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ABSTRACT

The rising global demand in energy and the limited resourcesin fossil fuels require new technologies in
renewable energies like solar cells. Silicon solar cells offer a good efficiency but suffer from high production
costs. A promising alternative are polymer solar cells, dueto potentially low production costs and high
flexibility of the panels. In this paper, the nanostructure of organic–inorganic composites is investigated,
which can be used as photoactive layers in hybrid–polymer solar cells. These materials consist of a polymeric
(OC1C10-PPV) phase with CdSe nanoparticles embedded therein. On the basis of 3D image data with high
spatial resolution, gained by electron tomography, an algorithm is developed to automatically extract the CdSe
nanoparticles from grayscale images, where we assume them as spheres. The algorithm is based on a modified
version of the Hough transform, where a watershed algorithmis used to separate the image data into basins
such that each basin contains exactly one nanoparticle. Thealgorithm is validated by application to (semi-)
synthetic data. After the extraction of the nanoparticles,neighboring ones are connected to form a 3D network
that is related to the transport of electrons in polymer solar cells. A detailed statistical analysis of the CdSe
network morphology is accomplished, which allows deeper insight into the hopping percolation pathways of
electrons.

Keywords: 3D Imaging, Electron Tomography, Composite Material, Nanoparticle System, Network
Morphology, Iterative Thresholding, 3D Watershed, Hough Transform, Charge Transport.

INTRODUCTION

The rising global demand in energy and the limited
resources in fossil fuels require new technologies
in renewable energies like solar cells. Classical
silicon solar cells offer a good efficiency but
suffer from high production costs. A promising
alternative are polymer or hybrid–polymer solar
cells due to potentially low production costs and
high flexibility of the panels. In this paper, we
investigate the nanostructure of organic–inorganic
composites that can be used as photoactive layers
in hybrid–polymer solar cells. More precisely, blends
of CdSe nanoparticles (≈ 6.5 nm diameter spheres)
with poly[2-methoxy-5-(3’,7’-dimethyloctyloxy)-1,4-
phenylene vinylene] (OC1C10-PPV) are investigated.
Solar cells based on polymer:nanoparticle blends, in
particular CdSe nanoparticles, have been fabricated for
a number of years with a great deal of success, see
Dayal et al. (2010), Greenhamet al. (1996), Huynh
et al. (2002), and Wanget al. (2006).

It is clear that there is a close relationship
between nanostructure and functionality of this kind
of composite materials when using them in hybrid–
polymer solar cells. Under exposure to light, photons
are absorbed in the polymer phase and neutral excited
states known as excitons are generated, which diffuse
in the polymer phase within a limited life time. If an
exciton reaches the surface of a CdSe nanoparticle,
it is split up into an electron (negative charge) in
the CdSe and a hole (positive charge) in the polymer
phase. In addition, CdSe nanoparticles can also absorb
photons directly, followed by hole transfer to the
polymer. The electrons have to hop from CdSe
nanoparticle to nanoparticle to reach the electrode.
Since an electron can only hop over short distances
between nanoparticles, the morphology of the network
of nanoparticles as a whole is of great importance for
the performance of the solar cell.

Therefore, it is essential to develop tools in
order to extract the ensemble of CdSe nanoparticles
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from 3D grayscale images obtained by electron
tomography. Connecting neighboring CdSe particles
yields a network through which the electrons can hop
to reach the electrode. A detailed statistical analysis
of the network morphology is accomplished, which
allows deeper insight into the hopping percolation
pathways of electrons.

Fig. 1. CdSe nanoparticles embedded in a OC1C10-
PPV phase: Thin 2D slice (top; the scale bar
corresponds to 50 nm) and 3D cutout of binarized data
(bottom; obtained by global thresholding)

The algorithm to extract the ensemble of CdSe
nanoparticles is applied to grayscale image data
gained by high-angle annular dark-field scanning
transmission electron microscopy (HAADF-STEM).
Examples of image data for this type of composite
material are displayed in Figure 1, where the upper
part shows a thin 2D section and the lower part a 3D
cutout of a suitable binarization obtained by global
thresholding. In the grayscale image on the upper
part of Figure 1 the gray values are inverted, i.e., the
nanoparticles are displayed dark (low gray values) and
the background is bright (high gray values).

Note that binarization and subsequent manual
extraction of nanoparticles in 3D grayscale images
is accompanied by an enormous effort. Furthermore,
small failures in the binarization procedure can lead

to quite different results. Hence, in the present paper,
a computer algorithm is developed for automatic
(i.e. non–interactive) extraction of spherical objects
directly from 3D grayscale images. The precise
extraction of the CdSe nanoparticles from electron
tomography images and the statistical analysis of
the morphology of CdSe networks are of significant
importance to characterize transport properties of the
considered composite material with respect to electron
hopping.

In this paper we focus on the case of spherical
nanoparticles, so–called nanodots. However, the basic
idea of our extraction algorithm also works for
nanoparticles with other shapes. For example, for
elongated nanoparticles, so–called nanorods, just the
maximization step in the Hough transform for the
detection of nanorods will be computationally a bit
more complex.

The paper is organized as follows. At first,
the imaging technique and the resulting 3D
data are described, which are the basis of our
investigations. Then, a robust algorithm of image
processing is developed for fully automatic extraction
of nanoparticles from 3D grayscale images.
Subsequently, the morphology of the system of
extracted spheres representing the CdSe nanoparticles
is analyzed with respect to properties that are
relevant e.g. to quenching of excitons. Consecutively,
network graphs based on the detected spheres are
constructed, whose structural properties are closely
related to charge transport. The algorithm to extract
nanoparticles is validated by detecting nanoparticles
from (semi-) synthetic 3D image data, where the true
configuration of the nanoparticles is known. Finally,
the results are summarized and an outlook to possible
future research topics is given.

3D IMAGES OF CDSE–(OC1C10-
PPV) COMPOSITES

In this section, the considered organic–inorganic
composite is briefly described. Moreover, the imaging
technique applied to generate 3D images of this
material with high spatial resolution is explained. For
further details on materials and imaging, see Hindson
et al. (2011).

DESCRIPTION OF THE MATERIAL

The photoactive layer of the considered hybrid–
polymer solar cell consists of a blend of CdSe
nanoparticles (≈ 6.5 nm diameter spheres with
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butyl-amine ligands) with poly[2-methoxy-5-(3’,7’-
dimethyloctyloxy)-1,4-phenylene vinylene] (OC1C10-
PPV). The ratio of CdSe nanoparticles to OC1C10-PPV
was 6:1 by weight. The photovoltaic device was built
using regular architecture. Cleaned substrates were
coated with PEDOT:PSS which was annealed under
nitrogen for 30 minutes at 230◦C. The active layer was
spin-coated at 2000 r.p.m. which yields a thickness
of 50-70 nm, and annealed at 150◦C for 20 minutes.
Films for tomography were floated off the substrate
onto water, using the PEDOT:PSS as a sacrificial layer,
and were then transferred onto TEM grids.

IMAGING TECHNIQUE AND TOMO-
GRAPHIC RECONSTRUCTION

To investigate the nanomorphology of the
ensemble of CdSe nanoparticles embedded in the
polymeric phase, we used 3D images obtained by
high-angle annular dark-field scanning transmission
electron microscopy (HAADF-STEM). In general,
electron tomography enables to obtain three
dimensional images with a nanometer resolution.
Thus, it is an ideal method to analyze the structure
of nanoparticle networks in organic photovoltaics. The
HAADF-STEM has an advantage in systems where the
two components differ significantly in atomic number,
Z, since it mainly detects electrons that have undergone
Rutherford scattering. The 3D grayscale images were
obtained using a FEI Tecnai F20 field emission gun
TEM operated at 200 kV. The tilt range was between
120 and 142 degrees in 1 or 2 degree steps, depending
on the exact topography of the selected area. The
image series was aligned and reconstructed using a
SIRT algorithm in Inspect3D software.

DESCRIPTION OF IMAGE DATA AND
BASIC NOTATION

The complete 3D data set analyzed in this paper
has a size of 917×872×404 voxels, where each voxel
represents(0.4 nm)3. An example of a 2D slice can be
seen in the upper part of Figure 1.

Fig. 2.Cutout of a 2D thin section with densely packed
particles; the scale bar corresponds to 50 nm

For the statistical analysis described later on, we
considered a cutout of 421× 421× 91 voxels, which
is a part of the complete data set. Beforehand, in
order to obtain a large (cuboid–shaped) cutout with
as much nanoparticles as possible, the 3D image has
been rotated. The considered cutout contains only that
part of the whole data set where the CdSe nanoparticles
are rather densely packed, see Figure 2, corresponding
to the high-density regions described in Hindsonet al.
(2011).

The values of all parameters are given in voxels,
where we regard the darker phase, i.e., the particles,
as the foreground phase, and the brighter phase as
the background phase, see Figure 2. Note that for the
8-bit grayscale images considered, a gray value of 0
indicates black and a gray value of 255 white.

The algorithm developed in order to automatically
extract the CdSe nanoparticles from grayscale images
is based on mathematical methods. Therefore, it
is unavoidable to introduce a certain minimum of
notation.

Let I = {I(x,y,z), (x,y,z) ∈ D} denote the 3D
image, whereI(x,y,z) ∈ {0, . . . ,255} is the gray value
of the 3D imageI at grid point (x,y,z) ∈ D ⊂ Z

3

and the setD is interpreted as a sampling window.
Furthermore, in order to simplify the handling of
boundary effects, we consider the following (formal)
continuation of the image outside ofD. For locations
(x,y,z) ∈ Z

3 \ D not in the domainD of the image
I , the gray valuesI(x,y,z) are assumed to be such
that they do not affect the applied operations of image
processing (which will beI(x,y,z) = 0 for (x,y,z) ∈
Z

3\D in most cases).

ALGORITHM FOR NON–INTER-
ACTIVE EXTRACTION OF
SPHERES

In this section, we describe an algorithm to
extract single particles from grayscale images like
those shown in Figure 2, where we assume that
each nanoparticle can be seen as a 3D sphere. This
assumption is supported by the production technique
of the particles. The segmentation algorithm developed
is based on the Hough transform (HT) for spherical
objects, see e.g. Burger and Burge (2008), Duda
and Hart (1972), and Ballard (1981). The HT is a
robust algorithm to detect parameterized geometric
objects, but suffers from long computer runtimes
when the number of parameters which describe the
objects is high. However, since spheres can be
described quite simply by four parameters, the HT is
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adequate for extracting such objects. Note that this HT-

based approach is similar to the idea of maximum–

likelihood estimation in mathematical statistics, where

the parameter vector (here: position and radius of the

CdSe nano-particle) is chosen such that the identified

object is the most plausible (i.e., most likely) one

given the 3D image data. Hence, the HT is mainly

conceived for extracting one single but not several

(densely packed) objects from an image. It can be

used to extract an ensemble of objects, but either the

number of objects has to be known in advance or has

to be determined by extensive computer simulations.

In this work, we go one step further and perform a data

preprocessing, where we divide the sampling window

D into disjoint regions each containing exactly one

object to be detected. Subsequently, each region is

transformed using the HT-principle in order to identify

the object located in this region. This procedure

reduces computer runtime of the HT even further and

is much more robust. The splitting of the domainD

into separated regions (so–called ‘basins’) is based on

an iterative thresholding procedure detecting the initial

points of the subsequent 3D watershed segmentation.

These initial points are called the ‘springs’ of the

‘basins’ in the following, see also Baere and Lehmann

(2006), Beucher and Meyer (1993), and Beucher and

Lantúejoul (1979).

SMOOTHING OF GRAYSCALE IMAGES

A first step of image pre-processing, which usually

precedes statistical image analysis, is a smoothing of

the data to reduce noise, i.e., small artifacts resulting

from the imaging and reconstruction techniques. Thus,

we apply a 3D symmetric Gaussian filterG of size

3×3×3 and standard deviationσ = 0.4 to the image

I . Note that such a small filter has only negligible

influence on the geometric structure of the data we are

interested in.

Fig. 3.2D sections of the original (top) and smoothed
(bottom) image

The application of the filter can be seen as a
convolution of the imageI with the (matrix) filter
G = (G(i, j,k), i, j,k ∈ {−1,0,1}). This means that
the gray valuesI ′(x,y,z) of the smoothed imageI ′ =
{I ′(x,y,z), (x,y,z) ∈ D}, where the filterG of size
3×3×3 with centered origin has been applied to, are
given by

I ′(x,y,z)=
1

∑
i=−1

1

∑
j=−1

1

∑
k=−1

I(x+ i,y+ j,z+k)·G(i, j,k) .

A 2D slice of the smoothed 3D image, together with
the corresponding 2D slice of the original image, can
be seen in Figure 3.

MORPHOLOGICAL CLOSING

To emphasize and additionally smooth the
spherical structures that have to be extracted from
the given image, we apply a morphological closing
with structuring element of size 5×5×5 and centered
at the origin, see Serra (1982). More precisely, the
gray values I ′′(x,y,z) of the dilated imageI ′′ =
{I ′′(x,y,z), (x,y,z) ∈ D} are given by

I ′′(x,y,z) = max
−2≤i, j,k≤2

I ′(x+ i,y+ j,z+k).

The size 5×5×5 is chosen because it can be warranted
that no nanoparticles are lost. Note that for applying
the gray level dilation, the values of the imageI ′
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outside its domainD are put equal to 0. Analogously,
the gray level erosion applied to the imageI ′′ is given
by

I ′′′(x,y,z)= min
−2≤i, j,k≤2

I ′′(x+ i,y+ j,z+k) ,(x,y,z)∈D ,

where the values of the imageI ′′ outside its domainD
are put equal to 255. The result of these morphological
operators is an enhancement of the spherical shape of
the CdSe nanoparticles that shall be detected. Their
edges are emphasized and, in addition, their interior
is smoothed which improves the edge detection
considered below.

Note that the morphological closing has no
significant influence on the extracted objects with
respect to changes of their sizes. Examples of thin
planar sections of the data after application of
morphological closing are shown in Figure 4.

Fig. 4.2D sections of the original data (top), smoothed
image I′′ after gray level dilation (middle), smoothed
image I′′′ after morphological closing (bottom)

GRADIENT IMAGE

The application of HT in order to extract the
nanoparticles first requires the detection of edges of the
objects of interest. One possibility to detect edges in
the imageI ′′′, i.e., the locations of rapid changes in the
gray values, is the consideration of its gradient image.
Changes in gray values are mathematically described
by partial derivatives, where the locations(x,y,z) are
supposed to form a ‘continuous’ set. Then, the vector
∇I ′′′(x,y,z) with

∇I ′′′(x,y,z) =







∂
∂xI ′′′(x,y,z)
∂
∂yI ′′′(x,y,z)
∂
∂zI

′′′(x,y,z)







containing the partial derivatives is considered, i.e.,
∇I ′′′(x,y,z) describes the changes of the gray values
of I ′′′ at location(x,y,z) in the directions of thex-,
y-, and z-axis, respectively. The length|∇I ′′′(x,y,z)|
of the vector∇I ′′′(x,y,z) describes the (total) strength
of changes of the gray values at position(x,y,z),
i.e., the longer the vector the stronger the changes in
gray values. Since edges correspond to strong changes
in gray values, this provides a possibility of edge
detection.

Fig. 5.2D section of gradient magnitude image of I′′′

(brightened up for demonstration purposes)

A challenge in practical application is the
numerical evaluation of the partial derivatives since
only a discrete domainD is given. Several solutions to
overcome this classical problem have been proposed
in literature. We used an algorithm implemented
in Avizo, a software of the Visualization Sciences
Group (www.vsg3d.com), to obtain an approximation
of the gradient values. A 2D slice of the 3D gradient
imageG is shown in Figure 5, where the magnitudes
|∇I ′′′(x,y,z)| are plotted as grayscale values, i.e., areas
of high variation are displayed as bright regions. Later
on in this section we use this gradient imageG when
considering the Hough transform.

5



THIEDMANN R et al.: Sphere Extraction

ITERATIVE THRESHOLDING

To determine the initial points of the watershed
transformation considered later on in this section,
i.e. the ‘springs’ of the ‘basins’, we propose the
following procedure of an iterative thresholding. The
appropriate choice of these initial points is crucial
for the subsequent detection of spherical objects since
each basin shall contain exactly one object.

The idea of our iterative thresholding is to detect
the centers of the objects to be extracted, which are
assumed to be the locally darkest parts of the image
I ′′′. In particular, we are looking for a setS of initial
points for the watershed transformation. To begin with,
we putS= /0, where /0 denotes the empty set. Then, we
consider the (global) thresholdt = 1, which is applied
to the imageI ′′′, and perform the following steps:

1) The imageI ′′′ is thresholded with threshold valuet
to get the binarized imageI ′′′t , i.e.,

I ′′′t (x,y,z) =

{

1 if I ′′′(x,y,z)≤ t ,
0 if I ′′′(x,y,z)> t ,

and the phase ofI ′′′t , where I ′′′t equals 1,
is called foreground. Note that the foreground
is growing with increasing value oft, i.e.,
{foreground ofI ′′′t } ⊂

{

foreground ofI ′′′t+1

}

.

2) All connected clusters of the foreground inI ′′′t , i.e.,
the parts ofI ′′′t with value 1, are determined. This
can be done using e.g. the algorithm of Hoshen
and Kopelman (1976). Let{Ct

1, . . . ,C
t
k(t)} denote

the set of separated (foreground) clusters inI ′′′t
with volumes|Ct

1|, . . . , |Ct
k(t)|, respectively. If the

volume of a cluster, say clusterCt
i , exceeds a

predetermined size, in our case 100 voxels, we
check whether this cluster has already contributed
to an initial point for the watershed transformation
or not. Therefore, we check if one of the points
from S= {s1, . . . ,snt−1} is contained inCt

i . If no
point of the current setS is contained inCt

i , i.e.,
sj 6∈ Ct

i holds for all j ∈ {1, . . . ,nt−1}, then the
barycenter ofCt

i is considered as potential ‘spring’
of a basin to be constructed. If, in addition, the
barycenter ofCt

i is contained inCt
i , the barycenter

is added to the setS of initial points. Note that
only clusters smaller than 2000 voxels are allowed
to generate an initial point. These conditions
assure that only (at least roughly) spherically
shaped objects are detected by the object–detection
algorithm considered later on in this section.

3) The current threshold valuet is increased by one
and the procedure described above is performed
again, starting with step 1. The procedure is

stopped at that value oft if, for the first time, the
complete binary image is said to be foreground,
i.e., I ′′′t (x,y,z) = 1 for all (x,y,z) ∈ D.

The result is a set of initial pointsS= {s1, . . . ,sn},
which is used for the watershed transformation. Due to
the construction principle of the setS, each point ofS
is located close to the center of a spherical object that
shall be detected later on. Note that the ‘critical’ size
of the cluster, i.e., the minimum size that the cluster
is considered to generate a point inS, controls the
number of detected objects.
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Fig. 6. Schematic 1D example of watershed
transformation with 3 basins

WATERSHED TRANSFORMATION

In the previous section, we determined the set
S= {s1, . . . ,sn} of initial points in order to construct
the watershed transformation ofI ′′′. Note that the
watershed transformation subdivides the domainD
of I ′′′ into pairwise disjoint sets, so–called basins
B1, . . . ,Bn, i.e.,Bi ∩B j = /0 for anyi 6= j and

⋃n
i=1Bi =

D, wheresi ∈ Bi for eachi ∈ {1, . . . ,n}.

The intuitive idea of the watershed transformation
is that at the initial pointss1, . . . ,sn, the flooding ofI ′′′

starts. Therefore, the gray values ofI ′′′ are interpreted
as level curves. The boundaries of the basinsB1, . . . ,Bn

are the locations where different ‘valleys’ meet, see
the schematic illustration displayed in Figure 6 for
the one–dimensional case. More information about the
watershed transformation and related algorithms can
be found e.g. in Baere and Lehmann (2006), Roederink
and Meijster (2000), Beucher and Meyer (1993), and
Beucher and Lantúejoul (1979).
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Fig. 7.2D section of watershed barriers

In the following sections, we show that the
watershed transformation described above leads to a
decomposition of the domainD into pairwise disjoint
basinsB1, . . . ,Bn, where each basin contains exactly
one object (i.e. CdSe nanoparticle) to be detected. A
2D slice of the watershed barriers obtained in this way
is displayed in Figure 7. Note that these basins are
used to decompose the domain of the gradient image
G, considered previously in this section, into disjoint
(sub-) regions. They are considered for the detection
of spheres using a modified version of the well-known
Hough transform. More precisely, for the application
of the HT, the number of spheres to be detected
needs to be known in advance. By the watershed
transformation, not only the number of spheres is
known, but also the area where the HT is looking for
every single sphere can be reduced.

The watershed transformation detects basins in
the whole image, independently of the local contrast.
Because each basin is considered as a candidate
for the detection of spheres, it is reasonable to
ignore basins where the grayscale values do not
differ too much. The criterion used to quantify
the local contrast in basins is as follows. We
compute the standard deviation of the grayscale values

si =
√

∑(x,y,z)∈Bi
(I ′′′(x,y,z)−mi)2/(|Bi |−1) for each

basinBi , wheremi = ∑(x,y,z)∈Bi
I ′′′(x,y,z)/|Bi | denotes

the sample mean of grayscale values in the same basin
and |Bi | the number of voxels of basinBi . If the
standard deviation is smaller than a given threshold,
then the basin is ignored in the following step. For
the current image data a (minimum) standard deviation
of 15 has been determined as a suitable value. The
remaining basins are denoted byB′

1, . . . ,B
′
n′ , where

n′ ≤ n.

HOUGH TRANSFORM FOR THE
DETECTION OF SPHERES

The decomposition of the domainD into disjoint
basinsB′

1, . . . ,B
′
n′ , where each basin contains exactly

one object to be detected, provides optimal pre-
conditions for the Hough transform (HT), see e.g.
Burger and Burge (2008), Jähne (2005), or Ballard
(1981), who introduced the Hough transform in its
generalized version. The HT is a powerful tool
to detect (single) geometric objects from grayscale
images provided that the objects to be detected
possess a parametric description. In case of a
three–dimensional sphere, there are four parameters
describing it uniquely: the coordinatesx,y,z of the
center and the radiusr.

The idea of the HT is the consideration of the
so–called Hough space, which, in our case, has four
dimensions, representing the parametersx, y, z, and
r. Note that for the application to image data, only a
discrete set of values forx, y, z, andr is considered. In
its original version, the HT is applied to binary images
only, which leads to the following interpretation of
the Hough space. Each vector(x,y,z, r) represents one
sphere in the Hough space, where the value at(x,y,z, r)
in the Hough space provides the number of boundary
voxels of the foreground phase of the original binary
image contributing to the surface of this sphere, i.e.,
the number of voxels on the surface/edge of the
(discretized) sphere in the original image. The sphere
that we are interested in can then be determined just by
looking for the global maximum in the Hough space.
This procedure is plausible since a sphere is chosen in
such a way that the largest number of detected edge
points is covered by that sphere.

However, in our case, edge detection is based on
the gradient image, which is a grayscale image. In view
of this and since any binarization yields inaccuracies,
we used a slightly modified version of the HT that can
be applied to grayscale images. Instead of counting
the number of edge points covered by the surface of
a sphere, we sum up their grayscales in the gradient
image. This leads to the detection of an object, where
binarization artefacts can be avoided. Furthermore,
for all voxels outside the currently processed basin, a
gradient of zero can be assumed. Therefore structures
outside the basin cannot affect the sphere-detection.

It is obvious that using this version of HT, larger
spheres are preferred since more edge points can
be covered. To reduce this overestimation of large
spheres, we applied a rescaling of the values in the
Hough space, dividing each value by the square root√

r of the corresponding radiusr, before searching
for the global maximum. This kind of rescaling has
been chosen because then the result of the sphere
extraction provides a good optical fit. However, other
scaling factors liker−1 or 1/ logr are also possible.
The rescaling does not affect the detected radii directly,
but it allows to prefer smaller / larger radii which
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are plausible within a certain range. Later on, the
extraction algorithm is validated indicating that the
rescaling is adequate.

Note that this HT-algorithm is applied to each
basin B′

1, . . . ,B
′
n′ separately, which leads to the

detection ofn′ spherical objects in the whole image.
An illustration is given in Figure 8, where 2D slices of
detected spheres have been added to the data.

Fig. 8. Detection of spheres using the Hough
transform; arrow indicates two strongly overlapping
spheres

POST–PROCESSING OF DETECTED
SPHERES

Some of the extracted spheres may strongly
overlap; see Figure 8 for an example of such (almost
completely) overlapping spheres indicated by an
arrow. A reason for this overlapping is that there are
too many basins identified by the iterative thresholding
procedure which has been described previously in
this section. Also note that the spheres identified
by the HT may exceed the boundary of the basin.
Due to the varying grayscale values at the centers of
the spheres, it happens that the iterative thresholding
procedure detects two different initial points which
actually belong to one and the same particle. These
two initial points then lead to two different basins in
the watershed algorithm and, accordingly, two spheres
are determined by the Hough transform although it
should be only one. From a physical point of view, it is
clear that such a strong overlapping cannot be a correct
detection of spheres. Hence, we apply the following
post–processing of detected spheres to reduce the
overlapping.

Fig. 9.Detected spheres after post–processing

To avoid an over segmentation, we are looking for
all pairs of spheres where the volume of overlapping
is larger than 5% with respect to the volume of the
smaller sphere. Subsequently such a pair of spheres
is removed from the list of detected spheres and
their basins obtained by the watershed segmentation
are recombined. From this newly created basin, a
new sphere is extracted and added to the list of
detected spheres, where the same techniques are
used as described above. This procedure is repeated
several times until no pair of spheres is found with
an overlapping of 5% or more of the volume of
the smaller sphere. In the result, a clearly visible
reduction of overlapping effects can be observed, see
Figure 9 and Table 1. Note that a small overlapping
of the spheres seems reasonable since in reality the
nanoparticles have no perfect spherical shape.

Table 1.Analysis of overlapping spheres (after the first
run of sphere–extraction algorithm)

post–processing
before after

total volume
fraction 0.290 0.241
of spheres
volume fraction
covered 0.012 0.001
several times

The volume fraction of extracted spheres decreases
considerably by the post–processing described above,
see Table 1. However, after the repeated extraction of
spheres discussed in the following section, the total
volume fraction of all extracted spheres is equal to
0.311.

REPRESENTATION AS MARKED POINT
PATTERN

Let B denote the inorganic part (i.e., the CdSe
nanoparticles) of the composite material. In the
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preceding sections we showed that the setB can
quite nicely be represented by a system of spheres
which can be seen as functional of a marked point
pattern(s1, r1), . . . ,(sm, rm), m≤ n′, where the points
si are the centers of the spheres and the marksr i the
corresponding radii. In other words, the setB can be
approximated by the union of these spheres, i.e.,B ≈
⋃m

i=1b(si , r i), whereb(s, r) = {s′ ∈ R
3 : |s′−s| ≤ r}.

REPEATED EXTRACTION OF
SPHERES

Since, in general, the result of sphere extraction
described above does not cover all regions that can
be interpreted as nano–sized particles, we applied the
sphere–detection algorithm again. The idea is to first
remove already detected spheres from the image and
then search for spheres in the remaining parts.

Fig. 10. Removal of detected spheres from I′′′

(top) and gradient image G (bottom; brightened for
demonstration purposes)

The previously detected spheres should not
influence the current search for spheres. Therefore,
they are removed from the image and the same search
algorithm as described above is applied again. To
remove the spheres(s1, r1), . . . , (sm, rm) detected in
the first run of the algorithm we apply a dilation of
the spheres, which can be seen as a ‘blowing up’
of the union of spheres

⋃m
i=1b(si , r i). More formally,

using Minkowski addition, a dilated union of spheres
is obtained, which is given bySD = {s+ s′ : s ∈
b(o,4), s′ ∈ ⋃m

i=1b(si , r i)}, see Serra (1982). The set
SD is then compared to the filtered imageI ′′′ and the
gradient imageG, described in the previous section,
where all voxels covered bySD are set to white or
black, respectively, i.e., they are set to background,
see Figure 10. Note that in this thin 2D slice, due to
the dilation of the spheres there are also parts removed
from spheres located in neighboring slices.

Fig. 11.Detected spheres of the second run (top), final
result of sphere extraction (bottom)

With these modified images, we performed the
same procedure of sphere–detection as described in the
previous section. An example of the resulting set of
spheres is shown in Figure 11 (top).

The spheres detected in the second run are
assumed to be lower-ranked. They are only added to
the previously found set of spheres(s1, r1), . . . ,(sm, rm)
if they do not overlap too much wherefore the
same criterion (5% overlapping volume) is applied as
described in the previous section.

The final set of spheres representing the CdSe
nanoparticles is considered as marked point pattern
and denoted by(s1, r1), . . . ,(sk, rk), where k ≥
m; see Figure 11 (bottom), and Figure 12. In
the following, besides the marked point pattern
(s1, r1), . . . ,(sk, rk) itself, we will analyze the union of
spheres

⋃k
i=1b(si , r i) representing the system of CdSe

9
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nanoparticles with respect to electrical conductivity,
where we assume that this system can be described
by a 3D graph. The volume fraction of the union
⋃k

i=1b(si , r i) of spheres after repeated extraction is
equal to 0.311.

Fig. 12.Final result of sphere extraction in the same
slice as in Figure 1 (top), 3D cutout of detected spheres
(bottom)

STATISTICAL ANALYSIS OF
EXTRACTED SPHERES

Like in the preceding sections of this paper, for the
statistical analysis provided in this and the following
section we restricted ourselves to a densely packed part
of nanoparticles of the whole data set which can be
assumed to be statistically homogeneous, a required
condition on the data for the applied analysis tools.

Several structural characteristics of the marked
point pattern(s1, r1), . . . , (sk, rk) of extracted spheres
representing the CdSe nanoparticles have been
considered. To begin with, we analyze the distribution

of particle sizes. Then, we consider some structural
characteristics of particle locations, where we analyze
the pair correlation function and the nearest-neighbor
distance distribution function of sphere centers. We
also computed the cumulative distribution function of
spherical contact distances to the union of spheres
⋃k

i=1b(si , r i). Finally, the subsequent section deals
with three–dimensional graphs formed by these
spheres.

PARTICLE SIZES

The sphere representation of the CdSe
nanoparticles derived in the previous sections enables
us to determine the distribution of particle sizes by
considering the distribution of radiir1, . . . , rk of the
extracted spheres. The histogram of these radii is
shown in Figure 13. Note that the variability of radii is
rather small. More than 90% of the analyzed spheres
possess radii between 5 and 10 voxels, where the mean
value is equal to 7.82 voxels. This corresponds to
an average sphere diameter of 6.23 nm. This is in
reasonable agreement with the mean particle diameter
determined experimentally for nanoparticles dispersed
on a surface in the absence of any polymer, see
Hindsonet al. (2011).
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Fig. 13.Histogram of radii

PARTICLE LOCATIONS

In order to analyze structural properties of
the point pattern s1, . . . ,sk of particle locations
(i.e., centers of detected spheres) we consider the
pair correlation function and the nearest–neighbor
distance distribution ofs1, . . . ,sk. These characteristics
are popular in statistical analysis of geometrically
complex point patterns; see e.g. Diggle (2003),
Gelfand et al. (2010), or Illian et al. (2008).
Furthermore, we determine the cumulative distribution
function of the (voxel-wise) spherical contact distances
to the union of spheres

⋃k
i=1b(si , r i).
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Fig. 14. Pair correlation function of sphere centers
s1, . . . ,sk (top), cumulative distribution function of
nearest–neighbor distances between sphere centers
(middle) and spherical contact distances to the union
of spheres

⋃k
i=1b(si , r i) (bottom)

The first diagram in Figure 14 shows the pair
correlation functiong(r), r > 0, of sphere centers
s1, . . . ,sk, whereg(r) is the relative frequency of pairs
of sphere centers with distancer from each other. Note
that in the case of complete spatial randomness (CSR,
i.e. homogeneous Poisson point process), that is, there
is no interaction between the points of the considered
point pattern, it holds thatg(r) ≡ 1. Furthermore,
g(r)> 1 indicates clustering of points, whereasg(r)<
1 means repulsion of points. In our case, a repulsion
of spheres can be observed, which is about up to
distances of 14 voxels (with a minimum distance
of r = 8 between pairs of sphere centers), and, for
distances between 16 and 23 voxels, there seems to be
a moderate clustering of sphere centers. However, in
view of the relative small variability of radii mentioned
earlier in this section it is quite clear that the function
g(r) shown in the first diagram of Figure 14, cannot
be the pair correlation function of a so–called ‘dense

packing’ considered in mathematical physics. In this
case, there should be much larger deviations of the
values ofg(r) from level 1, having in mind the small
variability of radii; see also Figure 6.11 of Illianet al.
(2008).

Similar structural properties can be concluded
from the second diagram in Figure 14 which shows
the cumulative distribution functionD(r), r > 0, of
nearest–neighbor distances between pairs of sphere
centers. In case of CSR it holds thatD(r) = 1−
exp(−λκdrd), whereλ is the mean number of sphere
centers per unit volume,d the dimension andκd the
volume of thed-dimensional unit sphere. Thus, in this
case,D(r) is a strictly concave function, whereas the
diagram shown in the middle of Figure 14 first runs
along thex–axis, then having a convex part, and being
concave only later on (forr > 15). Notice that this
type of diagram clearly indicates repulsion of sphere
centers for small distances with the same minimum
distancer = 8 as indicated by the pair correlation
function. We also remark that the distances between
pairs of spheres (i.e. CdSe nanoparticles) are of great
importance for the transport of electrons by the system
of CdSe particles. However, note that the distribution
functionD(r) does not (yet) take into account the size
of the extracted particles.

The third diagram in Figure 14 shows the
cumulative distribution functionH(r), r > 0, of
the minimum distance from an arbitrary location
in the polymer phase, chosen at random, to the
union of spheres

⋃k
i=1b(si , r i). Note that H(r) can

be determined by spherical dilations of the union
of spheres

⋃k
i=1b(si , r i), see Serra (1982). This

characteristic also provides important information
regarding the performance of polymer solar cells
since it is closely related to quenching probabilities
of excitons, see Oosterhoutet al. (2009). Suppose
that r0 is the (average) diffusion length of excitons.
Then,H(r0) is the fraction of those voxels classified
as polymer, whose minimum distance to the set
⋃k

i=1b(si , r i), i.e. the CdSe phase, does not exceed the
expected diffusion length of excitons. This means that
the larger the valuesH(r) for r ∈ (0, r0), i.e., the more
voxels classified as polymer are closer to the union of
CdSe nanoparticles than the expected diffusion length
of excitons, the more charges can be generated. As
expected for these aggregated regions containing high
densities of nanoparticles, typical distances required
for exciton diffusion to an interface are small (less
than 2 nm), so exciton dissociation is expected to be
efficient, see Hindsonet al. (2011).
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3D GRAPHS OF NANOPARTICLES

In this section we briefly describe how 3D
graphs can be defined which connect the detected
spheres(s1, r1), . . . ,(sk, rk) according to given rules.
Furthermore, connectivity properties of these graphs
are investigated, which are important for the electrical
conductivity.

From a qualitative inspection of the images and
from the measured device performance, see Hindson
et al. (2011), we would expect electron transport
to be relatively efficient through these aggregated
regions containing high densities of nanoparticles. The
analysis below suggests that hopping between particles
over distances larger than 1 nm is required for this
to be the case. It would be interesting in the future
to perform sphere extraction and transport analysis on
regions of the film with lower nanoparticle densities
where the electron transport is expected to be less
efficient.
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Fig. 15.Cutouts of 3D graphs with hopping distance
dmax = 2 (top), dmax = 4 (middle), and dmax = 6
(bottom)

MODEL DESCRIPTION

Transport of electrons within the CdSe–(OC1C10-
PPV) composite depends on its interior connectivity,
i.e., on the existence of percolation pathways towards
the electrodes via a network of nanoparticles whose
maximal neighboring distance is below the hopping
distance of electrons. Since the electrons can hop
between the nanoparticles only within a certain
maximum distancedmax≥ 0, we analyze the detected
spheres (s1, r1), . . . ,(sk, rk) with respect to their
connectivity using a graph representation for the
ensemble of these spheres. This means that those pairs
si , sj , i 66= j, of sphere centers are connected to each
other if the distancedi j = min{|x−y| : x∈ b(si , r i),y∈
b(sj , r j)} = max{|si − sj | − r i − r j ,0} between the
corresponding spheres is smaller than some predefined
thresholddmax≥ 0.

For our analysis, we use different values fordmax,
i.e., d(1)

max = 2, d(2)
max = 4, and d(3)

max = 6. For each
of these values ofdmax, the result is a 3D graph
(V,E), where the set of verticesV is equal to the
set (s1, . . . ,sk) of sphere centers. The set of edges
E consists of the (undirected) line segments between
pairs of points fromV such that the distance between
the corresponding spheres is smaller thandmax as
explained above. Cutouts of such 3D graphs obtained
in this way are shown in Figure 15.

COORDINATION NUMBER

A common characteristic to describe the
connectivity of a graph is the distribution of degrees
of its vertices, i.e., the number of edges emanating
from each vertex. By some authors, this characteristic
is called the coordination number of the graph. The
histograms of the coordination numbers, which have
been obtained for the three graphs of nanoparticles
introduced in earlier in this section, are displayed in
Figure 16. It is clearly visible that the shape of the
histograms essentially depends on the choice of the
hopping distancedmax. For dmax = 2 the histogram
is quite narrow, whereas fordmax = 4 anddmax = 6
it becomes wider and more symmetric. In particular,
the mean coordination number increases from 2.2 for
dmax = 2 to 4.7 and 7.0 fordmax = 4 anddmax = 6,
respectively.
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Fig. 16. Histograms of the coordination number for
dmax = 2 (top), dmax = 4 (middle), and dmax = 6
(bottom)

MINIMUM–SPANNING TREE

Another characteristic describing the connectivity
of graphs is the so–called minimum spanning tree
(MST), which is a popular tool in graph theory, see
e.g. Diestel (2005) or Jungnickel (1999). The idea is
to consider the sub–graph with the minimum length
but the same connectivity as the original graph, i.e., all
nodes that can be connected in the original graph by
a sequence of edges are also connected in the MST.
Then, as a characteristic to describe connectivity, the
relative lengthℓ of the MST is considered, i.e.,

ℓ=
length of the MST

length of the original graph
,

where we obtain the valuesℓ = 0.83, ℓ = 0.48, and
ℓ= 0.32 for the graphs with hopping distancedmax= 2,
dmax = 4, and dmax = 6, respectively. These values
can be interpreted as follows. The graph with an
assumed hopping distance ofdmax = 2 has no good
connectivity at all, i.e., it is hard to find any good

percolation pathways. More precisely, fordmax= 2 the
graph consists of 119 isolated subgraphs. In contrast,
for dmax= 4, the graph consists of 9 subgraphs, where
for dmax= 6, the whole graph is connected. Thus, the
graph with hopping distancedmax= 6 has very good
connectivity properties, i.e., the charge transport to the
electrodes should work very well in this case.

GEOMETRIC TORTUOSITY

For describing transport processes in composite
materials, the tortuosity of their phases is an important
characteristic. It is usually defined as the ratio of the
mean effective path length through a material divided
by the material thickness. In this paper, we use a
geometric approach to describe this kind of property.
We consider shortest path lengths instead of effective
path lengths. This has the essential advantage that not
only a single value is obtained, like the effective path
length being a mean value, but a whole distribution
of local geometric tortuosities can be considered,
which contains much more information. Additionally,
the shortest–path approach can be seen as a purely
structural method, i.e., it does not dependent on
physical constraints, see also Deckeret al. (1998),
Peyregaet al. (2009), and Thiedmannet al. (2009).

For electrical conductivity within CdSe–(OC1C10-
PPV) composites the Euclidean distances, which
electrons have to go, are not important, but rather
the number of hops of charges until reaching the
electrode. Thus, shortest paths are considered in the
way that the number of hops is counted. This approach
is quite close to the physical understanding, where
a large number of hops causes increased likelihood
of losses by recombination. The normalization is
done with respect to the material thickness, which is
supposed to be the Euclidean distance between the
left–hand and right–hand side of the boundary of the
sampling window. Thus, the number of hops relative
to the material thickness is considered. This quantity
is related to the required energy of an electron to
move one voxel size closer towards the electrode. Note
that in contrast to the standard definition of tortuosity,
values smaller than 1 are possible.

The results for maximum hopping distance of
dmax = 4 and dmax = 6 are displayed in Figure 17.
Note that both histograms are quite narrow. Anyhow, it
can be seen that they (slightly) depend on the selected
maximum hopping distancedmax.

Because of the bad connectivity of the graph with
maximum hopping distance ofdmax = 2, for most
starting points there does not exist a path to the end
points. Thus, in this case, it is not reasonable to
compute the histogram of tortuosity.
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Fig. 17.Histograms of geometric tortuosity for dmax=
4 (top) and dmax= 6 (bottom)

VALIDATION

To validate our sphere–extraction algorithm, we
use the extracted spheresb(si , r i), i = 1. . .k, to draw
them into an empty 3D image. After adding a Gaussian
blur and white noise, see Burger and Burge (2008), we
apply the algorithm once again. This approach allows
us to compare the detected spheres with the (known)
spheres given in the input image.

GENERATION OF SYNTHETIC INPUT
IMAGE

We use the centers and radii of the spheres detected
from the original image to create a new 3D image
with the same dimensions. Similar as in real data, the
spheres are drawn in a light gray (gray value 175),
the background is a dark gray (gray value 100). To
make the extraction of the spheres more difficult and
especially more realistic, we apply a Gaussian blur
with standard deviation 2.5 and insert white noise
subsequently. White noise is modeled by a Gaussian
random variable with expectation zero and standard
deviation

√
20, i.e., we add a realization to the gray

value of all voxels independently. Clamping ensures
that all gray values remain in the interval[0,255], see
Figure 18. This leads to data similar to the real 3D data
set, at least by visual inspection.

Fig. 18. 2D sections of 3D image based on the
extracted spheres, once shown as perfect spheres (top)
and after Gaussian blur with white noise (bottom)

COMPARISON OF INPUT AND OUTPUT

A visual comparison of the detection results shows
that the algorithm works quite well, see Figure 19.
To compare the sets of spheres used as input and
obtained as output, we match the spheres using a
criterion based on their overlapping. For every “input”
sphere, the sphere with the highest overlapping from
the output is detected. Analogously, for every sphere of
the output we detect the input sphere with the highest
overlapping. In both cases an overlapping of at least
5% is required. Then, we consider two spheres to be a
match only if both have been assigned to each other.
A very small minimum percentage is used because
we want to match as much spheres as possible, even
if they do not match perfectly. Using this approach,
about 95% of all spheres are matched. For the pairs
of matched input and output spheres, we can compute
the distance of their centers and the difference of
the their radii, see Figure 20. In particular, the mean
distance between the centers of two matched spheres
is equal to 0.6 voxels and the mean of the (absolute)
difference between the radii is equal to 0.13 voxels.
In comparison to the mean radius of 7.82 voxels these
differences are very small.
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Fig. 19.Validation of sphere–extraction, once with the
expected spheres (top) and once with the image used
as input for the algorithm (bottom)
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Fig. 20. Distances between centers (top) and
differences between radii (bottom) for all pairs of
matched spheres

In view of these results it is not surprising that also
the sample mean and variance of the radii match nearly
perfectly, see Table 2.

Table 2.Analysis of radii in voxels for validation of the
sphere–extraction algorithm

input radii output radii
sample mean 7.82 7.81

sample variance 3.44 3.43

SUMMARY AND CONCLUSIONS

In the present paper, we have developed and
validated an algorithm for the detection of CdSe
nanoparticles in CdSe–(OC1C10-PPV) composites
based on 3D grayscale images. The considered cutout
of the 3D image was a representative sample of
a dense-packed region of CdSe nanoparticles. In a
first step, we have filtered the 3D image data and
applied a morphological closing to reduce noise and
to enhance edges of the objects. The developed
iterative thresholding procedure combined with a
cluster detection is applied subsequently to locate
potential centers of CdSe nanoparticles. For their
precise localization, we decomposed the image domain
into pairwise disjoint basins, where in each basin
exactly one object is detected using a modified Hough
transform for sphere extraction. A post–processing
of detected particles reduces overlapping artifacts. A
second run of the same procedure is considered where,
after removing the previously detected spheres, some
additional particles are found. They are then added to
get the final sphere representation of the system of
CdSe nanoparticles.

The second part of the paper concerns the
statistical analysis of the system of detected particles.
The spherical particles are interpreted as a marked
point pattern, wherefore tools from point–process
statistics are applied. In addition, we have connected
neighboring CdSe nanoparticles to form 3D graphs,
where the fact that electrons can cross small gaps
between disjoint nanoparticles by hopping is taken
into account. The considered characteristics are mainly
focused on describing the connectivity of the graphs,
which is strongly related with the transport processes
of electrons within the considered organic–inorganic
composite.

The results obtained in the present paper can be
considered as a first step towards the development of
spatial stochastic models for systems of nanoparticles
in organic–inorganic composites. By means of
such models, non–interactive statistical methods can
be established in order to detect and quantify
structural advantages/disadvantages of various types of
nanoparticle systems in organic–inorganic composites.
Moreover, model-based Monte Carlo simulations of
virtual materials can be accomplished, where the
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general intention of such computer experiments is the
virtual design of materials with improved physical
properties.
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