described in the literature (10 to 12nm) (Coulombe & Omary, 2002). This
could be due to a number of factors: The samples are �xed with glutaraldehyde and osmium
tetroxide. Parts of this �xatives could attach onto the �laments and increase the measured
thickness. Carbon coating was done perpendicular to the sample, without rotation. The
thickness of 5nm was measured by a quartz crystal thickness monitor, which is a �at object.
If carbon coating would be purely geometrical, the 5nm would be added only at the top of the
�laments and not in�uence the measured thickness, at least at 0◦ tilt angle. However, carbon
is re�ected during coating by the objects, so that it sticks to the �laments and increases the
�lament diameter by a not fully predictable amount. Finally, SEM imaging itself bears some
error, since the electron probe is not in�nitely small but has a certain diameter, and as in any
kind of scanned imaging, the structure visible in the picture is a convolution of the sample
and the imaging probe.
At �rst sight, tomogram generation based on an SEM tilt series may appear counterintuitive,
since the input data is surface dependent and thus violates the projection requirement of
tomographic reconstruction. Nevertheless, the contrast in STEM projections of the kera-
tin networks in detergent extracted cells turned out to be so low that continuity tracking
of the �laments in the reconstructed tomograms was hardly possible. Since for this study
detergent extracted cells were investigated, single �laments were clearly visible at most tilt
angles and could therefore be mapped by the surface dependent secondary electron signal
yielding high contrast images. Thus, the single images of the SEM tilt series could be viewed
as good approximations for projection images of a modi�ed density distribution within the
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observed volume. These modi�cations were such that �laments were highlighted and the
grey level of non-IF cytoplasmic components which had not been removed during extraction
was decreased. Shadowing e�ects as illustrated in Fig. 7 weakened contrast in lower levels of
the tomograms and posed a certain di�culty for segmentation of the image in �lamentous
and background phase. This was therefore not done by a global thresholding procedure but
semiautomatically by means of the Avizo software package, where thresholds were selected
manually for di�erent parts of the network that were then identi�ed automatically based on
connectivity. Imperfections of the segmentation resulting in dead ends within the network
graph were additionally reduced by the extrapolation algorithm discussed in Section 3.5. For
the extraction of the network graph from the thresholded tomogram it was also taken into
account that the missing tilt wedge and shadowing e�ects lead to ovally stretched �lament
pro�les in the binarized tomograms. This was compensated for by an algorithm centering the
extracted line segments within the �lamentous phase (Section 3.3). It should be emphasized
that after semiautomatic binarisation of the tomograms into �lamentous phase and back-
ground, network graphs were extracted by a fully automatic algorithm. This way potential
bias introduced by manual segmentation was minimized.
The thickness of the networks investigated in this study was up to 550nm, not taking into
account single �laments protruding from the main network body. The method of SEM to-
mography for detergent extracted samples is not primarily limited by sample thickness but by
network density. In our samples we could detect up to three �laments on top of each other.
Nevertheless, for denser networks this may not be possible if shadowing of deeper network
components leads to a more limited visibility during tilting. On the other hand, in less dense
networks even more layers of �laments may be reliably reconstructed in the tomograms.
Analysis of the extracted network graphs revealed a substantial morphological variability
of IF networks in cultured human pancreatic cancer cells. For our analysis we focused on
morphological network characteristics that can in�uence the elastic modulus of semi�exible
polymer networks (Huisman et al., 2007), namely network density, mean segment length and
mean vertex degree. All of these are spatial averages of morphological characteristics and
can thus be assumed to possess a stable behavior in the sense of ergodic limits. This makes
them appropriate for statistical analysis at small sample sizes. Although the mean vertex
degree depended on the merging parameter d of the segmentation algorithm, the latter being
necessary to remove skeletonisation artefacts in image segmentation, highly and weakly con-
nected networks could clearly be distinguished independently of the choice for d (Fig. 11).
Tomograms did not only exhibit substantial variations in network density but also in their
mean segment length and connectivity as measured by the mean vertex degree. Tests for cor-
relation between these characteristics revealed that there is no signi�cant correlation between
network density and mean vertex degree as well as between network density and mean seg-
ment length. On the other hand tests indicated negative correlation between mean segment
length and mean vertex degree. Test results were similar when connectivity was assessed by
an approach based on the relative length of minimum spanning trees (MST), that has been
suggested in Beil et al. (2009). Since relative MST length and mean vertex degree were
strongly correlated these results we not included in favour of a a more concise presentation.
Our results suggest that the mechanically relevant structural characteristics connectivity and
mean segment length cannot be viewed as a function of network density, which in our de�ni-
tion primarily measures the amount of �lamentous protein in the network independently of
network architecture. Thus, in addition to controlling the amount of IF protein forming the
networks Panc1 cells apparently possess a second degree of freedom for adjusting network
architecture in a way that in�uences the elastic modulus of the network. Since variations
of mean segment length and connectivity do not require protein syntheses they are possibly
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used as energy-e�cient means for �ne-tuning of mechanical properties. To the best of our
knowledge there is currently no universal physical model that would allow for a computation
of the elastic shear modulus of a 3D semi�exible polymer network based on morphological
measurements and the material properties of single �laments. Since results of numerical
correlation studies are dependent on speci�c material properties and the models used to gen-
erate virtual network data, they do not allow for immediate quantitative conclusions in other
settings. They can however reveal principles de�ning the interplay between network mor-
phology and mechanics, and hence yield substantial indications for mechanical e�ects caused
by morphological variability. Independently from numerical simulations, experiments can be
designed in order to combine micro- and nanomechanical measurements on �xed and living
cells (Atakhorrami et al., 2006; Marti et al., 2008) with the method of SEM-tomography and
image segmentation proposed in this study. This presents a promising experimental approach
to correlate mechanical properties of the cells and 3D morphological characteristics of their
IF network.
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A Algorithm for the optimisation of segment positions

The algorithm discussed in this section has been designed to center the line segments of an extracted
network graph within the �lamentous phase of the binarised tomograms (see Section 3.3). In the
following for a voxel k = (k1, k2, k3) ∈ IN3 the third coordinate will denote height in the image stack
and will be referred to as the z-coordinate, whereas k1 and k2 are the planar coordinates at 0◦-tilt.
After binarization by thresholding a tomogram can be viewed as a map T : V → {0, 1} with bounded
discrete domain V = {0, . . . , N1}×{0, . . . , N2}×{0, . . . , N3}, where the integers N1, N2 and N3 ∈ IN
de�ne the size of the volume. A voxel k such that T (k) = 1 will be called a �lament voxel, i.e. it is part
of the foreground of the binarized tomogram, whereas background voxels have the value T (k) = 0.
In the following for a given tomogram T we will consider a 3D distance transform dT : V → Z which
is de�ned as

dT (k) =





min{
√∑3

i=1(ki −mi)2 : T (m) = 0} if T (k) = 1,

−min{
√∑3

i=1(ki −mi)2 : T (m) = 1} if T (k) = 0,

i.e., each �lament voxel is mapped to its Euclidian distance from the background, whereas each
background voxel is mapped to the negative of its distance from the foreground. The 2D analogue of
this distance transform is illustrated in Fig. 13.
The position of a line segment S with respect to the foreground, i.e. the �lamentous phase, can now
be evaluated based on its average length-weighted distance

DT (S) =
1
|S|

∑

k∈V
|Qk ∩ S|dT (k), (A.1)

where | · | is one-dimensional length and

Qk = [k1 − 1
2
, k1 +

1
2

]× [k2 − 1
2
, k2 +

1
2

]× [k3 − 1
2
, k3 +

1
2

]

denotes the voxel k viewed as a volume element. The illustration for (A.1) in Fig. 13 shows that large
values of DT (S) imply that the segment S is located rather centered within the foreground phase,
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whereas small values occur, once S is close to or within the background phase. Notice that DT (S)
can be interpreted as a normalized line integral of the distance transform along S.
In order to optimise the position of the line segments representing the �laments, the algorithm
summarized in Fig. 14 was applied. The idea of the optimisation procedure is to randomly shift the
positions of vertices. Such a shift is accepted as update of the network graph if the positions of the
line segments connected by the vertex have improved in the sense of (A.1). If not, the shift is rejected.
The algorithm consists of the following steps:

1. De�ne a maximum number max of iterations.
2. Select a network vertex at random.
3. Suggest independent and normally distributed shifts with mean 0 and standard deviation 8nm

in each of the three directions.
4. Evaluate the position of all segments linked by the vertex before and after shifting by (A.1).
5. If the position of all segments linked has improved after shifting, update the network graph by

shifting the vertex to the new position.
6. If the number of iterations is less than max, select a new vertex and continue with step 3.

With probability 0.9 the new vertex is chosen randomly among the neighbors of the current
node, with probability 0.1 it is picked randomly among all vertices.

For our data on average 300 shifts were suggested for each vertex.
As discussed in Section 3.3, a speci�c �aw in data quality was the inaccurate resolution of the
segmented tomograms in z-direction. This resulted from the limited tilt range and a certain overseg-
mentation in upper network layers, which could not be avoided if threshold values were used which
still allowed for identi�cation of lower network components exhibiting decreased contrast. Thus, the
segmented tomograms exhibited some �lament pro�les whose height exceeded their width by up to
factor 3. In order to optimally center the line segments in z-direction within the �lamentous phase,
the above optimization algorithm was also implemented for a modi�ed distance map, de�ned by

d̃T (k) =
{

min{|k3 −m3| : T (m) = 0} if T (k) = 1,
−min{|k3 −m3| : T (m) = 1} if T (k) = 0.

Thus, foreground voxels are mapped to their distance from the background in z-direction and back-
ground voxels to the negative of their z-distance to the foreground. This way, certain center voxels
of z-strechtched ovaly pro�led �laments are mapped to higher values than in case of a regular 3D-
distance transform and so the random shift algorithm can be used to center the segments within the
ovale �lament pro�les with respect to the z-axis.
Since some �laments presumably not touching each other were stretched in z-direction in the tomo-
grams and thus overlapping, computation of a skeleton resulted in an arti�cial link between these
�laments. In order to remove these artefacts the algorithm monitors all segments shorter than 60nm
which enclose an angle of no more than 45◦ with the z-axis. Such a segment is removed if each of
the segment ends is integrated into a network vertex of T-shaped topology. This means, that at least
two more line segments are emanating from the vertex in a such a way that an angle of more than
90◦ is enclosed.
The two consecutive steps to improve �lament positions based on the two di�erent distance transforms
were repeated after each step of graph modi�cation described in Section 3.

B Algorithm for the extrapolation of dead ends

Skeletons computed from binarised tomograms (Fig. 1(b)) frequently exhibit dead ends which are well-
known artefacts from skeletonisation and should be removed (Soille, 1999). However, in binarised
SEM-tomograms of IF networks some dead ends result from errors in continuity tracking of �laments.
In this case they should be extrapolated as shown in Fig. 3 for the IF network data and illustrated
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Figure 13: Illustration of the distance transform and the computation of average length-
weighted distance for the 2D case. In the setting displayed one obtains DT (S) = (s1 + s2 +
s3 + 2s4 + s6− s7− s8)/

∑8
j=1 sj , where each weight sj corresponds to one of the intersection

lengths |Qk ∩ S| in (A.1).

Figure 14: Algorithm for centering the line segments in the �lamentous foreground phase.

in Fig. 15. In the following we describe an algorithm constructing extrapolations of dead ends. The
algorithm computes possible extrapolations and ranks them according to certain quality criteria.
Following the order of this ranking, a plausibility check is performed, investigating whether the
trajectory of the extrapolation was a�ected by shadowing during recording of the SEM tilt series.
In this case the extrapolation can be assumed to compensate for a network component which is
missing in the segmented 3D image due to its insu�cient contrast in the tomogram. The dead end is
extrapolated by the highest-ranked connection that passes the plausibility check. If all extrapolations
are classi�ed as implausible, the dead end is regarded as a skeletonisation artefact and removed from
the network graph. The details discussed in the following are summarized in Fig. 16.
Potential extrapolations considered by the algorithm can be of two di�erent types. If the dead end
is extrapolated to another dead end in the network graph an I-connection is established (Fig. 15(a)).
Alternatively, the dead end can be extrapolated to a network edge that is integrated into the network
with both ends. In this case the algorithm considers the connections to the point on the edge closest
to the dead end to be extrapolated. Thus, a T-connection is formed (Fig. 15(b)).
For the potential extrapolations their directional deviation from the orientation of the dead end and
their length serve as criteria for a ranking to assess their quality. Directional deviations of more than
π/8 and lengths of more than 0.4µm are rejected a priori. The remaining extrapolations are then
ordered in two di�erent ways, �rstly by directional deviation and secondly by their length. In both
cases small values are considered as desirable. A total score for an extrapolation is now computed
as the weighted mean of these two ranks, where the directional rank is weighted by 0.7 and the
distance rank by 0.3. By ordering the potential extrapolations in ascending order of their score, a list
is obtained where the quality of extrapolations decreases in list position.
Dead ends which are the result of interrupted �lament trajectories due to shadowing e�ects often
possess a dead end counterpart. Thus, I-connections should be regarded as favourable. Therefore,
the score-based ranking of the potential extrapolations is modi�ed by moving the I-connections with
ranks 1 to 10 to the top of the list (in the internal order of their score-based ranking).
Given the ordered list of potential links it is left to decide whether the extrapolations compensate for
shadowing e�ects in the data or the dead end has to be considered as a skeletonization artefact. For
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(a) I-connection (b) T-connection

Figure 15: Di�erent extrapolation types. Dead ends are marked in grey, extrapolations are
depicted by dotted lines.

Figure 16: Algorithm for the extrapolation or removal of dead ends.

this purpose a binarized 2D projection Π(T ) of the 3D tomogram T after thresholding is computed
where a pixel (k1, k2) is set to 1 whenever there is some k3 ∈ {0, . . . , N3} such that T ((k1, k2, k3)) = 1.
Otherwise the pixel is set to 0. Filaments whose projections are covered by Π(T ) are likely to be
a�ected from shadowing e�ects. In order to assess the degree of coverage of a potential extrapolation
c, its average length-weighted distance DΠ(T )(c) with respect to Π(T ) is computed (the principle is
illustrated in Fig. 13, the formal de�nition is analogously to the 3D case discussed in Appendix A).
Assuming that all dead ends needing extrapolation are caused by shadowing e�ects, an extrapolation
is accepted once its normalized line integral of the 2D distance transform exceeds 1.5. The dead end
is extrapolated by the connection of highest rank that is accepted by this criterion. In case none of
the potential extrapolations is accepted, the dead end is considered as an artefact and removed from
the network graph unless it is close to the boundary of the observation window.
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