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Abstract. Based on virtual materials testing, which combines image
analysis, stochastic microstructure modeling and numerical simulations,
quantitative relationships between microstructure characteristics and ef-
fective conductivity can be derived. The idea of virtual materials testing
is to generate a large variety of stochastically simulated microstructures
in short time. These virtual, but realistic microstructures are used as
input for numerical transport simulations. Finally, a large data basis is
available to study microstructure-property relationships quantitatively
by classical regression analysis and tools from statistical learning. The
microstructure-property relationships obtained for effective conductivity
can also be applied to Fickian diffusion. For validation, we discuss an
example of Fickian diffusion in porous silica monoliths on the basis of
3D image data.

1 Introduction

The functionality of many materials, like, e.g., solar cells [1], batteries [2], fuel
cells [3] or silica monoliths used for catalysis [4], is strongly influenced by their
microstructure. Thus an optimal design of the microstructure regarding effec-
tive macroscopic properties of these materials would lead to an improvement of
their functionality. This kind of microstructure optimization, in turn, requires an
understanding of the quantitative relationships between microstructure charac-
teristics and effective macroscopic properties, which are – so far – only available
for some special types of simple microstructures [5] like, e.g., the coated spheres
model introduced in [6].
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A direct approach to investigate relationships between microstructure and
effective macroscopic properties is based on tomographic 3D imaging of mi-
crostructures. Among other methods, X-ray tomography [7], FIB-SEM tomogra-
phy [8] and STEM tomography [9] provide highly resolved information about mi-
crostructures on different length scales. On the one hand, 3D image data can be
analyzed by tools from spatial statistics [10] and mathematical morphology [11],
which allows the computation of well-defined microstructure characteristics. On
the other hand, 3D image data can be used as an input information for the nu-
merical simulation of effective macroscopic properties, like, e.g., effective diffu-
sivity in silica monoliths [12]. This combination of image analysis and numerical
simulation enables a direct investigation of the relationship between well-defined
microstructure characteristics and effective macroscopic properties [12–16]. How-
ever, this approach is limited as it is not possible to investigate a sufficiently large
data set of different microstructures due to the high costs of 3D imaging.

Thus an alternative approach – called virtual materials testing – was sug-
gested where image analysis and numerical simulations are combined with stochas-
tic 3D microstructure modeling [17]. By the aid of stochastic modeling virtual,
but realistic, microstructures can be generated in short time. So a large data
set of virtual microstructures with a wide range of microstructure character-
istics is generated in order to study the quantitative relationship between mi-
crostructure characteristics and effective macroscopic properties efficiently. In
the present paper, we give an overview of the results having been obtained for
the microstructure influence on electric conductivity by virtual materials test-
ing [17–19]. Furthermore, we show how the results can be used to predict effective
diffusivity in silica monoliths.

Before we give a detailed description on how to simulate the considered
stochastic 3D microstructure model in Sect. 3, the microstructure characteristics
which are related to effective conductivity are described in Sect. 2. The results
of virtual materials testing with respect to electric conductivity are reviewed in
Sect. 4. It is shown in Sect. 5 that the results can be used to predict effective
diffusivity in silica monoliths the morphology of which has been analyzed in [20].
Conclusions are given in Sect. 6.

2 Microstructure Characteristics and M -factor

To investigate the microstructure influence on effective conductivity σeff we con-
sider the microstructure characteristics volume fraction ε, mean geometric tor-
tuosity τgeom, mean geodesic tortuosity τgeod and constrictivity β. These mi-
crostructure characteristics are computed based on voxelized 3D images repre-
senting (virtual or real) microstructures. Moreover, using ε, τgeom, τgeod, β the
M -factor

M = σeff/σ0 (1)

is predicted, where σ0 denotes the intrinsic conductivity of the considered ma-
terial.



2.1 M-factor

As described in [18], we consider conductive transport processes within porous
materials with one conducting phase, the intrinsic conductivity of which is σ0.

Let J denote the current density, σ the space-dependent conductivity func-
tion, U the electric potential and t the time. Then, electric charge transport is
described by Ohm’s law

J = −σ∂U
∂x

(2)

and

∂U

∂t
= σ

∂2U

∂x2
. (3)

Assuming constant boundary conditions, such systems converge to an equilib-
rium which is described by the Laplace equation

∆U = 0. (4)

By averaging over J and U as described in [5] we obtain the effective con-
ductivity σeff and thus the M -factor of the microstructure. For the numerical
simulation of M the software NM-SESES [21] has been used in [17], while Geo-
Dict [22] has been used in [18,19].

Fig. 1. Visualization of two different kinds of shortest path corresponding to
τgeom(center, right) and τgeod(left) in 2D. The conducting phase is represented in white,
while sphericle obstacles are represented in grey. The shortest paths from the start layer
to the goal layer are visualized in blue. The skeleton on which the paths for τgeom are
computed is represented by a grey network (right).1

1 Reprinted from [18], Figure 3, with permission of J. Wiley & Sons.



2.2 Tortuosity

Both characteristics, τgeom and τgeod describe the length of paths through the
conducting phase relative to the thickness of the material. Note that – in con-
trast to concepts of effective tortuosity – the characteristics τgeom and τgeod

depend only on the geometry of the microstructure. An overview on the avail-
able concepts of tortuosity in the literature is given in [23]. To determine τgeod,
we compute for each voxel of the conducting phase located at the start layer,
i.e. the plane where the conduction process starts, the shortest path through
the conducting phase to the goal layer in terms of geodesic distance [24]. Such
a shortest path is visualized in Fig. 1(left). Mean geodesic tortuosity τgeod is
defined as the average of these path lengths divided by the thickness of the ma-
terial. Mean geometric tortuosity τgeom is also defined as an average of shortest
path lengths, where shortest paths are computed on a skeleton of the conducting
phase, see Fig. 1(right). The skeleton of a microstructure is a network of medial
axes through the conducting phase [24]. In [17] and [18] the software Avizo [25]
has been used to extract the skeleton from 3D image data.

2.3 Constrictivity

Constrictivity β quantifies bottleneck effects. It has been defined for a single tube
with periodic constrictions in [26] by β = (rmin/rmax)2, where rmin and rmax are
the radius of the minimum and maximum cross-section of the tube, respectively.
This concept of constrictivity has been generalized defining rmin, rmax and thus
β for complex microstructures [27]. As described in [19], rmax is defined as the
50% quantile of the continuous pore size distribution, while rmin is defined as the
50% quantile of the MIP pore size distribution, which is based on a geometrical
simulation of mercury intrusion porosimetry, introduced in [28]. Constrictivity
takes values between 0 and 1, where values close to 0 indicate strong bottleneck
effects while values close to 1 indicate that there are no bottlenecks at all.

3 Stochastic 3D Microstructure Model

In [17], a parametric stochastic 3D microstructure model has been developed,
which has been used to simulate virtual microstructures with many different
constellations for the microstructure characteristics ε, τgeom (or τgeod) and β.
We recall the definition of the model introduced in [17] and give a detailed
description on how to simulate model realizations.

3.1 Model Definition

Using tools of stochastic geometry and graph theory, we define a random set
Ξ representing the conducting phase of a microstructure. At first a random
geometric graph G = (V,E) is modeled consisting of a set of vertices V and a
set of edges E, which are connections between the vertices. In a second step the



Fig. 2. Generalized RNG, where the set of vertices is given by a realization of a homo-
geneous Poisson point process. The parameter α is chosen as α = −5 (left, vertically
oriented edges), α = 0 (center, no preferred orientation of edges), and α = 5 (right,
horizontally oriented edges). Direction (0, 0, 1) is the direction from front to back.2

edges of the graph are randomly dilated to get a full-dimensional conducting
phase.

The set of vertices V is modeled by a homogeneous Poisson point process with
some intensity λ > 0, see e.g. [29]. This means that the vertices are distributed
completely at random in the three-dimensional space and the expected number
of points per unit volume is given by λ. Edges between pairs of vertices are
put according to the rule of a generalized relative neighborhood graph (RNG)
introduced in [17]. For a parameter α ∈ R, two vertices v1, v2 ∈ V are connected
by an edge if there is no other vertex v3 ∈ V \ {v1, v2} such that

dα(v1, v2) > max{dα(v1, v3), dα(v2, v3)}, (5)

where

dα(v1, v2) = d(v1, v2) max

{
0.01,

(
1− 2ϕ(v1, v2)

π

)}α
, (6)

d(v1, v2) denotes the Euclidean distance from v1 to v2, and ϕ(v1, v2) denotes
the acute angle between the line segments v2 − v1 and (0, 0, 1). By the aid of
the model parameter α, it is possible to control the directional distribution of
edges in the graph G and thus one can control τgeom and τgeod in the virtual
microstructure. Note that for α = 0 we are in the situation of the classical
RNG [30], i.e., there is no preferred orientation of the edges. For α > 0 we obtain
more edges oriented in direction (0, 0, 1) than for α < 0, see Fig. 2.

In order to result in a full-dimensional conducting phase each edge of G is
dilated by a sphere with random radius. The dilation radii are independently and
identically distributed (i.i.d) following a Gamma-distribution with mean value
g1 > 0 and variance g2 > 0. The Gamma-distribution is shifted by 1 to ensure
that each edge is at least dilated by a ball of radius 1. Formally, we result in a
conducting phase

Ξ =
⋃
e∈E

e⊕B(o,Re), (7)

2 Reprinted from [17], Figure 5, with permission of J. Wiley & Sons.



Fig. 3. Three realizations of the final conducting phase, where λ, α and g1 are constant.
Only the parameter g2 is varied, that is g2 = 1 (left), g2 = 4 (center), and g2 = 7
(right).3

where ⊕ denotes the Minkowski addition of sets, Re denotes the random dilation
radius corresponding to the edge e ∈ E, and B(o, r) denotes the (closed) ball
centered at the origin o ∈ R3 with radius r > 0. While the volume fraction of Ξ
can be controlled by the intensity λ > 0 and g1, constrictivity can be controlled
by g2. The larger the variance of the dilation radii is, the more bottlenecks are
created in the conductive phase, see Fig. 3.

3.2 Simulation of Model Realizations

Having defined the stochastic 3D microstructure model, the simulation of model
realizations is described. In the following we assume algorithms for the simulation
of uniformly distributed, Poisson distributed and Gamma distributed random
variables to be known. For simulation of random variables the reader is referred
to [31]. To simulate a realization of Ξ in a cuboid W = [0, w]3 for given model
parameters λ, α, g1, g2, we simulate the generalized RNG G at first. The graph
G is simulated based on a realization of vertices in a larger observation window
W+ = [−δ, w + δ]3 for some δ > 0 in order to avoid edge effects. Note that this
approach approximates a realization of Ξ since in general, we can not guarantee
that vertices located outside of W+ do not influence the conductive phase in
W , i.e., the random set Ξ ∩W . Nevertheless, the approximation error becomes
neglectable in practice for sufficiently large W+.

To simulate G we begin with the simulation of the set of vertices V =
{v1, . . . , vN} in W+, where N is the random number of vertices in W+. That
means that a homogeneous Poisson process has to be simulated in W+.

Algorithm 1 (Simulation of vertices [29]). Let λ > 0 be the intensity of
the homogeneous Poisson point process. Then, the set of vertices is simulated in
W+ by the following two step approach

1. Simulate a realization n of the random number N of vertices in W+, which
is Poisson distributed with parameter λ(w + 2δ)3.

3 Reprinted from [17], Figure 6, with permission of J. Wiley & Sons.



2. For each i ∈ {1, . . . , n}, simulate the position of the i-th vertex vi, which is
uniformly distributed in W+. That is, vi is a three-dimensional vector each
entry of which is uniformly distributed in the interval [−δ, w + δ].

For a given set of vertices V , the edges are put and their random dilation
radii are simulated to obtain the full-dimensional conductive phase.

Algorithm 2 (Simulation of the full-dimensional conductive phase).
Consider the set of vertices V = {v1, . . . , vn} simulated by Algorithm 1.

1. Check for all 1 ≤ i < j ≤ n whether vi and vj are connected by an edge in
G according to Inequality (5).

2. Simulate the dilation radii for the edges, i.e., simulate a collection of i.i.d.
Gamma distributed random variables with mean g1 and variance g2 resulting
in a realization {re : e ∈ E} of the random radii {Re : e ∈ E}.

3. The set
W ∩

⋃
e∈E

e⊕B(o, re) (8)

is an approximation of a realization of Ξ ∩W .

4 Prediction of Effective Conductivity

A number of 43 virtual microstructures is generated with different constella-
tions for the microstructure characteristics ε, τgeom/τgeod and β. These virtual
microstructures are used as an input for numerical simulations of the M -factor.
As a result the prediction formulas

M̂ = min

{
1,max

{
0, 2.03

ε1.57 β0.72

τ2
geom

}}
, (9)

and

M̂ =
ε1.15 β0.37

τ4.39
geod

. (10)

for the M -factor have been obtained by regression analysis in [17] and [18],
respectively. The mean absolute percentage error (MAPE) is 16% when using
Eq. (9) and 18% when using Eq. (10). A visualization of the goodness of fit is
given in Fig. 4.

On the one hand, a prefactor of 2.03 is necessary in Eq. (9) to obtain an ade-
quate prediction of M by ε, β and τgeom. On the other hand 2.03 ε1.57 β0.72τ−2

geom

is in general not within the interval [0, 1] and has thus to be artificially restricted
to [0, 1]. Moreover, τgeom depends on the specific choice of the skeletonization
algorithm and skeletonization might be problematic for microstructures with a
large volume fraction of the conductive phase. Even if the MAPE of Eq. (9) is
smaller than the one of Eq. (10), the conclusion of [18] is to prefer τgeod rather
than τgeom as microstructure characteristic describing the length of transport
paths, in particular for the prediction of the M -factor.



Fig. 4. PredictedM -factor M̂ over numerically simulatedM -factorM for the 43 virtual
microstructures from [17,18]. Equation (9) (left) and Eq. (10) (right) are used to predict
M .

Fig. 5. Predicted M -factor M̂ over numerically simulated M -factor M for the 8119 vir-
tual microstructures from [19]. Classical regression analysis, i.e., Eq. (10) (left), as well
as a trained neural netork (center) and random forest (right) are used to predict M .4

An extension of this simulation study has been performed in [19], where
8119 virtual microstructures have been generated and the microstructure char-
acteristics ε, β, τgeod as well as the M -factor have been computed for each of
them. Aside from the model presented in Sect. 3, the stochastic microstructure
model from [32] has been used to generate virtual microstructures, where the
conducting phase is a union of spherical particles or its complement. Consider-
ing different types of stochastic microstructure models, we want to ensure that
the virtual testing approach is influenced by the specific kind of generating vir-
tual microstructures as little as possible. It has been shown that the prediction
of the M -factor can be further improved using methods from statistical learn-
ing [33], i.e. neural networks (9% MAPE) and random forests (8% MAPE), see
Fig. 5. The MAPE of Eq. (10) reduces to 13% when all 8119 virtual structures
are taken into account because then, the extreme microstructures play a less
important role [17, 18]. Furthermore, the extension of the simulation study has
shown that Eq. (10) slightly underestimates the M -factors close to 1. Validation
with experimental image data representing microstructures in SOFC anodes and
microstructures in membranes of pH-sensors has been performed in [19], which

4 Reprinted from [19], Figure 6, with permission of J. Wiley & Sons.



shows that the prediction formulas are not only valid for model-based virtual
microstructure.

5 Application to Fickian Diffusion in Silica Monoliths

For porous microstructures, there is a one-to-one relationship between effective
conductivity and effective diffusivity of Fickian diffusion. We consider 3D image
data of two different porous silica monoliths, in which Fickian diffusion takes
place, as a further validation of the prediction formulas obtained by virtual
materials testing. Since the diffusion takes place in the pores, the microstructure
characteristics ε, τgeod and β are computed for the pores in this section.

Fig. 6. Cutout of cross-sections (15µm × 15µm) depicting the macropores (black) of
the two silica monolith samples S1 (left) and S2 (right).

5.1 Description of the Material

The considered silica monoliths, manufactured by Merck, are used for high-
performance liquid chromotography (HLPC) and catalysis. They consist of a
single piece of silica with an interconnected pore phase, which contains macro-
pores and mesopores [34]. Diffusion in the macropores is investigated based on
tomographic image data of two samples, denoted by S1 and S2 with a resolution
of 30 nm and sizes of 60× 60× 24.19µm3 and 60× 60× 24.57µm3, respectively.
The mean size of the macropores is 1.36µm in sample S1 and 0.82µm in sample
S2. The image data depicting the macropores, see Fig. 6, is obtained via confocal
laser scanning microscopy, see [12].



Fig. 7. The values of M = εDeff/D0 computed by the random-walk particle-tracking
algorithm are predicted using Eq. (10) (top), the neural network (center), and the
random forest (bottom) from [19]. The values corresponding to the 8119 virtual mi-
crostructures (blue), to the cutouts from sample S1 (cyan), and to the cutouts from
sample S2 (green) are represented in different colors. The right column shows a zoom
to the square [0.33, 0.53]2.



5.2 Effective Diffusivity

The diffusion process over time of a particle concentration u with intrinsic dif-
fusivity D0 in the pore phase can be analogously described to the conduction
process, i.e. by the diffusion equation

∂u

∂t
= Deff∆u, (11)

where Deff denotes the effective diffusivity of the pore space. Due to the analogy
between effective diffusivity and effective conductivity, the following relationship

M = ε
Deff

D0
(12)

holds. A random-walk particle-tracking algorithm [12] is applied in order to
simulate Deff for the previously described cubic cut-outs. This method simulates
a large number K of independent random walks ri(t) = (ri,x(t), ri,y(t), ri,z(t))
over time in the pore phase, where ri(t) is the position of the i-th random-walk
at time t > 0. Then, the normalized effective diffusion coefficient Deff/D0 is
defined by

Deff

D0
= lim
t→∞

1

2KD0

∂

∂t

K∑
i=1

ri,z(t)− ri,z(0)− 1

K

K∑
j=1

(rj,z(t)− rj,z(0))

2

. (13)

Note that ri,z(t) − ri,z(0) is the displacement of the i-th random-walk in z-
direction at time t. It is important to note that we consider only displacements
in z-direction since mean geodesic tortuosity τgeod and the constrictivity β are
computed in z-direction. The accuracy of the random-walk particle tracking
algorithm used for the simulation of Deff has been demonstrated in [35–37].

5.3 Results

For each of the two microstructures, we consider 64 (slightly overlapping) cu-
bic cutouts with sizes of 15 × 15 × 15µm3. The microstructure characteristics
ε, τgeod, β and Deff are computed for each of these cutouts, which allows to val-
idate the predictions for M = εDeff/D0 derived by virtual materials testing.
While the MAPE is 6% when using Eq. (10), it can be reduced using the pre-
dictions obtained by neural networks (2%) and random forests (2%). The neural
network and random forest, which are trained in [19], are used for the prediction
of M = εDeff/D0. The goodness-of-fit is visualized in Fig. 7. One can observe
that M = εDeff/D0 is slightly underestimated by Eq. (10). However, the devi-
ations are not larger than the ones from the virtual microstructures considered
in [19].



6 Conclusions

Virtual materials testing is a powerful tool to establish quantitative relationships
between microstructure characteristics and functional properties. An overview of
results obtained by virtual materials testing to predict effective conductivity by
volume fraction ε, mean geodesic tortuosity τgeod and constrictivity β is given.
The presented quantitative relationships enable the identification of improved
microstructures with respect to effective conductivity. Due to the mathemati-
cal analogy, the obtained results can be transferred from conduction processes
to Fickian diffusion in order to predict the effective diffusivity in porous mi-
crostructures. This is exemplarily demonstrated based on 3D image data of two
different microstructures from silica monoliths. The method of virtual materi-
als testing itself is not restricted to conduction processes or Fickian diffusion
in two-phase materials. It can also be used to investigate relationships between
microstructure characteristics and further functional properties, like e.g effective
permeability or mechanical stress-strain curves.
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12. Hlushkou, D., Hormann, K., Höltzel, A., Khirevich, S., Seidel-Morgenstern, A.,
Tallarek, U.: Comparison of first and second generation analytical silica mono-
liths by pore-scale simulations of eddy dispersion in the bulk region. Journal of
Chromatography A 1303 (2013) 28–38

13. Doyle, M., Fuller, T.F., Newman, J.: Modeling of galvanostatic charge and dis-
charge of the lithium/polymer/insertion cell. Journal of the Electrochemical Soci-
ety 140(6) (1993) 1526–1533

14. Holzer, L., Iwanschitz, B., Hocker, T., Keller, L., Pecho, O.M., Sartoris, G., Gasser,
P., Münch, B.: Redox cycling of Ni–YSZ anodes for solid oxide fuel cells: Influence of
tortuosity, constriction and percolation factors on the effective transport properties.
Journal of Power Sources 242 (2013) 179–194

15. Shikazono, N., Kanno, D., Matsuzaki, K., Teshima, H., Sumino, S., Kasagi, N.: Nu-
merical assessment of SOFC anode polarization based on three-dimensional model
microstructure reconstructed from FIB-SEM images. Journal of the Electrochem-
ical Society 157(5) (2010) B665–B672

16. Tippmann, S., Walper, D., Balboa, L., Spier, B., Bessler, W.G.: Low-temperature
charging of lithium-ion cells part I: Electrochemical modeling and experimental
investigation of degradation behavior. Journal of Power Sources 252 (2014) 305–
316

17. Gaiselmann, G., Neumann, M., Pecho, O.M., Hocker, T., Schmidt, V., Holzer, L.:
Quantitative relationships between microstructure and effective transport proper-
ties based on virtual materials testing. AIChE Journal 60(6) (2014) 1983–1999

18. Stenzel, O., Pecho, O.M., Holzer, L., Neumann, M., Schmidt, V.: Predicting ef-
fective conductivities based on geometric microstructure characteristics. AIChE
Journal 62 (2016) 1834–1843

19. Stenzel, O., Neumann, M., Pecho, O.M., Holzer, L., Schmidt, V.: Big data for
microstructure-property relationships: A case study of predicting effective conduc-
tivities. AIChE Journal 63(9) (2017) 4224–4232
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