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Abstract. We provide a parametric modelling approach suitable for various kinds of hier-
archical networks based on random geometric graphs. In these networks, we have two kinds
of components, so-called high-level components (HLC) and low-level components (LLC). Each
HLC is associated with a serving zone and all LLC within this area are connected to the corre-
sponding HLC. So-called sparse LLC networks, where only few LLC occur in the typical serving
zone, are a non-negligible subdomain when investigating hierarchical networks. Therefore, we
supply distributional results for structural characteristics where two LLC are independently
and uniformly distributed along the segment system of the typical serving zone. In particular,
we are interested in the joint distribution of three quantities, namely the length of the joint
part of the shortest paths from the LLC to the HLC as well as the lengths of the correspond-
ing disjoint remaining parts. In order to provide a parametric, three-dimensional distribution
function for these random variables, we utilise a pseudo-maximum likelihood approach. More
precisely, we fit parametric approximation formulas to the marginal density functions as well
as parametric copula functions which match with the observed correlation structure. We also
provide an asymptotic result for the joint distribution of the connection lengths as the size of
the typical cell increases unboundedly. This general modelling approach is explicitly explained
for the case that the random geometric graph is formed by the edges of random tessellations.

1. Introduction

All kinds of network systems, e.g. transport and traffic networks, telecommunication net-
works, electricity networks and even networks in materials science, depend on the nodes and
connection paths between these nodes [3, 19]. From the mathematical point of view, these
networks can be represented by several kinds of geometric graphs, provided that the networks
fulfill certain conditions. For various – partly very different – reasons, people are interested in
point-to-point distances in such graphs which are measured along the connecting edge system
between the nodes of the network. In the present paper, we focus on a special kind of hier-
archical networks whose components are located on the edge system of a random geometric
graph and present a parametric modelling approach for multivariate point-to-point distances.
In particular, our networks can be decomposed into two levels of hierarchy, i.e., path connec-
tions within those networks are always investigated between high-level components (HLC) and
low-level components (LLC). For instance, in the context of telecommunication networks, HLC
correspond to wire-centre-stations whereas LLC represent service-area-interfaces or subscribers.
For an exhaustive investigation of large and complex fixed access telecommunication networks
in urban and also rural regions, it is not sufficient to consider just dense LLC networks, i.e.,
networks with numerous low-level components within a serving zone as we did for instance in
[21]. It is also necessary to take networks into account where only few LLC are located within
a supply area of a corresponding HLC. Such networks are called sparse LLC networks. Recall
that tracing the shortest paths from each LLC in one serving zone to the corresponding HLC
will yield a natural tree structure, see [20, 21]. For the simplest cases of sparse LLC networks,
e.g., for two LLC within an HLC’s serving zone, it is – in contrast to the dense LLC network
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– relatively easy to provide a complete description of the corresponding shortest-path tree.
Complete description means explicitly considering each occurring path from an LLC to the
HLC, something which is in the dense LLC network not possible because of the large number
of LLC nodes. The main goal of the present paper is to fully describe the shortest-path tree
G for a sparse LLC network consisting of two LLC. In particular, this goal can be achieved
by investigating the three random variables M1∧2, denoting the length of the joint part of the
shortest paths from the LLC to the HLC, as well as M1 and M2, representing the lengths of
the corresponding disjoint remaining parts. Furthermore, we show that for an unboundedly
increasing size of the serving zone, the asymptotic distribution of the shortest-path tree admits
a simple geometric description. Regarding asymptotic properties of shortest-path trees of dense
LLC networks, we refer to [11, 21].
The paper is organised as follows. Section 2 provides basic notation and mathematical tools
of stochastic geometry used in the present paper. In particular, the flexible and established
stochastic subscriber line model is briefly recalled. Besides, a suitable modelling approach for
a parametric three-dimensional joint distribution function of M = (M1,M2,M1∧2) is given.
Then, in Section 3, we show the results of our modelling approach. Approximative formulas for
the univariate marginal densities of M as well as copula functions are presented. Furthermore,
besides visual comparison to empirical data, we provide multivariate test results on equality of
distribution in order to validate our modelled data. In Section 4, we investigate the limiting
distributional behaviour of G as the linear intensity of the HLC tends to 0. Finally, Section 5
concludes the paper and gives an outlook to possible future research.

2. Mathematical Framework and Modelling Approach

2.1. The stochastic subscriber line model. During the last years, the stochastic subscriber
line model (SSLM) has turned out to be a suitable and reliable tool for modelling fixed access
networks. For the convenience of the reader, the most important characteristics are listed and
briefly discussed in the following. For details on this already thoroughly investigated stochastic
model, the reader is referred to [20, 21] and also [26]. Stochastic geometry with a variety of
useful characteristics and features can also be utilised to provide related models which frequently
play an important role in the analysis of mobile telecommunication networks [2] and also the
assessment of traffic incident risks [22].

2.1.1. Underlying road system. The underlying road system, along which the cables of the
telecommunication network are installed, is represented by a stationary random tessellation T
defined on some probability space (Ω,F ,P). In the present paper, we assume T to be either
a Poisson-Voronoi tessellation (PVT), a Poisson-Delaunay tessellation (PDT) or a Poisson line
tessellation (PLT). These types of tessellations turned out to represent the underlying road

system sufficiently well [21]. The edge system of T is denoted by T (1), its length intensity is

given by γ = E ν1(T (1) ∩ [0, 1]2), where ν1 denotes the one-dimensional Hausdorff measure. For
the analysis of connection lengths in telecommunication networks, it is useful to investigate the
network distribution from the perspective of a randomly chosen access point on the road system.
This can be made precise by defining the Palm version T ∗ of T . Its distribution is given by the
representation formula

Eh(T ∗) =
1

γ
E
Z
T (1)∩[0,1]2

h(T − x)ν1(dx),

where h : T → [0,∞) is any measurable function and T denotes the family of tessellations in
R2. Detailed information about these random geometric graphs can be found in [6, 24].

2.1.2. High-level components. Considering the Palm version T ∗ corresponds to assuming that
an HLC is located at the origin. The remaining HLC are modelled by a Cox point process XH

whose atoms are located along T ∗,(1), the edge set of T ∗. The random intensity measure of this
Cox point process is proportional to ν1 on T ∗,(1), i.e., EXH(B) = λ`Eν1(T ∗,(1) ∩ B) for some

linear intensity λ` and some Borel set B ⊂ R2. In other words, given T ∗,(1) the point process
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XH is a homogeneous Poisson point process on T ∗,(1). Detailed, additional information about
various types of point processes can be found in [7] and [13].

2.1.3. Typical serving zone. The typical serving zone Ξ∗H and the typical segment system S∗H
are loosely speaking representatives for all serving zones (the supply areas of the HLC) and their
corresponding segment systems of a city. Formally, Ξ∗H is the zero-cell of the Voronoi tessellation

induced by XH∪{o}, where o = (0, 0) denotes the origin. Besides, S∗H = Ξ∗H∩T ∗,(1). Additional
information about Palm theory and typical marks can be found in [6, 7]. In the following, the
segments of S∗H are denoted by R1, . . . , RN . Note that the number N of segments may be
different from one realisation of S∗H to another one. Thus, N is a random variable, as well.

2.1.4. Low-level components. Modelling LLC in sparse networks is a little different to the
method used in the SSLM so far. We put a fixed small number of LLC – in the present paper
two – independently and uniformly distributed along S∗H , i.e., for the locations Li, i ∈ {1, 2}, it
holds

Li ∼
ν1(· ∩ S∗H)

ν1(S∗H)
.

In order to simulate these Li, we proceed in the following way.

(i) Simulate Λi ∼ U [0,
PN
j=1 ν1(Rj)].

(ii) Set eΛi = Λi −
PDi
j=1 ν1(Rj) where Di = max {k : 0 ≤ k ≤ N − 1,

Pk
j=1 ν1(Rj) < Λi}.

(iii) Take the two end points PB,i = (xB,i, yB,i) and PE,i = (xE,i, yE,i) of the (Di + 1)-th
segment of S∗H .

(iv) Put Li = (xB,i, yB,i) + eΛi · (xE,i − xB,i, yE,i − yB,i).
2.1.5. Shortest-path tree. The shortest-path tree in a dense LLC network is roughly speaking a
rearrangement of the typical segment system S∗H [21]. In such a network, following the paths
from all points in S∗H to the origin o in the typical serving zone Ξ∗H induces a natural tree
structure. Note that shortest paths can leave Ξ∗H . Similarly, in a sparse LLC network with a
fixed number of LLC in Ξ∗H , the shortest-path tree G is given by following the paths from the
LLC to the origin. If shortest paths do not leave Ξ∗H , then G is a strict subset of S∗H , see Figure
2.1. We stress that also in the sparse scenario, shortest paths can leave Ξ∗H and therefore, in
Monte Carlo simulations it is not enough to only generate S∗H but the tessellation needs to be
constructed also in some suitable environment.

Figure 2.1. Shortest-path tree G in a sparse LLC network with two LLC as
union of the orange and green branches fulfilling G ( S∗H (dashed)

Knowing the three quantities length of the joint part of the shortest paths from the LLC to
the origin as well as the lengths of the corresponding disjoint remaining parts gives us the whole
shortest-path tree in the sparse scenario.
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2.2. Modelling approach for a direct simulation of the shortest-path tree. In the
following, we provide an approach to directly simulate the shortest-path tree G in a sparse LLC
network by means of parametric copulas. This enables us to avoid time-consuming Monte Carlo
simulations with subsequently extracting needed information out of S∗H .

2.2.1. A random vector representing the shortest-path tree. As already mentioned in Section 2.1,
in the present paper, we restrict the sparse LLC network to scenarios with only two occurring
LLC. Nevertheless, this configuration already leads to quite substantial results. In the following,
we write p(o, Li) for the shortest path from the origin o to the LLC Li, i ∈ {1, 2}, in the graph-

theoretic sense, i.e., the shortest point-to-point connection measured along T ∗,(1). Then, we
define the random variables M1,M2 and M1∧2, depending on the locations of both LLC, as
follows. We put

M1 = ν1(p(o, L1) \ (p(o, L1) ∩ p(o, L2))),

M2 = ν1(p(o, L2) \ (p(o, L1) ∩ p(o, L2)))

and

M1∧2 = ν1(p(o, L1) ∩ p(o, L2)).

Besides, we define the trivariate random vector M = (M1,M2,M1∧2). The main goal of
the present paper is to find a parametric three-dimensional joint distribution of M in order to
have the ability of directly sampling the shortest-path tree G in a sparse LLC network, without
having to simulate the typical serving zone and its corresponding segment system. Note that
for sparse LLC networks with three or more LLC, it is difficult to recover the tree structure
from the edge lengths of the tree. However, if only two LLC are located on the typical segment
system, then also the structure of the tree is uniquely determined by M1, M2 and M1∧2. Three
possible scenarios are explained in Section 3.

2.2.2. Preprocessing extracted data and subsequent pseudo-maximum-likelihood approach. Due
to some peculiarities in the structure of the realisations of M which are obtained by extraction
out of S∗H , we have to prepare the empirical data properly. First, since P(M1∧2 = 0) > 0, it
is reasonable to distinguish between the two cases M1∧2 = 0 and M1∧2 6= 0. If M1∧2 = 0, it
is sufficient to consider the bivariate distribution function of (M1,M2) and adding a zero in
the third component of M . Second, if M1∧2 6= 0, we have to distinguish between p(o, Li) ⊂
p(o, Lj) and p(o, Li) 6⊂ p(o, Lj) where i, j ∈ {1, 2} and i 6= j. In particular, we denote by
S the event (p(o, L1) ⊂ p(o, L2)) ∪ (p(o, L2) ⊂ p(o, L1)) and by Sc its complementary event,
(p(o, L1) 6⊂ p(o, L2)) ∩ (p(o, L2) 6⊂ p(o, L1)). If S occurs, again a two-dimensional distribution
function is sufficient, whereas if its complement Sc occurs, it is mandatory to consider a three-
dimensional copula, see Sections 3.2 and 3.3. Using the law of total probability, we can rewrite
the distribution function FM of M as follows.

FM (x) = P(M1 ≤ x1,M2 ≤ x2,M1∧2 ≤ x3)

= ρ1 · P (M1 ≤ x1,M2 ≤ x2,M1∧2 ≤ x3 |M1∧2 = 0)

+ρ2 · P (M1 ≤ x1,M2 ≤ x2,M1∧2 ≤ x3 | (M1∧2 6= 0) ∩ S)

+ρ3 · P (M1 ≤ x1,M2 ≤ x2,M1∧2 ≤ x3 | (M1∧2 6= 0) ∩ Sc) ,
where x = (x1, x2, x3) ∈ [0,∞)3, ρ1 = P(M1∧2 = 0), ρ2 = P((M1∧2 6= 0) ∩ S), ρ3 =
P ((M1∧2 6= 0) ∩ Sc) and

P3
k=1 ρk = 1. This partitioning of the distribution function FM into a

mixture of the conditional distributions

ϕ1(x) = P (M1 ≤ x1,M2 ≤ x2,M1∧2 ≤ x3 |M1∧2 = 0) ,

ϕ2(x) = P (M1 ≤ x1,M2 ≤ x2,M1∧2 ≤ x3 | (M1∧2 6= 0) ∩ S)

and

ϕ3(x) = P (M1 ≤ x1,M2 ≤ x2,M1∧2 ≤ x3 | (M1∧2 6= 0) ∩ Sc)
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has a great advantage which reads as follows. The mixing probabilities ρk, k ∈ {1, 2, 3}, can be
easily estimated by bρk =

# simulations of scenario k

n
,

and we can now proceed analogously to the 2D copula approach in [21] when fitting each of
the three distribution functions ϕk, k ∈ {1, 2, 3}, on its own. In the following, we exemplarily
describe our approach for ϕ3 where we use a 3D copula C of the form

ϕ3(x) = C(FM1(x1), FM2(x2), FM1∧2(x3)). (2.1)

Its corresponding density function is given by

c(u1, u2, u3) =
∂3

∂u1∂u2∂u3
C(u1, u2, u3), (2.2)

where FM1 , FM2 and FM1∧2 denote the conditional marginal distribution functions of M1, M2

and M1∧2 given {M1∧2 6= 0} ∩ Sc and where u1, u2, u3 ∈ [0, 1]. The cases ϕ1 and ϕ2 (note
again that we use 2D copulas here, see Sections 3.1 and 3.2) can be treated analogously in two
dimensions.

In order to obtain a parametric representation formula for ϕ3, let {(M1,i,M2,i,M1∧2,i)}1≤i≤n
be an i.i.d. sample of sample size n. Furthermore, assume that we have parametric models for
the conditional marginal distribution and density functions FM1 , fM1 of M1 (with parameter
ζ1), FM2 , fM2 of M2 (with parameter ζ2), FM1∧2 and fM1∧2 of M1∧2 (with parameter ζ3), all
conditioned on the event {M1∧2 6= 0} ∩ Sc. In particular, this means that we just consider the
distribution and density functions of a subset of the total sample {(M1,i,M2,i,M1∧2,i)}1≤i≤n,
fulfilling {M1∧2 6= 0} ∩ Sc. Let I denote the set of all indexes i of this sample where {M1∧2 6=
0} ∩ Sc. Then, the cardinality of I is nbρ3. Additionally, we assume parametric models for the
3D copula in (2.2) with parameter ζ. Then, considering (2.1), the log-likelihood function is
given by

logL(ζ1, ζ2, ζ3, ζ)

=
X
i∈I

(log fM1(M1,i; ζ1) + log fM2(M2,i; ζ2) + log fM1∧2(M1∧2,i; ζ3)

+ log [c(FM1(M1,i; ζ1), FM2(M2,i; ζ2), FM1∧2(M1∧2,i; ζ3); ζ)]) .

(2.3)

Note that challenging numerical problems and time-consuming calculations occur when max-
imising the log-likelihood function (2.3) since all parameters are estimated at the same time.
In order to prevent these difficulties, we proceed as in [20, 21] and optimise in two steps by
first finding estimators for the parameters of the marginal densities and afterwards finding es-
timators for the copula function. This approach is called pseudo-maximum-likelihood approach.
After having found estimators for the parameters of the marginal densities by the commonly
used maximum-likelihood method, equation (2.3) can be simplified to

pseudo logL(ζ) =
X
i∈I

log
�
c(ÒFM1(M1,i), ÒFM2(M2,i), ÒFM1∧2(M1∧2,i); ζ)

�
, (2.4)

where ÒF· denotes the corresponding (conditional) empirical distribution function. Now, (2.4)
can be utilised in order to fit the copula parameter ζ to the data. An evaluation rule deciding
which copula is the most suitable one among a given set of copulas is Akaike’s information
criterion and is defined as

2p− 2 · pseudo logL(bζ), (2.5)

where p denotes the number of parameters in the model and bζ is the corresponding maximum-
likelihood estimator, see [20]. The smaller the value of (2.5) is, the better the copula fits our
data.
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3. Results

We present now results and parametric formulas which are obtained by using the modelling
approach of Section 2.2. In the following, we denote by Naka(r, s) the Nakagami distribution
whose density is given by

f(x; r, s) =
2rr

Γ(r)sr
x2r−1exp

�
−r
s
x2
�
,

where r, s, x > 0. Furthermore, we write Wei(k, α) for the Weibull distribution with density
function

f(x; k, α) =
k

α

�
x

α

�k−1

exp

�
−
�
x

α

�k�
,

where k, α, x > 0.

3.1. Scenario I: Shortest paths from L1 and L2 to o do not intersect each other. The
goal in this part of the work is to find a suitable parametric approximation formula for ϕ1, i.e.,
for the distribution of the random vector M under the condition that both paths p(o, L1) and
p(o, L2) do not intersect each other except at the origin.

Figure 3.1. Scenario I: Shortest-paths from L1 (orange) respectively L2 (green)
to o do not intersect each other except at o

As p(o, L1) ∩ p(o, L2) = {o}, we obtain M1 = ν1(p(o, L1)), M2 = ν1(p(o, L2)) and M1∧2 = 0,

see Figure 3.1. Note that obviously M1
D
= M2, as L1 and L2 are independently and uniformly

distributed along S∗H , where
D
= denotes equality in distribution.

3.1.1. Marginal densities for scenario I. For i ∈ {1, 2}, it turns out that Mi approximately
follows a Nakagami distribution, i.e. Mi ∼ Naka(r, s) with some shape parameter r and some
spread parameter s. Note that the parameters r and s depend on the type of T as well as on
the scaling parameter κ = γ

λ`
, see [26] for more information about this characteristic.

3.1.2. Copula for scenario I. In order to model the correlation structure between M1 and M2,
we decide to choose one of the following two-dimensional copulas: the elliptical ones of t-type
and Gaussian type as well as the five Archimedean copulas Gumbel, Frank, Ali-Mikhail-Haq,
Joe and Clayton. The reader is referred to [15] and [18] for more information about these well-
known copulas. The copula which fits the data best according to (2.5) is of Gumbel type. In
particular, we have the following representation

Gumbelψ1(u1, u2) = exp
�
−
�
(− log u1)ψ1 + (− log u2)ψ1

�1/ψ1
�
,

for some ψ1 ≥ 1 and u1, u2 ∈ [0, 1]. Note that the type of the copula does neither depend on the
underlying tessellation T nor on the scaling parameter κ. Furthermore, the copula parameter
ψ1 depends only negligibly on κ. However, it moderately depends on the type of T so that more
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precisely, we have ψ1 = ψ1(T ). In Section 4, the asymptotic distribution for the shortest-path
tree G is given as κ→∞. It has a simple interpretation in terms of the underlying mathematical
model and therefore we would be interested in investigating if this intuitive description is related
to the choice of the Gumbel copula.

3.2. Scenario II: Shortest-paths from L1 respectively L2 to o do intersect each other
– one path is fully contained in the other one. Next, we present a suitable parametric
approximation formula for ϕ2, i.e., for the distribution of the random vector M under the
condition that both paths p(o, L1) and p(o, L2) do intersect each other not only in the origin
but that one path is fully contained in the other one (see Figure 3.2).

Figure 3.2. Scenario II: Shortest-paths from L1 (orange) respectively L2

(green) to o do intersect each other – green path is fully contained in the orange
one

As

p(o, L1) ∩ p(o, L2) =

(
p(o, L2), if p(o, L2) ⊂ p(o, L1)

p(o, L1), if p(o, L1) ⊂ p(o, L2)
,

we easily obtain

M1 =

(
ν1(p(o, L1) \ p(o, L2)) > 0, if p(o, L2) ⊂ p(o, L1)

0, if p(o, L1) ⊂ p(o, L2)
,

M2 =

(
0, if p(o, L2) ⊂ p(o, L1)

ν1(p(o, L2) \ p(o, L1)) > 0, if p(o, L1) ⊂ p(o, L2)

and furthermore

M1∧2 =

(
ν1(p(o, L2)), if p(o, L2) ⊂ p(o, L1)

ν1(p(o, L1)), if p(o, L1) ⊂ p(o, L2)
.

3.2.1. Marginal densities for scenario II. When sampling S∗H via Monte Carlo simulations and
extracting M , we do not distinguish between L1 and L2 for reasons of comfort. As P(Mi =
0 | {M1∧2 6= 0} ∩ S) = 1

2 , in our sample we have disturbing effects when considering the
distribution of Mi, i ∈ {1, 2}. Therefore, we consider the random variable Z = max {M1,M2}.
It turns out that Z and M1∧2 approximately follow Weibull distributions, i.e. Z ∼Wei(k, α) and
M1∧2 ∼Wei(k′, α′) with some shape parameters k, k′ > 0 and some scale parameters α, α′ > 0
which all depend on both the scaling parameter κ as well as on the type of the underlying
tessellation T . In order to be able to provide a suitable parametric representation for the three-
dimensional (conditional) distribution ϕ2 by means of Z and M1∧2, one can put M1 = ΩZ and
M2 = (1−Ω)Z, where Ω is a Bernoulli-distributed random variable with success probability 1

2 .
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3.2.2. Copula for scenario II. The copulas which are taken into account for scenario II are the
same as in Section 3.1.2. The one which fits the data best according to (2.5) is the Frank copula.
In particular, we have the following representation

Frankψ2(u1, u2) = − 1

ψ2
log

�
1 +

(exp(−ψ2u1)− 1) (exp(−ψ2u2)− 1)

exp(−ψ2)− 1

�
,

for some ψ2 > 0 and u1, u2 ∈ [0, 1]. Since the correlation coefficient cor(M1∧2,max {M1,M2}) of
M1∧2 and max {M1,M2} is negative, we transformed the data vector (M1∧2,max {M1,M2}) into
(−M1∧2,max {M1,M2}) to be able to use more types of copulas. Clearly, this transformation
has to be reversed when directly creating samples of M .

3.3. Scenario III: Shortest-paths from L1 respectively L2 to o do intersect each
other – both paths have a different subpath. In this section, the goal is to find a suitable
parametric approximation formula for ϕ3, i.e., for the distribution of the random vector M
under the condition that both paths p(o, L1) and p(o, L2) do intersect each other not only in
the origin and that one path is not fully contained in the other one, see Figure 3.3.

Figure 3.3. Scenario III: Shortest-paths from L1 (orange) respectively L2

(green) to o do intersect each other – both paths have a different subpath

3.3.1. Marginal densities for scenario III. Again, as in scenario I, we have M1
D
= M2, since L1

and L2 are independently and uniformly distributed along S∗H . In particular, we approximately
have Mi ∼ Naka(r′, s′) for some r′ ≥ 0.5 and s′ > 0. Besides, we approximately have M1∧2 ∼
Wei(k′′, α′′) for some k′′, α′′ > 0. Note again that the parameters of the marginal densities
depend both on the scaling parameter κ as well as on the type of the underlying tessellation T .

3.3.2. Copula for scenario III. In contrast to Sections 3.1.2 and 3.2.2 where two-dimensional
Archimedean copulas of the form C(u1, u2) = η−1(η(u1) + η(u2)) with some generator η :
[0, 1] 7→ [0,∞] were sufficient for representing ϕ1 and ϕ2, we now have to go one step further
and use three-dimensional copula functions in order to obtain a parametric formula for ϕ3. A
first approach could be the usage of three-dimensional Archimedean copulas of the form

C(u1, u2, u3) = η−1(η(u1) + η(u2) + η(u3)), (3.1)

where η : [0, 1] 7→ [0,∞] denotes the generator with some suitable parameter τ . At first, similar
to Section 3.2.2, some transformation of the extracted data is needed as some Archimedean
copulas can only be used when positive correlation occurs. However, these three-dimensional
Archimedean copulas with one generator η yet turn out to be not flexible enough for our data.
In particular, we have

cor(FM1(M1), FM1∧2(M1∧2)) = cor(FM2(M2), FM1∧2(M1∧2))

6= cor(FM1(M1), FM2(M2)),
8



which is incompatible with the symmetry of (3.1), since different correlation coefficients yield
different parameters τ which in turn cause different generators η.

To allow for asymmetries, a second possibility to pass from two to three dimensions is the
usage of so-called nested Archimedean copulas with representation

C(u1, u2, u3) = η−1
1 (η1(η−1

2 (η2(u1) + η2(u2))) + η1(u3))

with generators η1, η2 : [0, 1] 7→ [0,∞] and suitable parameters τ1, τ2, see [12, 23]. However, a
very uncomfortable problem of nesting Archimedean copulas into each other is the fact that the
resulting structure is in general not a copula. In [12] and also [23], there are conditions under
which such nested Archimedean copulas result in a copula structure, again. The simplest case
of nesting two Archimedean copulas is nesting two Archimedean copulas of the same family,
of course. Due to [23], for the Gumbel and the Clayton family, the resulting structure is a
copula if the outer parameter τ1 is less or equal than the inner parameter τ2. In [12], even
further examples are provided. Unfortunately, for our data which was extracted from S∗H , these
copulas do not lead to satisfying results, either. The data is given in a way that the dependence
structure (i.e. the absolute value of the correlation coefficient) between M1 and M2 is sometimes
stronger and sometimes weaker than the one between M1∧2 and Mi, depending on κ and T .
Note that it is reasonable that the correlation of M1 and M2 build the inner part of the nested

copula as M1
D
= M2, so that the data should not be rearranged.

Nevertheless, as a third opportunity, we can take benefit from the three-dimensional elliptical
copulas of t-type or Gaussian type and indeed, they turn out to provide fairly good results.
According to (2.5), it turns out that the Gaussian copula fits to our data at least as good as
(and sometimes even better than) the t-copula. This may at first seem counterintuitive, noticing
that the Gaussian copula is a special case of the t-copula. However, after a second, closer look
to the results, it becomes clear that the considered t-copula can be approximated by a Gaussian
copula noticing that the respective degrees of freedom are sufficiently large. The latter one has
less parameters which in turn causes – for almost equal values of the log-likelihood functions –
smaller values of (2.5).

The Gaussian copula is given by

Gauss(ψ3,ψ4,ψ5)(u1, u2, u3) = ΦΣ

�
Φ−1(u1),Φ−1(u2),Φ−1(u3)

�
, (3.2)

where ΦΣ is the joint distribution function of a trivariate normal distribution with expectation
vector zero and covariance matrix equal to the correlation matrix Σ which is given by

Σ =

�
1 ψ3 ψ4

ψ3 1 ψ5

ψ4 ψ5 1

�
and where Φ−1 denotes the inverse of the distribution function of a standard normal distributed
random variable. Note that ψ4 = ψ5 and that the copula only depends on the correlation
coefficient vector ψ = (ψ3, ψ4) which in turn depends on κ and the type of T . In particular,
according to the choice of κ and T , we have ψ3 ∈ [0.15, 0.30] and ψ4 ∈ [−0.35,−0.10].

3.4. Model validation. In order to validate the three-dimensional model provided in the
present paper, we help ourselves by using the multivariate Wald-Wolfowitz two-sample test
[9] which we already had successfully applied in two dimensions within another framework, see
[21]. In particular, due to the fact that this test can be used in arbitrary dimensions d ≥ 2 and
since it is of increasing difficulty to visually compare two data sets in higher dimensions, the
Wald-Wolfowitz two-sample test is one suitable statistical tool to validate our data in a formally
correct, mathematical way. For the convenience of the reader, we shortly summarise the general
settings of the test. Denote by X1, . . . , Xn, Y1, . . . , Ym ∈ R3 independent trivariate vectors and
let furthermore X1, . . . , Xn ∼ FX and Y1, . . . , Ym ∼ FY for some arbitrary distribution functions
FX and FY . The null-hypothesis of the test is given by H0 : FX = FY , the alternative hypoth-
esis by H1 : FX 6= FY . Let S denote the number of disjoint subtrees resulting from erasing
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all edges of the minimal spanning tree (it is based on the joint sample X1, . . . , Xn, Y1, . . . , Ym)
with nodes from different samples. Besides, let D denote the number of edge pairs that share
a common node in this minimal spanning tree. Then, the test statistic TWW is given by

TWW =
S − ESÈ
Var(S|D)

,

where Var(S|D) = E(S2|D)− (E(S|D))2. In [9], it is stated that under H0, TWW is asymptoti-
cally N(0, 1)-distributed and therefore, H0 is rejected if

|TWW| > z1−α/2,

where z1−α/2 denotes the 1− α/2-quantile of the standard normal distribution.
In the following, we provide test results for various constellations of the underlying tessellation

T and the scaling parameter κ for scenarios I, II and III. Note that in scenario II, we consider
without loss of generality M2 = 0. Figure 3.4 displays on the left-hand side the data points
extracted out of S∗H for scenario I (green) and scenario II (red), considering an underlying PDT
with scaling parameter κ = 120. On the right-hand side, data points by directly sampling from
the fitted parametric copulas and marginal distributions are shown. The reader can observe
that both scatterplots match quite well.

Figure 3.4. 2D-scatterplots of scenario I (green) and II (red) data points, ex-
tracted from S∗H with PDT, κ = 120 (left) and directly sampled from the copula
model (right)

Table 3.1 shows results of the Wald-Wolfowitz two-sample test in scenario I on the left-hand
side and scenario II on the right-hand side for various constellations of T and κ. In each case,
the null hypothesis H0 is clearly not rejected since the values of |TWW| are always smaller than
z0.975 = 1.96. Note that the power of the test used in this context is unfortunately not very high.
However, since alternatives are rather barely available for vectorial datasets, we nevertheless
make use of it.

Figure 3.5 displays on the left-hand side the data points extracted out of S∗H for scenario
III, again considering an underlying PDT with scaling parameter κ = 120. On the right-hand
side, data points obtained by directly sampling from the fitted parametric copulas and marginal
distributions are shown. Again, the reader can observe that both scatterplots match quite well.

In Table 3.2, the reader can observe results of the Wald-Wolfowitz two-sample test for various
constellations of T and κ. Again, in each case, the null hypothesis H0 is clearly not rejected.
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Table 3.1. Results of Wald-Wolfowitz test for scenarios I (left) and II (right)

T κ |TWW|
PVT 20 0.0779
PVT 625 0.0716
PDT 40 0.0176
PDT 120 0.0788
PLT 90 0.0137
PLT 825 0.0190

T κ |TWW|
PVT 20 0.0766
PVT 625 0.0694
PDT 40 0.0621
PDT 120 0.0317
PLT 90 0.1156
PLT 825 0.0863

Figure 3.5. 3D-scatterplots of scenario III data points, extracted from S∗H with
PDT, κ = 120 (left) and directly sampled from the copula model (right)

Table 3.2. Results of Wald-Wolfowitz test for scenario III

T κ |TWW|
PVT 20 0.0045
PVT 625 0.0320
PDT 40 0.0490
PDT 120 0.0541
PLT 90 0.0172
PLT 825 0.0674

Finally, Figure 3.6 displays on the left-hand side data points extracted out of S∗H , again
considering an underlying PDT with scaling parameter κ = 120. Besides, on the right-hand
side, the corresponding directly sampled data points are shown.

Summarising the validation obtained by Figures 3.4, 3.5 and 3.6 as well as Tables 3.1 and 3.2,
we can state that the suggested modelling approach in the present paper for a direct sampling
of shortest-path trees in sparse LLC networks seems to be adequate.

11



Figure 3.6. 3D-scatterplots of scenario I (green), scenario II (red) and scenario
III (blue) data points, extracted from S∗H with PDT, κ = 120 (left) and directly
sampled from the copula model (right)

4. A Limit Theorem for Shortest-Path Trees

The parametric copula approach proposed in this paper for directly simulating shortest-path
trees in sparse LLC networks turns out to be a suitable, powerful and quick sampling possibility
if the scaling parameter κ is neither too small nor too large, i.e. κ ∈ [10, 1000]. However, one
may ask if a validation of the approach is still possible for other values of κ, e.g. as κ → ∞.
Indeed, in this case Monte Carlo simulations become more and more time-consuming and beyond
a certain threshold for κ, it is not reasonable to proceed in such a way. Therefore, we provide
a limit distribution for the shortest-path tree if κ → ∞. In the following, we assume that γ is
fixed and let λ` → 0.

For the investigation of the asymptotic scenario as λ` → 0, it is helpful to make the
dependence on λ` explicit in the notation of relevant quantities. In particular, we write
Li,λ` ,Mi,λ` ,M1∧2,λ` , XH,λ` and Ξ∗H,λ` instead of Li,Mi,M1∧2, XH and Ξ∗H , respectively. For

i ∈ {1, 2}, we write M ′i,λ` = Mi,λ` +M1∧2,λ` = ν1(p(o, Li,λ`)) for the length of the shortest path

from the i-th subscriber to the root. Note that as λ` → 0, the contribution of M1∧2,λ` to M ′i,λ`
becomes negligible. Therefore, knowing the asymptotic behaviour of (M ′1,λ` ,M

′
2,λ`

) is sufficient
for describing the asymptotic shortest-path tree associated with two LLC. Finally, the asymp-
totic behaviour of an appropriately scaled version of the random vector (M ′1,λ` ,M

′
2,λ`

) can be

described as follows. For i ∈ {1, 2}, consider the random variable M ′i = ξ|L′i| where ξ is the
so-called time constant appearing in [26, Theorem 3.2]. Furthermore, the random vectors L′1, L

′
2

are independent and conditionally uniformly distributed in Ξ∗ given Ξ∗, where Ξ∗ denotes the
typical Poisson-Voronoi cell induced by a Poisson point process with intensity γ. This uniform
distribution is due to two intuitive facts. First, as λ` tends to 0, the scaled typical serving zone√
λ`Ξ

∗
H,λ`

converges in distribution to the typical Poisson-Voronoi cell Ξ∗. Second, the scaled

road system
√
λ`T

∗,(1) gets infinitely dense, so that LLC are located in the whole cell.

Theorem 4.1. As λ` → 0, the random vector (
√
λ`M

′
1,λ`

,
√
λ`M

′
2,λ`

) converges to (M ′1,M
′
2) in

distribution.

In order to prove Theorem 4.1, we first recall from [26] that
√
λ`(M

′
i,λ`
−ξ|Li,λ` |) for i ∈ {1, 2}

tends to 0 in probability as λ` → 0. Therefore, it remains to determine the asymptotic behaviour
12



of the bivariate random vector �È
λ`|L1,λ` |,

È
λ`|L2,λ`

|
�
.

Our first goal is to show that the random vector (
√
λ`L1,λ` ,

√
λ`L2,λ`) converges in distribution

to (L′1, L
′
2) consisting of two independent random variables L′1, L

′
2 which are conditionally uni-

formly distributed inside the typical Poisson-Voronoi cell Ξ∗, given Ξ∗. To prove this claim,
we proceed in two steps. First, we show that using a suitable coupling, (

√
λ`L1,λ` ,

√
λ`L2,λ`) is

asymptotically equivalent with (
√
λ`L

′′
1,λ`

,
√
λ`L

′′
2,λ`

), where conditioned on T ∗ and Ξ∗H,λ` , the

random variables L′′1,λ` , L
′′
2,λ`

are independent and uniformly distributed in Ξ∗H,λ` . Then, in the

second step, we show that using a further suitable coupling, (
√
λ`L

′′
1,λ`

,
√
λ`L

′′
2,λ`

) is asymptot-

ically equivalent with (L′1, L
′
2). To make this more precise, we use the following two auxiliary

results which are proven in Appendix B.

Lemma 4.2. There exists a common probability space (Ω,F ,P) on which (L1,λ` , L2,λ`) and
(L′′1,λ` , L

′′
2,λ`

) are given such that for every i ∈ {1, 2} and ε > 0,

lim
λ`→0

P
�È

λ`|Li,λ` − L
′′
i,λ`
| ≥ ε

�
= 0.

Lemma 4.3. There exists a common probability space (Ω,F ,P) on which (L′1, L
′
2) and (L′′1,λ` , L

′′
2,λ`

)

are given such that for every i ∈ {1, 2} and ε > 0,

lim
λ`→0

P
�
|L′i −

È
λ`L

′′
i,λ`
| ≥ ε

�
= 0.

Using Lemmas 4.2 and 4.3, the proof of Theorem 4.1 is now straightforward.

Proof of Theorem 4.1. As mentioned above, for i ∈ {1, 2}, the scaled difference
√
λ`(M

′
i,λ`
−

ξ|Li,λ` |) tends to 0 in probability as λ` → 0. Moreover, Lemmas 4.2 and 4.3 imply that√
λ`|Li,λ` | − |L′i| tends to 0 in probability as λ` → 0, where again i ∈ {1, 2} is arbitrary.

Combining these observations shows that for every i ∈ {1, 2} the random variable
√
λ`M

′
i,λ`

converges to M ′i in probability as λ` → 0. �

5. Conclusions and Outlook

In the present paper, we provide a three-dimensional, parametric copula approach to fully
describe the distribution of shortest-path trees in sparse LLC networks with two LLC. In partic-
ular, knowing the distribution of the random vector M = (M1,M2,M1∧2) is sufficient to achieve
this goal. Its distribution function FM (x) can be represented as a mixture ρ1 ·ϕ1(x)+ρ2 ·ϕ2(x)+
ρ3 · ϕ3(x) of the three conditional distributions ϕ1(x), ϕ2(x) and ϕ3(x) with mixing probabili-
ties ρ1 = P(M1∧2 = 0), ρ2 = P((M1∧2 6= 0) ∩ S) and ρ3 = P ((M1∧2 6= 0) ∩ Sc). Each trivariate
distribution function ϕi, i ∈ {1, 2, 3}, is approximated by a suitable parametric copula function
combining the corresponding parametric marginal distribution functions. More precisely, for ϕ1,
we have a Gumbel copula combining Nakagami-distributed marginals. Additionally, for ϕ2, a
Frank copula adds the correlation structure to the corresponding Weibull-distributed marginals,
whereas for ϕ3, a Gaussian copula joins the corresponding Nakagami- and Weibull-distributed
marginals. Visual validation together with the multivariate Wald-Wolfowitz test proved our
modelling approach to be suitable. Finally, we provided a limit theorem for the asymptotic
behaviour of the shortest-path tree G as the linear intensity λ` of the HLC tends to 0.
A possibility for prospective work is the extension of sparse LLC networks to three or even more
LLC. Note that with increasing number of LLC, the number of possible scenarios concerning
joint shortest subpaths to the corresponding HLC, equal or different directions of incoming
paths into HLC, etc. also increases. This can be very cumbersome for a moderately large
number of LLC. Besides, one could extend the types of models representing the underlying in-
frastructure by replacing PVT, PDT and PLT, respectively, by other random geometric graphs
such as STIT-tessellations, β-skeletons, etc. see e.g. [1, 5, 16, 25]. In Section 3, it was shown
the type of the optimal copula in each of the considered network scenarios does not depend on
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the choice of the underlying tessellation. Therefore, it would be interesting to investigate if this
universality is related to the simple mathematical description of the asymptotic distribution of
the shortest-path tree stated in Theorem 4.1.
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Appendix A. Some preliminary results

In order to prove Lemmas 4.2 and 4.3, we first derive some preliminary results that may
also be of independent interest. On the one hand, we show that the length of the segment
system T ∗,(1) in large sampling windows concentrates around its expected value. To be more
precise, Lemma A.3 provides a stretched-exponential concentration result corresponding to large
deviations of the segment lengths. On the other hand, we show that asymptotically, the typical
Cox-Voronoi cell Ξ∗H,λ` approaches a typical Poisson-Voronoi cell, which is independent of T ∗.
This is achieved by using a coupling construction, which is presented in Lemma A.5.

A.1. Concentration result for large deviations of total edge lengths. In this subsection,
we present a stretched-exponential large-deviation estimate for the total length ν1(T (1)∩Qs(o)),
where Qs(o) = [−s/2, s/2]2 denotes the square of side length s centered at o. As this concen-
tration result seems not to be covered by the existing approaches in stochastic geometry (see
e.g. [4, 8]), it may be of interest to note that our proof generalises also to dimensions larger than
2. We say that a [1,∞)-indexed family of events {As}s≥1 occur with high probability (whp) if

lim inf
s→∞

log(− log(1− P(As)))

log s
> 0. (A.1)

Similarly, we say that a sequence of events {An}n∈{1,2,...} occur with high probability (whp) if

lim inf
n→∞

log(− log(1− P(An)))

log n
> 0. (A.2)

The following concentration result is particularly useful for our purposes.

Lemma A.1. Let ε > 0 and let {Yn}n≥1 be a sequence of i.i.d. non-negative random vari-
ables such that Y1 has a finite stretched-exponential moment, i.e., there exists α ∈ (0, 1) with
Eexp(Y α

1 ) <∞. Then, for n ≥ 1, the events��� nX
i=1

Yi − nEY1

��� ≤ nε (A.3)

occur whp.

Note that the statement of Lemma A.1 is a special case of a stretched exponential concen-
tration result due to J. V. Linnik and we refer the reader to the original paper [14, Theorem 2]
for details.

In order to derive a concentration result for large deviations of the total edge length in a
finite sampling window, it is convenient to consider graphs that satisfy a suitable stabilisation
condition. To be more precise, in the following g : N → T is a measurable motion-covariant
mapping, where N denotes the family of all locally finite subsets of R2 endowed with the smallest
σ-algebra N that contains all open sets of the Fell topology on N, see [24]. As in [10], in
the present setting we require the existence of a suitable radius of stabilisation. Let X be a
stationary, m-dependent point process in R2. Putting Z+,∞ = {1, 2, . . .} ∪ {∞}, in the present
setting, a radius of stabilisation is defined to be an N -measurable function b : N→ Z+,∞ such
that with probability 1, it holds that

g(X) ∩Q1(o) = g
�
(X ∩Qb(X)(o)) ∪ ψ

�
∩Q1(o) (A.4)
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for all locally finite ψ ⊂ R2 \Qb(X)(o), and that

min{b(X), n+ 1} = min{b(X ∩Qn(o) ∪ ψ), n+ 1}, (A.5)

for all n ∈ [1,∞) ∩ Z and locally finite ψ ⊂ R2 \Qn(o). Then, we require that

(T) the events {b(X) ≤ s} ∩ {ν1(g(X) ∩Q1(o)) ≤ s} occur whp.

Using these preliminaries, we now prove the desired stretched-exponential large-deviation result
for ν1(T (1) ∩Qs(o)).

Lemma A.2. Let ε > 0 and X be a stationary, m-dependent point process in R2. Let g : N→ T
be an N -measurable and motion-covariant mapping such that T = g(X) satisfies condition (T).

Then, for s ≥ 1 the events |ν1(T (1) ∩Qs(o))− γs2| ≤ εs2 occur whp.

Proof. Our idea of proof is based on a Bernstein-type approach, see [17]. We only prove the
assertion on upper large deviations and note that the claim for lower large deviations can be
obtained similarly. First, put s1 = d8

√
se and s2 = ds/s1es1. Subdivide Qs2(o) into k1 =

(s2/s1)2 congruent sub-squares Q′1, . . . , Q
′
k1

of side length s1. Next, further subdivide each Q′i
into k2 = s2

1 congruent sub-squares Qi,1, . . . , Qi,k2 of side length 1 and write xi,j for the centre
of the square Qi,j , see Figure A.1.

Qs2(o)

Q′i

s1

1
xi,j

Figure A.1. Subdivision of Qs2(o)

Observe that by choosing an appropriate indexing, we can partition the set of sub-squares¦
Qi,j

©
1≤i≤k1
1≤j≤k2

into k2 families

{Q1,1, Q2,1, . . . , Qk1,1}, . . . , {Q1,k2 , Q2,k2 , . . . , Qk1,k2},

such that |xi1,j − xi2,j | ≥ s1 for all j ∈ {1, . . . , k2} and all i1, i2 ∈ {1, . . . , k1} with i1 6= i2. If

ν1(T (1)∩Qs(o)) ≥ (γ+ε)s2, then
Pk1
i=1 ν1(T (1)∩Qi,j0) ≥ (γ+ε)s2/k2 for some j0 ∈ {1, . . . , k2}.

Because of

P
� k2[
j0=1

n k1X
i=1

ν1(T (1) ∩Qi,j0) ≥ (γ + ε)s2/k2

o�
≤ k2P

� k1X
i=1

ν1(T (1) ∩Qi,1) ≥ (γ + ε)s2/k2

�
,

it suffices to consider the case j0 = 1. Putting

C(1)
s =

¦
g
�
X ∩Q3

√
s(x1,1)

�
∩Q1,1 = g(X) ∩Q1,1

©
,

we conclude from condition (T) that the events {C(1)
s }s≥1 occur whp. Write Ui = ν1

�
g(X) ∩

Qi,1
�
, Vi = ν1

�
g(X ∩Q3

√
s(xi,1)) ∩Qi,1

�
and observe that by stationarity, the marginal distri-

bution of Ui does not depend on i or s. Also note that the random variables V1, . . . , Vk1 are
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i.i.d. Finally, for i ∈ {1, . . . , k1} we put Wi = ν1

�
g(X(i)) ∩ Qi,1

�
, where X(1), . . . , X(k1) are

independent copies of X. Then,

P
� k1X
i=1

Ui ≥ (γ + ε)s2/k2

�
≤ k1(1− P(C(1)

s )) + P
� k1X
i=1

Vi ≥ (γ + ε)s2/k2

�
≤ 2k1(1− P(C(1)

s )) + P
� k1X
i=1

Wi ≥ (γ + ε/2)k1

�
,

provided that s ≥ 1 is sufficiently large. Since k1 ≥ s1/4 for all sufficiently large s ≥ 1, an
application of Lemma A.1 completes the proof. �

Remarks. It is not difficult to prove a large-deviation result for the case of the isotropic Pois-
son line tessellation directly. Furthermore, for the Poisson-Delaunay tessellation and Poisson-
Voronoi tessellation, it is shown in [10] that the conditions of Lemma A.2 are satisfied.

Next, we observe that we may pass from ν1(T (1) ∩Qs(o)) to ν1(T ∗,(1) ∩Qs(o)).

Lemma A.3. Suppose that for every ε > 0 it holds that the events |ν1(T (1)∩Qs(o))−γs2| ≤ εs2

occur whp. Then, for every ε > 0,

lim inf
s→∞

log
�
− log

�
supx∈R2 P(|ν1(T ∗,(1) ∩Qs(x))− γs2| ≥ εs2

���
log s

> 0. (A.6)

Proof. Indeed, for all sufficiently large s > 0 the Cauchy-Schwarz inequality yields

P
�
ν1(T ∗,(1) ∩Qs(x)) ≥ γs2 + εs2

�
= γ−1E

Z
T∩Q1(o)

1ν1(T (1)∩Qs(x+y))≥(γ+ε)s2dy

≤ γ−1E
Z
T∩Q1(o)

1ν1(T (1)∩Qs+2(x))≥(γ+ε/2)(s+2)2dy

= γ−1Eν1

�
T (1) ∩Q1(o)

�
1ν1(T (1)∩Qs+2(x))≥(γ+ε/2)(s+2)2

≤ γ−1
�
Eν1(T (1) ∩Q1(o))2

�1/2P
�
ν1(T (1) ∩Qs+2(x)) ≥ (γ + ε/2)(s+ 2)2

�1/2

= γ−1
�
Eν1(T (1) ∩Q1(o))2

�1/2P
�
ν1(T (1) ∩Qs+2(o)) ≥ (γ + ε/2)(s+ 2)2

�1/2
.

Using an analogous computation for deviations in the other direction proves Lemma A.3. �

A.2. Asymptotic independence of T ∗ and the Cox-Voronoi cell. A key step in the
derivation of the asymptotic behavior of

�√
λ`M

′
1,λ`

,
√
λ`M

′
2,λ`

�
is the asymptotic independence

of T ∗ and the zero-cell in the Voronoi tessellation based on XH,λ` ∪ {o}. Recall that we assume
that T is a Poisson-Delaunay tessellation, Poisson-Voronoi tessellation or a Poisson line tessella-
tion. First, we show that there is a good chance that the Cox-Voronoi cell at the origin contains
a given small square and is contained in a given large square. Recall that XH,λ` denotes a Cox
process on T ∗ with linear intensity λ` > 0 and Ξ∗H,λ` is the zero-cell of the Voronoi tessellation

based on XH,λ` ∪ {o}. For λ` > 0 and r > 1 put

E
(1)
r,λ`

=
¦
Q1/r(o) ⊂

È
λ`Ξ

∗
H,λ`
⊂ Qr(o)

©c
.

In the following, Br(x) = {y ∈ R2 : |y − x| ≤ r} denotes the disk with radius r > 0 centered at
x ∈ R2.

Lemma A.4. It holds that limr→∞ lim supλ`→0 P
�
E

(1)
r,λ`

�
= 0.

Proof. SubdivideQ
rλ
−1/2
`

(o) into 25 congruent sub-squaresQλ`,1, . . . , Qλ`,25 of side length rλ
−1/2
` /5

such that intQλ`,i ∩ intQλ`,j = ∅ if i 6= j, where intQλ`,i denotes the topological interior
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of Qλ`,i. Then, it is easy to check that the event {Ξ∗H,λ` 6⊂ Q
rλ
−1/2
`

(o)} cannot occur if

mini∈{1,...,25}#(XH,λ` ∩Qλ`,i) ≥ 1, where # denotes cardinality. Observe that by Lemma A.3,

lim
λ`→0

P
�

min
i∈{1,...,25}

ν1(T ∗,(1) ∩Qλ`,i) ≤ γr
2λ−1

` /50
�

= 0.

Furthermore, if Nµ denotes a Poissonian random variable with expectation µ > 0, then

lim
r→∞

sup
µ≥γr2/50

P(Nµ = 0) = 0,

so that limr→∞ lim supλ`→0 P
�
Ξ∗H,λ` 6⊂ Q

rλ
−1/2
`

(o)
�

= 0. Similarly, it is easy to check that

XH,λ` ∩B2λ
−1/2
`

/r
(o) = ∅ implies {Q

λ
−1/2
`

/r
(o) ⊂ Ξ∗H,λ`}. Observe that by Lemma A.3,

lim
λ`→0

P
�
ν1

�
T ∗,(1) ∩B

2λ
−1/2
`

/r
(o)
�
≥ 32γλ−1

` /r2
�

= 0.

Furthermore,
lim
r→∞

sup
µ≤32γ/r2

P(Nµ ≥ 1) = 0,

which completes the proof. �

Remark. A small modification of the above proof shows that Lemma A.4 remains true if
XH,λ` is a homogeneous Poisson point process with intensity γλ` > 0.

We write dHaus(·, ·) for the Hausdorff distance between non-empty compact subsets of R2.
Loosely speaking, the following coupling construction formalises a certain asymptotic indepen-
dence of T ∗ and the Cox-Voronoi cell Ξ∗H,λ` . Additionally, we write A ⊕ A′ = {a + a′ : a ∈
A, a′ ∈ A′} for the Minkowski sum of A,A′ ⊂ R2.

Lemma A.5. For λ` ∈ (0, 1] there exists a common probability space (Ω,F ,P) on which T ∗,
XH,λ`, and a homogeneous Poisson point process X with intensity γ are given such that the
following two properties hold. If Ξ∗ denotes the zero-cell of the Voronoi tessellation on X ∪{o},
then for every ε > 0,

lim
λ`→0

P
�
dHaus

�È
λ`Ξ

∗
H,λ`

,Ξ∗
�
≥ ε

�
= 0. (A.7)

Furthermore, the probability space (Ω,F ,P) can be chosen so that X is independent of T ∗.

Proof. Subdivide Qλ−1
`

(o) into m =
l
λ
−15/16
`

m2
squares Qλ`,1, . . . , Qλ`,m of side length b =

λ−1
` /
√
m and for every ε > 0 define the event

E(2)
ε =

m[
i=1

¦ ���ν1(T ∗,(1) ∩Qλ`,i)− γb
2
��� ≥ εγb2©.

Then, Lemmas A.2 and A.3 imply the existence of a family {εt}t∈(0,1] such that

(i) εt ∈ (0, 1] for all t ∈ (0, 1],
(ii) εt → 0 as t→ 0,

(iii) P
�
E

(2)
εt

�
≤ εt for all λ` ≤ t.

We now extend the probability space, where for simplicity, we also write (Ω,F ,P) for the

extended probability space. First, let X
(1)
λ`

be a Cox process on T ∗ with linear intensity λ` ∈
(0, 1]. Also let X

(2)
λ`

denote a homogeneous Poisson point process with intensity γλ`(1 + ελ`)

and such that additionally X
(2)
λ`

is independent of T ∗ and X
(1)
λ`

. Define the point process X
(3)
λ`

is

obtained from X
(2)
λ`

by independent thinning with survival probability 1/(1+ελ`). In particular,

X =
√
λ`X

(3)
λ`

constitutes a homogeneous Poisson point process with intensity γ and which is

independent of T ∗, see [7]. If E
(2)
ελ`

occurs, we simply define XH,λ` to be X
(1)
λ`

. Otherwise, we
construct Xλ` on each of the squares Qλ`,1, . . . , Qλ`,m as follows. The configuration of the point
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process XH,λ`
inside the square Qλ`,i is obtained from X

(2)
λ`
∩Qλ`,i by first thinning independently

with survival probability ν1(T ∗,(1) ∩ Qλ`,i)/((1 + ελ`)γb
2) and then distributing the remaining

points uniformly on T ∗,(1) ∩ Qλ`,i. The point process XH,λ` is obtained as the union of these

thinnings and the restriction of X
(1)
λ`

to R2 \ Qλ−1
`

(o). It follows from the construction that

the point process XH,λ` constitutes a Cox process on T ∗,(1) with linear intensity λ`. Next, we

verify (A.7). For r > 0 and n ≥ 1 write E
(3)
n,r,λ`

for the event #
�
X

(2)
λ`
∩Q

rλ
−1/2
`

(o)
�
≥ n. Then,

for every r > 0,

lim
n→∞

lim sup
λ`→0

P
�
E

(3)
n,r,λ`

�
= 0.

For every r > 0 denote by E
(4)
r,λ`

the event that E
(2)
ελ`

occurs or that E
(2)
ελ`

does not occur, but

there exists a point of X
(2)
λ`
∩Q

rλ
−1/2
`

(o) which does not survive at least one of the two thinning

operations used to create XH,λ` and X
(3)
λ`

, respectively. Then, for every r > 0, n ≥ 1,

P(E
(4)
r,λ`

) ≤ 1−
� 1

1 + ελ`
· 1− ελ`

1 + ελ`

�n
+ P(E(2)

ελ`
) + P(E

(3)
n,r,λ`

),

provided that λ` > 0 is sufficiently small. In particular, limλ`→0 P(E
(4)
r,λ`

) = 0 for any r > 0. For

r > 0, define the event E
(5)
r,λ`

by B
rλ
−1/2
`

(o) ∩X(2)
λ`
6= ∅. Then, limr→0 lim supλ`→0 P(E

(5)
r,λ`

) = 0.

For r > 0 write E
(6)
r,λ`

for the event that E
(1)
r/2,λ`

occurs for at least one of the point processes

XH,λ` or X
(1)
λ`

. From Lemma A.4, we conclude limr→∞ lim supλ`→0 P(E
(6)
r,λ`

) = 0. Finally, for

δ, λ`, r > 0 let E
(7)
r,δ,λ`

denote the event that there exists X
(3)
λ`,1

, X
(3)
λ`,2
∈ X(3)

λ`
∩Qrλ`(o) such that

#
�
X

(3)
λ`
∩Q

rλ
−1/2
`

(o) ∩B|P |+δλ−1/2
`

(P ) \B|P |−δλ−1/2
`

(P )
�
≥ 3,

where P denotes the intersection of the perpendicular bisectors of [o,X
(3)
λ`,1

] and [o,X
(3)
λ`,2

]. Then,

limδ→0 lim supλ`→0 P(E
(7)
r,δ,λ`

) = 0. Using these auxiliary results, we can now prove for every
ε > 0 that

lim
λ`→0

P
�
Ξ∗ ⊂

È
λ`Ξ

∗
H,λ`
⊕Bε(o)

�
= 1.

We note that similar arguments may be applied for the probability of the event
√
λ`Ξ

∗
H,λ`
⊂ Ξ∗⊕

Bε(o). By the previous observations, it suffices to prove for all sufficiently large r1 > 0 and n ≥ 1
and all sufficiently small r2, δ > 0 that for all sufficiently small λ` > 0 the following implication

holds. If none of the events E
(2)
ελ`
, E

(3)
n,r1,λ`

, E
(4)
r1,λ`

, E
(5)
r2,λ`

, E
(6)
r1,λ`

, E
(7)
r1,δ,λ`

occurs, then all vertices of

λ
−1/2
` Ξ∗ are contained in Ξ∗H,λ`⊕Bελ−1/2

`

(o). To prove this implication, suppose (without loss of

generality) that the Voronoi cells associated with X
(3)
1 , X

(3)
2 ∈ X(3)

λ`
in the Voronoi tessellation

on {o} ∪ X(3)
λ`

share a common vertex P with λ
−1/2
` Ξ∗. Put ρ = λ

−1/8
` , P ′ = (1 − ρ/|P |)P

and note that the proof is completed once we show P ′ ∈ Ξ∗H,λ` . Due to the occurrence of the

complements of E
(2)
ελ`
, E

(3)
n,r1,λ`

, E
(4)
r1,λ`

and E
(6)
r1,λ`

, there exist X1,H , X2,H ∈ XH,λ` = {Xk,H}k≥1

with X1,H , X
(3)
1 ∈ Qλ`,m1 and X2,H , X

(3)
2 ∈ Qλ`,m2 for some m1,m2 ∈ {1, . . . ,m}. To prove

infk≥1 |P ′ −Xk,H | ≥ |P ′|, we proceed in two steps. For every Xk,H ∈ XH,λ` ∩Qr1λ−1/2
`

(o) with

k 6∈ {1, 2},

|P ′ −Xk,H | − |P ′| ≥ |P −X
(3)
k | − |P | − |Xk,H −X

(3)
k | ≥ δλ

−1/2
` − |Xk,H −X

(3)
k |,

where the latter inequality follows from {X(3)
1 , X

(3)
2 } ⊂ B|P |(P ) and the non-occurrence of

E
(7)
r1,δ,λ`

. Since |Xk,H −X
(3)
k | ≤

√
2λ
−1/16
` , it remains to compute |P ′ −X1,H | − |P ′| and |P ′ −
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X2,H | − |P ′|. Without loss of generality, we only consider the former case. As above,

|P ′ −X1,H | − |P ′| ≥ |P ′ −X(3)
1 | − |P

′| − |X1,H −X(3)
1 |. (A.8)

Next, put fa = |X(3)
1 |/2 and denote by fb the distance of P to the line segment [o,X

(3)
1 ]. Then,

Figure A.2 yields |P ′ −X(3)
1 |2 = (fa + ρfa/|P |)2 + (fb − ρfb/|P |)2. In particular,

o

X
(3)
1

P

P ′

(1− ρ/ |P |)fb

(1− ρ/ |P |)fa

Figure A.2. Configuration in the proof of Lemma A.5

|P ′ −X(3)
1 |

2 − |P ′|2 = (fa + ρfa/|P |)2 + (fb − ρfb/|P |)2 − (|P | − ρ)2

= 2ρ(f2
a/|P | − f2

b /|P |+ (f2
a + f2

b )/|P |),

which is equal to 4ρf2
a/|P |. Therefore,

|P ′ −X(3)
1 | − |P

′| = 4ρf2
a/|P |

|P ′ −X(3)
1 |+ |P ′|

≥ ρr
2
2/(2r1)

4r1
= ρr2

2/(8r
2
1).

Inserting this into (A.8) and recalling that ρ = λ
−1/8
` , while |X1,H−X(1)

1 | ≤
√

2λ
−1/16
` concludes

the proof of Lemma A.5. �

Appendix B. Proof of Lemmas 4.2 and 4.3

Recall that we assumed the points (L′′1,λ` , L
′′
2,λ`

) to be distributed uniformly in Ξ∗H,λ` , while

the points (λ
−1/2
` L′1, λ

−1/2
` L′2) are distributed uniformly in λ

−1/2
` Ξ∗. Furthermore, recall that in

Lemma A.5 we established a coupling between Ξ∗H,λ` and λ
−1/2
` Ξ∗ such that with a probability

tending to 1 the cells Ξ∗H,λ` and λ
−1/2
` Ξ∗ are close in the Hausdorff metric. In the following

result, we extend this coupling to the derived point pairs (L′′1,λ` , L
′′
2,λ`

) and (λ
−1/2
` L′1, λ

−1/2
` L′2).

In the following ν2(·) denotes the Lebesgue measure in R2.

Proof of Lemma 4.2. The proof is based on the observation that the measures ν1(T ∗,(1)∩·) and
γν2(·) exhibit a similar asymptotic behavior. To be more precise, for z ∈ Z2 put

pz = ν1

�
T ∗,(1) ∩Q

λ
−1/4
`

(λ
−1/4
` z) ∩ Ξ∗H,λ`

�
/ν1

�
T ∗,(1) ∩ Ξ∗H,λ`

�
and

p′′z = ν2

�
Q
λ
−1/4
`

(λ
−1/4
` z) ∩ Ξ∗H,λ`

�
/ν2(Ξ∗H,λ`).

Conditional on T ∗ and XH,λ` we may create a sample of L1,λ` by selecting an element (Z,R)
uniformly from the set {(z, r) ∈ Z2 × [0, 1] : r ≤ pz} and choosing L1,λ` uniformly from T ∗ ∩
Q
λ
−1/4
`

(λ
−1/4
` Z) ∩ Ξ∗H,λ` . Similarly, to create a sample of L′′1,λ` conditional on T ∗ and XH,λ` ,

we first select a point (Z ′′, R′′) uniformly from the set {(z, r) ∈ Z2 × [0, 1] : r ≤ p′′z} and then

choose L′′1,λ` uniformly from Q
λ
−1/4
`

(λ
−1/4
` Z) ∩ Ξ∗H,λ` . Using this framework, L1,λ` and L′′1,λ`

can be coupled via rejection sampling. Indeed, to create a sample of (Z,R) we may repeatedly
19



draw uniformly from {(z, r) ∈ Z2 × [0, 1] : r ≤ max{pz, p′z}} until we obtain an element of
{(z, r) ∈ Z2 × [0, 1] : r ≤ pz}. A similar remark applies to (Z ′′, R′′). For the remaining points
L2,λ` , L

′′
2,λ`

, we proceed similarly. Additionally, we obtain

P
�
|L1,λ` − L

′′
1,λ`
| ≥
√

2λ
−1/4
` | T ∗, XH,λ`

�
≤ P(Z 6= Z ′′ | T ∗, XH,λ`)

≤ 2
X
z∈A1

|pz − p′′z |+ 2
X
z∈A2

|pz − p′′z |, (B.1)

where we put

A1 = {z ∈ Z2 : Q
λ
−1/4
`

(λ
−1/4
` z) ⊂ Ξ∗H,λ`}

and

A2 = {z ∈ Z2 : Q
λ
−1/4
`

(λ
−1/4
` z) ∩ ∂Ξ∗H,λ` 6= ∅},

where ∂Ξ∗H,λ` denotes the topological boundary of Ξ∗H,λ` . Hence, our strategy is to define a

suitable family of events {E(1)
λ`
}λ`∈(0,1] such that

(i) E
(1)
λ`

is measurable with respect to the σ-algebra generated by T ∗ and XH,λ` ,

(ii) P(E
(1)
λ`

)→ 1 as λ` → 0,

(iii) under E
(1)
λ`

the two summands in (B.1) tend to 0 as λ` → 0.

As the value of λ` will be clear from the context, we write Qz for Q
λ
−1/4
`

�
λ
−1/4
` z

�
in the following.

Before we provide a precise definition of the events {E(1)
λ`
}λ`∈(0,1), it is convenient to make two

preliminary observations. First, we claim that there exists a constant c1 > 0 such that for all

λ` ∈ (0, 1) and r ≥ 1, if Ξ∗H,λ` ⊂ Qrλ−1/2
`

(o), then n2 ≤ c1rλ
−1/4
` , where n2 = #A2. Indeed, from

convexity of Ξ∗H,λ` we conclude that for every z ∈ A2 there exists z′ ∈ Z2 such that |z−z′|∞ = 1

and Qz′ ⊂ (Ξ∗H,λ` ⊕B3λ
−1/4
`

(o)) \ Ξ∗H,λ` . Hence, again using convexity of Ξ∗H,λ` ,

n2 ≤ 9
ν2

�
Ξ∗H,λ` ⊕B3λ

−1/4
`

(o)
�
− ν2

�
Ξ∗H,λ`

�
λ
−1/2
`

≤ 9π

�
rλ
−1/2
` + 3λ

−1/4
`

�2 −
�
rλ
−1/2
`

�2

λ
−1/2
`

,

which is at most 144πrλ
−1/4
` . In the second auxiliary result, we claim that there exists a constant

c2 > 0 such that for all r ≥ 1 and 16λ` ≤ r−4 the following implication is true. If

(i) Q1/r(o) ⊂
√
λ`Ξ

∗
H,λ`

, and

(ii) ν1(T ∗,(1) ∩Qz) ∈ (γ2λ
−1/2
` , 2γλ

−1/2
` ) for all z ∈ Z2 with Qz ⊂ Qλ−1/2

`
/r

(o),

then min{ν2(Ξ∗H,λ`), ν1(T ∗,(1)∩Ξ∗H,λ`)} ≥ c2r
−2λ−1

` . First, note that (i) immediately implies the

lower bound ν2(Ξ∗H,λ`) ≥ r−2λ−1
` . For the second bound, observe that as r−1λ

−1/2
` ≥ 2λ

−1/4
` ,

the square Q
r−1λ

−1/2
`

(o) contains at least (r−1/2)2λ
−1/2
` smaller squares of the form Qz, z ∈ Z2,

so that ν1(T ∗,(1) ∩Ξ∗H,λ`) ≥ (r−1/2)2γλ−1
` /2. Next, we provide a precise definition of the family

of events {E(1)
λ`
}λ`∈(0,1] and then show that it has the desired properties. First, Lemmas A.3

and A.4 imply the existence of families {εt}t∈(0,1] and {rt}t∈(0,1] such that

(i) εt ∈ (0, 1] and rt ∈ [1,∞) for all t ∈ (0, 1],
(ii) ε1 = 1 and r1 = 1,
(iii) the family {εt}t∈(0,1] is increasing in t and limt→0 εt = 0,
(iv) the family {rt}t∈(0,1] is decreasing in t and limt→0 rt =∞,

(v) P
�
Q1/rt(o) ⊂

√
λ`Ξ

∗
H,λ`
⊂ Qrt(o)

�
≥ 1− εt for all t ∈ (0, 1] and λ` ≤ t,

(vi) P
� T
z∈A(λ`,rt)

¦ ���ν1(T ∗,(1) ∩Qz)− γλ−1/2
`

��� ≤ γ
2 r
−5
t λ

−1/2
`

©�
≥ 1 − εt for all t ∈ (0, 1] and

λ` ≤ t, where A(λ`, rt) = {z ∈ Z2 : Qz ∩Qrtλ−1/2
`

(o) 6= ∅}.
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Furthermore, for λ` ∈ (0, 1/64], we put t∗(λ`) = inf{t ≥ λ` : r−16
t ≥ λ`} and r∗(λ`) = rt∗(λ`).

Using this notation, we define

E
(1)
λ`

=
¦
Q1/r∗(λ`)(o) ⊂

È
λ`Ξ

∗
H,λ`
⊂ Qr∗(λ`)(o)

©
∩

\
z∈A(λ`,r∗(λ`))

¦
|ν1(T ∗,(1) ∩Qz)− γλ−1/2

` | ≤ γ

2
r∗(λ`)

−5λ
−1/2
`

©
.

Then, clearly, E
(1)
λ`

is measurable with respect to the σ-algebra generated by T ∗ and XH,λ` .

Additionally, the above discussion shows P(E
(1)
λ`

) → 1 as λ` → 0 and it remains to verify that

under E
(1)
λ`

the two sums in (B.1) tend to 0 as λ` → 0. We begin by considering the second

sum. Under E
(1)
λ`

,X
z∈A2

|pz − p′′z | ≤ c1r
∗(λ`)λ

−1/4
` max

z∈A2

(pz + p′′z) ≤ c1r
∗(λ`)λ

−1/4
` · c−1

2 r∗(λ`)
2λ` · (1 + 2γ)λ

−1/2
`

which is at most c1c
−1
2 (1 + 2γ)r∗(λ`)

3λ
1/4
` , and this expression tends to 0 as λ` → 0, by the

definition of r∗(λ`). Finally, we consider the first sum in (B.1). Note that under E
(1)
λ`

,X
z∈A1

|pz − p′′z | ≤ ν1(T ∗,(1) ∩ Ξ∗H,λ`)
−1

X
z∈A1

|ν1(T ∗,(1) ∩Qz)− γλ−1/2
` |

+ n1λ
−1/2
` ν1(T ∗,(1) ∩ Ξ∗H,λ`)

−1ν2(Ξ∗H,λ`)
−1|γν2(Ξ∗H,λ`)− ν1(T ∗,(1) ∩ Ξ∗H,λ`)|,

where n1 = #A1. We consider bounds for the latter two summands separately. First, observe
that the inclusion

S
z∈A1

Qz ⊂ Ξ∗H,λ` implies n1 ≤ ν2(Ξ∗H,λ`)
√
λ` . Next, if

(i) Q1/r∗(λ`)(o) ⊂
√
λ`Ξ

∗
H,λ`
⊂ Qr∗(λ`)(o) and

(ii) |ν1(T ∗,(1) ∩Qz)− γλ−1/2
` | ≤ γ

2 r
∗(λ`)

−5λ
−1/2
` for all z ∈ Z2 with Qz ⊂ Qr∗(λ`)λ−1/2

`

(o),

then

ν1

�
T ∗,(1) ∩ Ξ∗H,λ`

�−1 X
z∈A1

|ν1

�
T ∗,(1) ∩Qz

�
− γλ−1/2

` |

≤ c−1
2 r∗(λ`)

2λ` · ν2(Ξ∗H,λ`)
È
λ` · γ2 r

∗(λ`)
−5λ

−1/2
` ,

which is at most γ
2 c
−1
2 r∗(λ`)

−1, and this expression tends to 0 as λ` → 0. We also conclude

from n1 ≤ ν2(Ξ∗H,λ`)
√
λ` that the second summand is bounded from above by

(λ`ν1(T ∗,(1) ∩ Ξ∗H,λ`))
−1λ`|γν2(Ξ∗H,λ`)− ν1(T ∗,(1) ∩ Ξ∗H,λ`)|

≤ c−1
2 r∗(λ`)

2λ`
���γν2(Ξ∗H,λ`)− ν1(T ∗,(1) ∩ Ξ∗H,λ`)

��� .
Finally, note that

r∗(λ`)
2λ`|γν2(Ξ∗H,λ`)− ν1(T ∗,(1) ∩ Ξ∗H,λ`)| ≤ r

∗(λ`)
2λ`

X
z∈A1

|γλ−1/2
` − ν1

�
T ∗,(1) ∩Qz

�
|

+ r∗(λ`)
2λ`

X
z∈A2

�
γλ
−1/2
` + ν1(T ∗,(1) ∩Qz)

�
,

which is at most γ
2n1

√
λ`r
∗(λ`)

−3 + 3n2γ
√
λ`r
∗(λ`)

2, and tends to 0 as λ` → 0. This completes
the proof of Lemma 4.2. �

Proof of Lemma 4.3. In the following, we always consider Ξ∗H,λ` and Ξ∗ as random sets defined

on the common probability space (Ω,F ,P) resulting from the coupling provided by Lemma A.5.
Using rejection sampling, conditional on T ∗ and XH,λ` , we may create a sample of L′′1,λ` by

repeatedly drawing uniformly distributed random vectors on Ξ∗H,λ` ∪ λ
−1/2
` Ξ∗ until we obtain a
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random vector located in Ξ∗H,λ` . For the random vector λ
−1/2
` L′1 we can proceed similarly. The

same approach can be used for the remaining random vectors L′2, L
′′
2,λ`

. Hence,

P
�
L′′1,λ` 6= λ

−1/2
` L′1 | T ∗, XH

�
≤ 2

�
1−

ν2

�
Ξ∗H,λ` ∩ λ

−1/2
` Ξ∗

�
ν2

�
Ξ∗H,λ` ∪ λ

−1/2
` Ξ∗

��
= 2

ν2

�
Ξ∗H,λ` \ λ

−1/2
` Ξ∗

�
+ ν2

�
λ
−1/2
` Ξ∗ \ Ξ∗H,λ`

�
ν2

�
Ξ∗H,λ` ∪ λ

−1/2
` Ξ∗

�
≤ 2

ν2

�√
λ`Ξ

∗
H,λ`
\ Ξ∗

�
ν2(Ξ∗)

+ 2
ν2

�
Ξ∗ \

√
λ`Ξ

∗
H,λ`

�
ν2(Ξ∗)

. (B.2)

Next, Lemmas A.4 and A.5 imply the existence of families {εt}t∈(0,1] and {rt}t∈(0,1] such that

(i) εt ∈ (0, 1] and rt ∈ [1,∞) for all t ∈ (0, 1],
(ii) ε1 = 1 and r1 = 1,
(iii) the family (εt)t∈(0,1] is increasing in t and limt→0 εt = 0,
(iv) the family (rt)t∈(0,1] is decreasing in t and limt→0 rt =∞,

(v) P
�
Q1/rt(o) ⊂ Ξ∗ ⊂ Qrt(o)

�
≥ 1− εt for all t ∈ (0, 1] and λ` ≤ t,

(vi) P
�
dHaus(

√
λ`Ξ

∗
H,λ`

,Ξ∗) ≤ r−4
t

�
≥ 1− εt for all t ∈ (0, 1] and all λ` ≤ t.

For λ` ∈ (0, 1], we put t∗(λ`) = inf{t ≥ λ` : r−16
t ≥ λ`} and r∗(λ`) = rt∗(λ`). Using this notation,

we define the event E
(2)
λ`

by¦
Q1/r∗(λ`)(o) ⊂

È
λ`Ξ

∗
H,λ`
⊂ Qr∗(λ`)(o)

©
∩
¦
dHaus(

È
λ`Ξ

∗
H,λ`

,Ξ∗) ≤ r∗(λ`)−4
©
,

so that P(E
(2)
λ`

)→ 1 as λ` → 0. Moreover, if E
(2)
λ`

occurs, then

ν2(
√
λ`Ξ

∗
H,λ`
\ Ξ∗)

ν2(Ξ∗)
≤
ν2

�
Ξ∗ ⊕Br∗(λ`)−4(o)

�
− ν2(Ξ∗)

ν2(Ξ∗)

≤ 4πr∗(λ`)
−3

r∗(λ`)−2
,

and the latter expression tends to 0 as λ` → 0. Observing that a similar argument applies to
the second expression in (B.2) completes the proof. �
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