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ABSTRACT

The rising global demand in energy and the limited resouicdessil fuels require new technologies in
renewable energies like solar cells. Silicon solar cellsrad good efficiency but suffer from high production
costs. A promising alternative are polymer solar cells, tu@otentially low production costs and high
flexibility of the panels. In this paper, the nanostructufeoi@anic—inorganic composites is investigated,
which can be used as photoactive layers in hybrid—polymlar sells. These materials consist of a polymeric
(OC;C10-PPV) phase with CdSe nanoparticles embedded therein. ©patis of 3D image data with high
spatial resolution, gained by electron tomography, anrélgu is developed to automatically extract the CdSe
nanoparticles from grayscale images, where we assume thephares. The algorithm is based on a modified
version of the Hough transform, where a watershed algorithused to separate the image data into basins
such that each basin contains exactly one nanoparticle.alboeithm is validated by application to (semi-)
synthetic data. After the extraction of the nanopartiaiesghboring ones are connected to form a 3D network
that is related to the transport of electrons in polymerrsoddls. A detailed statistical analysis of the CdSe
network morphology is accomplished, which allows deepsigint into the hopping percolation pathways of
electrons.

Keywords: 3D Imaging, Electron Tomography, Composite Mate Nanoparticle System, Network
Morphology, Iterative Thresholding, 3D Watershed, Hougarisform, Charge Transport.

INTRODUCTION It is clear that there is a close relationship
between nanostructure and functionality of this kind
The rising global demand in energy and the limitedof composite materials when using them in hybrid—
resources in fossil fuels require new technologieolymer solar cells. Under exposure to light, photons
in renewable energies like solar cells. Classicahre absorbed in the polymer phase and neutral excited
silicon solar cells offer a good efficiency but states known as excitons are generated, which diffuse
suffer from high production costs. A promising in the polymer phase within a limited life time. If an
alternative are polymer or hybrid—polymer solarexciton reaches the surface of a CdSe nanoparticle,
cells due to potentially low production costs andit is split up into an electron (negative charge) in
high flexibility of the panels. In this paper, we the CdSe and a hole (positive charge) in the polymer
investigate the nanostructure of organic—inorganighase. In addition, CdSe nanoparticles can also absorb
composites that can be used as photoactive layefhotons directly, followed by hole transfer to the
in hybrld—polymer_solar cells. More precisely, blendspo|ymer_ The electrons have to hop from CdSe
of CdSe nanoparticles( 6.5 nm diameter spheres) nanoparticle to nanoparticle to reach the electrode.
with poly[2-methoxy-5-(3',7'-dimethyloctyloxy)-1,4- gince an electron can only hop over short distances
phenylene vinylene] (O{C10-PPV) are investigated. peqyeen nanoparticles, the morphology of the network

Solar cells based on polymer:nanoparticle blends, i8¢ nanoparticles as a whole is of great importance for
particular CdSe nanoparticles, have been fabricated fcﬁr]e performance of the solar cell.

a number of years with a great deal of success, see
Dayal et al. (2010), Greenhanet al. (1996), Huynh Therefore, it is essential to develop tools in
et al. (2002), and Wangt al. (2006). order to extract the ensemble of CdSe nanoparticles
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from 3D grayscale images obtained by electrorto quite different results. Hence, in the present paper,
tomography. Connecting neighboring CdSe particlea computer algorithm is developed for automatic
yields a network through which the electrons can hogi.e. non—interactive) extraction of spherical objects
to reach the electrode. A detailed statistical analysidirectly from 3D grayscale images. The precise
of the network morphology is accomplished, whichextraction of the CdSe nanoparticles from electron
allows deeper insight into the hopping percolationtomography images and the statistical analysis of
pathways of electrons. the morphology of CdSe networks are of significant
importance to characterize transport properties of the
considered composite material with respect to electron

hopping.

In this paper we focus on the case of spherical
nanopatrticles, so—called nanodots. However, the basic
idea of our extraction algorithm also works for
nanoparticles with other shapes. For example, for
elongated nanopatrticles, so—called nanorods, just the
maximization step in the Hough transform for the
detection of nanorods will be computationally a bit
more complex.

The paper is organized as follows. At first,
the imaging technique and the resulting 3D
data are described, which are the basis of our
investigations. Then, a robust algorithm of image
processing is developed for fully automatic extraction
of nanoparticles from 3D grayscale images.
Subsequently, the morphology of the system of
extracted spheres representing the CdSe nanopatrticles
is analyzed with respect to properties that are
relevant e.g. to quenching of excitons. Consecutively,
network graphs based on the detected spheres are
constructed, whose structural properties are closely
related to charge transport. The algorithm to extract
nanoparticles is validated by detecting nanoparticles
Fig. 1. CdSe nanoparticles embedded in a @%- from (semi-) synthetic 3D image data, where the true
PPV phase: Thin 2D slice (top; the scale barconfiguration of the nanoparticles is known. Finally,
corresponds to 50 nm) and 3D cutout of binarized datahe results are summarized and an outlook to possible
(bottom; obtained by global thresholding) future research topics is given.

The algorithm to extract the ensemble of CdSe
nanoparticles is applied to grayscale image data 3D IMAGES OF CDSE—(OC;Cio-

gained by high-angle annular dark-field scanning ppy/ MP ITE
transmission electron microscopy (HAADF-STEM). ) co 0S S

Examples of image data for this type of composite
material are displayed in Figure 1, where the upper. o : : :
part shows a thin 2D section and the lower part a 3 ;thﬁiosdf '; brllizfcljy ?:chggfétzOégovi?nréth:;rg?gt'ﬂi%
cutout of a suitable binarization obtained by global 9 P 9 9

ihresholding. In he rayscale image on the uppel %1% 1 0% spall resobon = explnce. For
part of Figure 1 the gray values are inverted, i.e., th ging,

nanoparticles are displayed dark (low gray values) angt & (2011).
the background is bright (high gray values).

In this section, the considered organic—inorganic

Note that binarization and subsequent manual DESCRIPTION OF THE MATERIAL

extraction of nanoparticles in 3D grayscale images The photoactive layer of the considered hybrid—
is accompanied by an enormous effort. Furthermoreggolymer solar cell consists of a blend of CdSe
small failures in the binarization procedure can leadhanoparticles & 6.5 nm diameter spheres with
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butyl-amine ligands) with poly[2-methoxy-5-(3’,7'- For the statistical analysis described later on, we
dimethyloctyloxy)-1,4-phenylene vinylene] (@Cio- considered a cutout of 424421 x 91 voxels, which
PPV). The ratio of CdSe nanoparticles to {Mzo-PPV  is a part of the complete data set. Beforehand, in
was 6:1 by weight. The photovoltaic device was builtorder to obtain a large (cuboid—shaped) cutout with
using regular architecture. Cleaned substrates wess much nanoparticles as possible, the 3D image has
coated with PEDOT:PSS which was annealed unddseen rotated. The considered cutout contains only that
nitrogen for 30 minutes at 23CQ. The active layer was part of the whole data set where the CdSe nanoparticles
spin-coated at 2000 r.p.m. which yields a thicknesare rather densely packed, see Figure 2, corresponding
of 50-70 nm, and annealed at T&for 20 minutes. to the high-density regions described in Hindsdmal.
Films for tomography were floated off the substratg2011).

onto water, using the PEDOT:PSS as a sacrificial layer,

and were then transferred onto TEM grids. The values of all parameters are given in voxels,

where we regard the darker phase, i.e., the patrticles,
as the foreground phase, and the brighter phase as
IMAGING TECHNIQUE AND TOMO- the background phase, see Figure 2. Note that for the
GRAPHIC RECONSTRUCTION 8-bit grayscale images considered, a gray value of O
To investigate the nanomorphology of theindicates black and a gray value of 255 white.

ensemble of CdSe nanoparticles embedded in the The algorithm developed in order to automatically
polymeric phase, we used 3D images obtained b¥xtract the CdSe nanoparticles from grayscale images
high-angle annular dark-field scanning transmissiois based on mathematical methods. Therefore, it

electron microscopy (HAADF-STEM). In general, js unavoidable to introduce a certain minimum of
electron tomography enables to obtain thregotation.

dimensional images with a nanometer resolution.

Thus, it is an ideal method to analyze the structure L€t | = {I(x,¥;2),(xy,2) € D} denote the 3D
of nanoparticle networks in organic photovoltaics. ThdMage, where(x,y,z) € {0,..., 255} is the gray valge
HAADF-STEM has an advantage in systems where th8f the 3D imagel at grid point(x,y,z) € D C Z
two components differ significantly in atomic number,@nd the seD s interpreted as a sampling window.
Z, since it mainly detects electrons that have undergorfeurthermore, in order to simplify the handling of
Rutherford scattering. The 3D grayscale images werBoundary effects, we consider the following (formal)
obtained using a FE| Tecnai F20 field emission gurfontinuation of the image outside Bf For locations
TEM operated at 200 kV. The tilt range was betweer{X,¥%;2) € Z\ D not in the domairD of the image
120 and 142 degrees in 1 or 2 degree steps, dependihgthe gray valued(x,y.z) are assumed to be such
on the exact topography of the selected area. Th@at they do not affect the applied operations of image
image series was aligned and reconstructed using Rfocessing (which will be (x,y,z) = 0 for (x,y,2) €
SIRT algorithm in Inspect3D software. 27>\ D in most cases).

DESCRIPTION OF IMAGE DATA AND
BASIC NOTATION ALGORITHM FOR NON-INTER-

The complete 3D data set analyzed in this paper ACTIVE EXTRACTION OF

has a size of 91% 872x 404 voxels, where each voxel SPHERES

represent$0.4 nm)3. An example of a 2D slice can be . _ _ _
seen in the upper part of Figure 1. In this section, we describe an algorithm to

extract single particles from grayscale images like
those shown in Figure 2, where we assume that
each nanoparticle can be seen as a 3D sphere. This
assumption is supported by the production technique
of the particles. The segmentation algorithm developed
is based on the Hough transform (HT) for spherical
objects, see e.g. Burger and Burge (2008), Duda
and Hart (1972), and Ballard (1981). The HT is a
robust algorithm to detect parameterized geometric
objects, but suffers from long computer runtimes
when the number of parameters which describe the
Fig. 2.Cutout of a 2D thin section with densely packedobjects is high. However, since spheres can be
particles; the scale bar corresponds to 50 nm described quite simply by four parameters, the HT is
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adequate for extracting such objects. Note that this HT-
based approach is similar to the idea of maximum-—
likelihood estimation in mathematical statistics, where
the parameter vector (here: position and radius of the
CdSe nano-particle) is chosen such that the identified
object is the most plausible (i.e., most likely) one
given the 3D image data. Hence, the HT is mainly
conceived for extracting one single but not several
(densely packed) objects from an image. It can be
used to extract an ensemble of objects, but either the
number of objects has to be known in advance or has
to be determined by extensive computer simulations.
In this work, we go one step further and perform a data
preprocessing, where we divide the sampling window
D into disjoint regions each containing exactly one
object to be detected. Subsequently, each region is
transformed using the HT-principle in order to identify
the object located in this region. This procedureFig. 3.2D sections of the original (top) and smoothed
reduces computer runtime of the HT even further andPottom) image

is much more robust. The splitting of the domdin o )

. . e The application of the filter can be seen as a
into separated regions (so—called ‘basins’) is based %bnvolution of the image with the (matrix) filter
an iterative thresholding procedure detecting the initiaG = (G(i, j,k), i, j,k € {—1,0,1}). This means that

points of the subsequent 3D watershed segmentatiotie gray values’(x,y,z) of the smoothed imagk =

- . vt s {I'(x,y,2), (x,y,2) € D}, where the filterG of size
Theée |T1|t|al pomts. are called the 'springs’ of the3 x 3 x 3 with centered origin has been applied to, are
‘basins’ in the following, see also Baere and Lehmam@iven by

(2006), Beucher and Meyer (1993), and Beucher and L1 1

Lantugjoul (1979). 'xyz)=5 5 5 1(x+iy+]j,z+k)-G(i,j.k).
i=—1j=—1k=—1

A 2D slice of the smoothed 3D image, together with
the corresponding 2D slice of the original image, can
be seen in Figure 3.

SMOOTHING OF GRAYSCALE IMAGES MORPHOLOGICAL CLOSING

To emphasize and additionally smooth the

. . . . spherical structures that have to be extracted from
A first step of image pre-processing, which usuallyipe given image, we apply a morphological closing

precedes statistical image analysis, is a smoothing afith structuring element of size>65 x 5 and centered
the data to reduce noise, i.e., small artifacts resultingt the origin, see Serra (1982). More precisely, the
from the | . q truction techni Thudray values!”(x,y,z) of the dilated imagel” =
rom the imaging and reconstruction techniques. Thu 1(x,y,2), (x,Y,2) € D} are given by

we apply a 3D symmetric Gaussian filt& of size , / _ _

3x 3 x 3 and standard deviatiom = 0.4 to the image "% y,2)= max ! (X+1,y+],z+K).

I. Note that such a small filter has only negligible _ : L .
_ , y negig The size 5<5x 5 is chosen because it can be warranted
influence on the geometric structure of the data we argyai no nanoparticles are lost. Note that for applying

interested in. the gray level dilation, the values of the imadfe
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outside its domairD are put equal to 0. Analogously, GRADIENT IMAGE

the gray level erosion applied to the imades given The application of HT in order to extract the

by nanoparticles first requires the detection of edges of the

1”(x,y,2)= min 1”"(x+i,y+]j,z+Kk),(x,y,2) €D, objects of interest. One possibility to detect edges in
—2siks2 the imagd ", i.e., the locations of rapid changes in the

where the values of the imagd/é outside its domai®  gray values, is the consideration of its gradient image.

are put equal to 255. The result of these morphologicdPhanges in gray values are mathematically described

operators is an enhancement of the spherical shape oy partial derivatives, where the locatiofsy, z) are

the CdSe nanoparticles that shall be detected. Thestupposed to form a ‘continuous’ set. Then, the vector

edges are emphasized and, in addition, their interidd!” (X,y,z) with

is smoothed which improves the edge detection

considered below. %I”’(x, Y,2)
. : 0

Note that the morphological closing has no O"xy.2) = | Hl"xy2)

significant influence on the extracted objects with aizl”’(x,y,z)

respect to changes of their sizes. Examples of thin

planar sections of the data after application ofcontaining the partial derivatives is considered, i.e.,
morphological closing are shown in Figure 4. 01" (x,y,z) describes the changes of the gray values
of I at location(x,y,2) in the directions of thex-,

y-, and z-axis, respectively. The lengtfl”’(x,y, z)|

of the vectorTJI””(x,y,z) describes the (total) strength
of changes of the gray values at positiony,z),

i.e., the longer the vector the stronger the changes in
gray values. Since edges correspond to strong changes
in gray values, this provides a possibility of edge
detection.

Fig. 5.2D section of gradient magnitude image 6f |
(brightened up for demonstration purposes)

A challenge in practical application is the
numerical evaluation of the partial derivatives since
only a discrete domaib is given. Several solutions to
overcome this classical problem have been proposed
in literature. We used an algorithm implemented
in Avizo, a software of the Visualization Sciences
Group (vww.vsg3d.coin to obtain an approximation
of the gradient values. A 2D slice of the 3D gradient
imageG is shown in Figure 5, where the magnitudes
|01 (x,y,z)| are plotted as grayscale values, i.e., areas
Fig. 4.2D sections of the original data (top), smoothedof high variation are displayed as bright regions. Later
image [ after gray level dilation (middle), smoothed on in this section we use this gradient imagevhen
image " after morphological closing (bottom) considering the Hough transform.
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ITERATIVE THRESHOLDING stopped at that value afif, for the first time, the

To determine the initial points of the watershed complete binary image is said to be foreground,

transformation considered later on in this section, -8l (xY.z)=1forall(xy,2) € D.
i.e. the ‘springs’ of the ‘basins’, we propose the
foIIowmg proced_ure of an lterative thre_sholc_img. The The result is a set of initial poinS= {s,...,S},
appropriate choice of these initial points is crucial

for the subsequent detection of spherical objects sinc\%hICh 'S used_ for th_e Watershed transformatlpn. Due to
each basin shall contain exactly one object. the construction principle of the s8t each point ofS

is located close to the center of a spherical object that

The idea of our iterative thresholding is to detectspg)| he detected later on. Note that the ‘critical’ size
the centers of the objects to be extracted, which a&t the cluster, i.e., the minimum size that the cluster

assumed to be the locally darkest parts of the image . .
I””. In particular, we are looking for a s&of initial IS considered to gene_rate a point $ controls the
points for the watershed transformation. To begin withUmber of detected objects.

we putS= 0, where 0 denotes the empty set. Then, we

consider the (global) threshold= 1, which is applied

to the imagd’”’, and perform the following steps:

1) Theimagd” is thresholded with threshold valtie
to get the binarized imag¢’, i.e.,

gray value

m 1 if 1"(x,y,2) <t,
It (Xayaz>_{ 0 if |/”(X,y,2)>t,

and the phase ofl”, where I” equals 1, -
is called foreground. Note that the foreground domain
is growing with increasing value ot, i.e.,

Fig. 6. Sch ic 1D le of h
{foreground of"} c {foreground of"” }. ig. 6. Schematic example of watershed

transformation with 3 basins
2) All connected clusters of the foregroundf i.e.,
the parts ofl{” with value 1, are determined. This
can be done using e.g. the algorithm of Hoshen
and Kopelman (1976). LefCj,...,Cy, } denote
the set of separated (foreground) clustersl{ih
with volumes|C}|,...,|Cl .|, respectively. If the _ _ _
KO In the previous section, we determined the set
volume of a cluster, say clusted!, exceeds a P o o
predetermined size, in our case 100 voxels, w® = {51;--,Sn} of initial points in order to construct
check whether this cluster has already contributeéhe watershed transformation of’. Note that the
to an initial point for the watershed transformationwatershed transformation subdivides the dom@in
or not. Therefore, we check if one of the pointsof 1" into pairwise disjoint sets, so—called basins
from S= {s1,...,sy_,} is contained irC{. If no  By,...,B,, i.e.,BiNB; =0 for anyi # j and ", B =
point of the current se$ is contained irCl, i.e., D, wheres, € B; for eachi € {1,...,n}.
sj € C! holds for all j € {1,...,nc_1}, then the

‘s : O
barycent_er o is considered as pqtentlal_ Spring The intuitive idea of the watershed transformation
of a basin to be constructed. If, in addition, the,

barycenter of! is contained irC!, the barycenter is that at the initial points;,...,s,, the flooding ofl”’
is added to thle se® of initial ploints. Note that Starts. Therefore, the gray valuesl8fare interpreted

only clusters smaller than 2000 voxels are alloweds level curves. The boundaries of the ba&ips. ., By

to generate an initial point. These conditionsare the locations where different ‘valleys’ meet, see

assure that only (at least roughly) sphericallythe schematic illustration displayed in Figure 6 for

shaped objects are detected by the object—-detectiehe one—dimensional case. More information about the

algorithm considered later on in this section. watershed transformation and related algorithms can
3) The current threshold valueis increased by one befound e.g.in Baere and Lehmann (2006), Roederink

and the procedure described above is performednd Meijster (2000), Beucher and Meyer (1993), and
again, starting with step 1. The procedure isBeucher and Lan&joul (1979).

WATERSHED TRANSFORMATION
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one object to be detected, provides optimal pre-
conditions for the Hough transform (HT), see e.g.
Burger and Burge (2008),aline (2005), or Ballard
(1981), who introduced the Hough transform in its
generalized version. The HT is a powerful tool
to detect (single) geometric objects from grayscale
images provided that the objects to be detected
possess a parametric description. In case of a
three—dimensional sphere, there are four parameters
= describing it uniqgely: the coordinatesy,z of the
. s W N =S center and the radius

Fig. 7.2D section of watershed barriers The idea of the HT is the consideration of the
so—called Hough space, which, in our case, has four
In the following sections, we show that the dimensions, representing the parametery, z, and
watershed transformation described above leads tora Note that for the application to image data, only a
decomposition of the domaid into pairwise disjoint discrete set of values fot y, z, andr is considered. In
basinsB;,...,B,, where each basin contains exactlyits original version, the HT is applied to binary images
one object (i.e. CdSe nanoparticle) to be detected. Anly, which leads to the following interpretation of
2D slice of the watershed barriers obtained in this wayhe Hough space. Each vectoty,z r) represents one
is displayed in Figure 7. Note that these basins arephere in the Hough space, where the value.3tzr)
used to decompose the domain of the gradient image the Hough space provides the number of boundary
G, considered previously in this section, into disjointvoxels of the foreground phase of the original binary
(sub-) regions. They are considered for the detectionmage contributing to the surface of this sphere, i.e.,
of spheres using a modified version of the well-knowrthe number of voxels on the surface/edge of the
Hough transform. More precisely, for the application(discretized) sphere in the original image. The sphere
of the HT, the number of spheres to be detectethatwe are interested in can then be determined just by
needs to be known in advance. By the watershetboking for the global maximum in the Hough space.
transformation, not only the number of spheres isThis procedure is plausible since a sphere is chosen in
known, but also the area where the HT is looking forsuch a way that the largest number of detected edge
every single sphere can be reduced. points is covered by that sphere.

"\

The watershed transformation detects basins in However, in our case, edge detection is based on
the whole image, independently of the local contrastthe gradientimage, which is a grayscale image. In view
Because each basin is considered as a candidagéthis and since any binarization yields inaccuracies,
for the detection of spheres, it is reasonable tave used a slightly modified version of the HT that can
ignore basins where the grayscale values do ndie applied to grayscale images. Instead of counting
differ too much. The criterion used to quantify the number of edge points covered by the surface of
the local contrast in basins is as follows. Wea sphere, we sum up their grayscales in the gradient
compute the standard deviation of the grayscale valugésage. This leads to the detection of an object, where
S = \/Z(x,y,z)eBi(I///(Xay7Z)_m)z/(’Bi|_1) for each Dinarization artefacts can be avoided. Furthermore,

for all voxels outside the currently processed basin, a

and |Bj| the number of voxels of basiB;. If the
standard deviation is smaller than a given threshold, It is obvious that using this version of HT, larger
then the basin is ignored in the following step. Forspheres are preferred since more edge points can
the currentimage data a (minimum) standard deviatiohe covered. To reduce this overestimation of large
of 15 has been determined as a suitable value. Tigpheres, we applied a rescaling of the values in the
remaining basins are denoted By,...,B;,, where Hough space, dividing each value by the square root
n <n. \/r of the corresponding radius before searching
for the global maximum. This kind of rescaling has
HOUGH TRANSFORM FOR THE |been chosen because then the result of the sphere
extraction provides a good optical fit. However, other
DETECTION OF SPHERES scaling factors liker=! or 1/logr are also possible.
The decomposition of the domalh into disjoint  The rescaling does not affect the detected radii directly,
basinsBi, ..., B/, where each basin contains exactlybut it allows to prefer smaller / larger radii which
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are plausible within a certain range. Later on, the
extraction algorithm is validated indicating that the
rescaling is adequate.

Note that this HT-algorithm is applied to each
basin Bi,...,B/, separately, which leads to the
detection ofn’ spherical objects in the whole image.
An illustration is given in Figure 8, where 2D slices of

detected spheres have been added to the data.

Fig. 9. Detected spheres after post—processing

To avoid an over segmentation, we are looking for
all pairs of spheres where the volume of overlapping
is larger than 5% with respect to the volume of the
smaller sphere. Subsequently such a pair of spheres
is removed from the list of detected spheres and
their basins obtained by the watershed segmentation
are recombined. From this newly created basin, a
new sphere is extracted and added to the list of
: detected spheres, where the same techniques are
e L = s used as described above. This procedure is repeated

. : ¢ soh . h hseveral times until no pair of spheres is found with
Fig. 8. Detection of spheres using the Hough,, oyerapping of 5% or more of the volume of

transform; arrow indicates two strongly overlapping the smaller sphere. In the result, a clearly visible

spheres reduction of overlapping effects can be observed, see
Figure 9 and Table 1. Note that a small overlapping
of the spheres seems reasonable since in reality the
nanopatrticles have no perfect spherical shape.

POST-PROCESSING OF DETECTED Table 1.Analysis of overlapping spheres (after the first

SPHERES run of sphere—extraction algorithm)

Some of the extracted spheres may strongly post—processing
overlap; see Figure 8 for an example of such (almost before| after
completely) overlapping spheres indicated by an total volume
arrow. A reason for this overlapping is that there are fraction 0.290 | 0.241
too many basins identified by the iterative thresholding of spheres
procedure which has been described previously in volume fraction
this section. Also note that the spheres identified covered 0.012 | 0.001
by the HT may exceed the boundary of the basin. several times

Due to the varying grayscale values at the centers of

the spheres, it happens that the iterative thresholding The volume fraction of extracted spheres decreases
procedure detects two different initial points whichconsiderably by the post—processing described above,
actually belong to one and the same particle. Thesgee Table 1. However, after the repeated extraction of

two initial points then lead to two different basins in SPheres discussed in the following section, the total

the watershed algorithm and, accordingly, two SlohereEolume fraction of all extracted spheres is equal to
' ' 311.

are determined by the Hough transform although i
should be only one. From a physical point of view, it is
clear that such a strong overlapping cannot be a correct REPRESENTATION AS MARKED POINT
detection of spheres. Hence, we apply the following PATTERN

post—processing of detected spheres to reduce the Let B denote the inorganic part (i.e., the CdSe
overlapping. nanoparticles) of the composite material. In the
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preceding sections we showed that the Betan using Minkowski addition, a dilated union of spheres
quite nicely be represented by a system of spherds obtained, which is given by = {s+¢ :s¢
which can be seen as functional of a marked poinb(0,4),s € U™, b(s,ri)}, see Serra (1982). The set
pattern(sy,ri),...,(Sm,rm), m< ', where the points S° is then compared to the filtered imat/¢ and the
s are the centers of the spheres and the markise gradient imageG, described in the previous section,
corresponding radii. In other words, the #&tan be where all voxels covered bg° are set to white or
approximated by the union of these spheres, Bex, black, respectively, i.e., they are set to background,
UM, b(s,ri), whereb(s,;r) = {§ € R3: |§ —g/ <r}. see Figure 10. Note that in this thin 2D slice, due to
the dilation of the spheres there are also parts removed
from spheres located in neighboring slices.

REPEATED EXTRACTION OF
SPHERES

Since, in general, the result of sphere extraction
described above does not cover all regions that can
be interpreted as nano—sized particles, we applied the
sphere—detection algorithm again. The idea is to first
remove already detected spheres from the image and
then search for spheres in the remaining parts.

Fig. 11.Detected spheres of the second run (top), final
result of sphere extraction (bottom)

With these modified images, we performed the
same procedure of sphere—detection as described in the
previous section. An example of the resulting set of
spheres is shown in Figure 11 (top).

The spheres detected in the second run are
Fig. 10. Removal of detected spheres frorf{’ | assumed to be lower-ranked. They are only added to
(top) and gradient image G (bottom:; brightened forthe previously found set of sphers, 1), ..., (Sm,"m)
demonstration purposes) if they do not overlap too much wherefore the
same criterion (5% overlapping volume) is applied as

. described in the previous section.
The previously detected spheres should not P

influence the current search for spheres. Therefore, The final set of spheres representing the CdSe
they are removed from the image and the same sear#ianoparticles is considered as marked point pattern
algorithm as described above is applied again. T@nd denoted by (sy,ri),...,(S,rk), Where k >
remove the sphere@,r1),... , (Sm,rm) detected in m; see Figure 11 (bottom), and Figure 12. In
the first run of the algorithm we apply a dilation of the following, besides the marked point pattern
the spheres, which can be seen as a ‘blowing upisi,f1),. .., (S k) itself, we will analyze the union of

of the union of spheres)™; b(s,r;). More formally, spheresU!‘:l b(s,ri) representing the system of CdSe
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nanoparticles with respect to electrical conductivity,of particle sizes. Then, we consider some structural
where we assume that this system can be describetiaracteristics of particle locations, where we analyze
by a 3D graph. The volume fraction of the unionthe pair correlation function and the nearest-neighbor
U ,b(s,ri) of spheres after repeated extraction isdistance distribution function of sphere centers. We
equal to 0311. also computed the cumulative distribution function of

spherical contact distances to the union of spheres
U}‘zlb(s,ri). Finally, the subsequent section deals

with three—dimensional graphs formed by these
spheres.

PARTICLE SIZES

The sphere representation of the CdSe
nanoparticles derived in the previous sections enables
us to determine the distribution of particle sizes by
considering the distribution of radiiy,...,rx of the
extracted spheres. The histogram of these radii is
shown in Figure 13. Note that the variability of radii is
rather small. More than 90% of the analyzed spheres
possess radii between 5 and 10 voxels, where the mean
value is equal to 7.82 voxels. This corresponds to
an average sphere diameter of 6.23 nm. This is in
reasonable agreement with the mean particle diameter
determined experimentally for nanoparticles dispersed
on a surface in the absence of any polymer, see
Hindsonet al. (2011).

06 TT T T T T T T T T T T

05 1

04+ g

03 1

0.2 | E

relative frequency

0.1 1

Fig. 12.Final result of sphere extraction in the same
slice as in Figure 1 (top), 3D cutout of detected spheres 012345678091011121314
(bOttom) radius in voxels

Fig. 13.Histogram of radii

STATISTICAL ANALYSIS OF
EXTRACTED SPHERES PARTICLE LOCATIONS

o _ _ _ In order to analyze structural properties of
Like in the preceding sections of this paper, for théhe point patternsy,...,s, of particle locations
statistical analysis provided in this and the following; ¢ centers of detected spheres) we consider the
section we restricted ourselves to a densely packed pgJbir correlation function and the nearest—neighbor

of nanoparticles of the whole data set which can bejistance distribution of;. .. ., s.. These characteristics

assumed to be statistically homogeneous, a requirede honylar in statistical analysis of geometrically
condition on the data for the applied analysis tools. complex point patterns; see e.g. Diggle (2003)

Several structural characteristics of the markedselfand et al. (2010), or lllian et al. (2008).
point pattern(sy,ri),. .., (S.rx) of extracted spheres Furthermore, we determine the cumulative distribution

representing the CdSe nanoparticles have bednunction of the (voxel-wise) spherical contact distances
considered. To begin with, we analyze the distributiorto the union of spheregk_ ; b(s;, ri).

10
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packing’ considered in mathematical physics. In this
case, there should be much larger deviations of the
values ofg(r) from level 1, having in mind the small
variability of radii; see also Figure 6.11 of llliset al.
(2008).

pair correlation function
o
[ee]
T

Similar structural properties can be concluded
from the second diagram in Figure 14 which shows
the cumulative distribution functio®(r), r > 0, of
nearest—neighbor distances between pairs of sphere
centers. In case of CSR it holds thB{r) = 1 —

08 1 1 exp(—Akgr%), whereA is the mean number of sphere
06 I 4 centers per unit volumej the dimension angqy the
volume of thed-dimensional unit sphere. Thus, in this
case,D(r) is a strictly concave function, whereas the
0.2 r T diagram shown in the middle of Figure 14 first runs
0 . . . along thex—axis, then having a convex part, and being
o 5 10 15 20 B concave only later on (for > 15). Notice that this
distance in voxels . . . .
type of diagram clearly indicates repulsion of sphere

centers for small distances with the same minimum
08 1 distancer = 8 as indicated by the pair correlation
06 L i function. We also remark that the distances between
pairs of spheres (i.e. CdSe nanoparticles) are of great
importance for the transport of electrons by the system
02 . of CdSe patrticles. However, note that the distribution

o L functionD(r) does not (yet) take into account the size

o 2 4 6 8 10 12 of the extracted particles.

distance in voxels

0 10 20 30 40 50
distance in voxels

1 T T T

04+ g

cumulative probability

1 T T T T

04 E

cumulative probability

Fig. 14. Pair correlation function of sphere centers The_thlrd_ dl_agrgm N Fl_gure 14 shows the
S......5c (top), cumulative distribution function of cumulative distribution functionH(r),r > 0, of

nearest-neighbor distances between sphere centef®® minimum distance from an arbitrary location

(middle) and spherical contact distances to the uniori? the polymer prllase, chosen at random, to the
of Sphererg‘:lb(S,ri) (bottom) union of spheredJ ;b(s,ri). Note thatH(r) can

be determined by spherical dilations of the union

, , o _of spheresJK ;b(s,ri), see Serra (1982). This

The first diagram in Figure 14 shows the paircharacteristic also provides important information

correlation functiong(r),r > 0, of sphere centers (eqarding the performance of polymer solar cells

S1,...,S whereg(r) is the relative frequency of pairs gjyce it is closely related to quenching probabilities
of sphere centers with distancé&om each other. Note f excitons, see Oosterhoet al. (2009). Suppose

that in the case of complete spatial randomness (CS atro is the (average) diffusion length of excitons.

€. hqmogen_eous Poisson pomt.process), that 'S, the en,H(rp) is the fraction of those voxels classified
is no interaction between the points of the considere - )
as polymer, whose minimum distance to the set

[ it hol h = 1. Furth
point pattern, it holds thag(r) urthermore, U, b(s,ri), i.e. the CdSe phase, does not exceed the

g(r) > 1 indicates clustering of points, wheregs) < A ) .
1 means repulsion of points. In our case, a repulsioﬁXpeCted diffusion length of excitons. This means that

of spheres can be observed, which is about up t'€ larger the valuesd(r) forr € (0,ro), i.e., the more
distances of 14 voxels (with a minimum distanceVoXels classified as polymer are closer to the union of
of r = 8 between pairs of sphere centers), and, fofedSe nanoparticles than the expected diffusion length
distances between 16 and 23 voxels, there seems to 8k €xcitons, the more charges can be generated. As
a moderate clustering of sphere centers. However, i@xpected for these aggregated regions containing high
view of the relative small variability of radii mentioned densities of nanoparticles, typical distances required
earlier in this section it is quite clear that the functionfor exciton diffusion to an interface are small (less
g(r) shown in the first diagram of Figure 14, cannotthan 2 nm), so exciton dissociation is expected to be
be the pair correlation function of a so—called ‘denseefficient, see Hindsoat al. (2011).

11
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3D GRAPHS OF NANOPARTICLES MODEL DESCRIPTION

In this section ' we bI’IEﬂy describe how 3D Transport of electrons within the CdSe_(mO_
graphs can be defined which connect the detectgslpy/) composite depends on its interior connectivity,

spheres(s;,r1),..., (Sr) according to given rules. o on the existence of percolation pathways towards
Furthermore, connectivity properties of these graph e electrodes via a network of nanoparticles whose

are investigated, which are important for the electrica ) : , . . .
nvestig » Wh 'mp I maximal neighboring distance is below the hopping

conductivity. ) )
distance of electrons. Since the electrons can hop
From a qualitative inspection of the images anchetween the nanoparticles only within a certain

from the measured device performance, see Hindsqaximum distanceimax > 0, we analyze the detected
et al. (2011), we would expect electron transport pheres (si,r1),..., (S, ) Wwith respect to their

to be relatively efficient through these aggregate onnectivity using a graph representation for the

regions containing high densities of nanoparticles. The ble of th h Thi that th ,
analysis below suggests that hopping between particlé?sem € otnese spheres. This means that those pairs
i # ], of sphere centers are connected to each

over distances larger than 1 nm is required for thisi: Si+ _ :
to be the case. It would be interesting in the futuredther if the distanceij = min{|x—y| : x € b(s;,ri),y €

to perform sphere extraction and transport analysis oB(Sj,rj)} = max{|s — sj| —ri —rj,0} between the
regions of the film with lower nanoparticle densitiescorresponding spheres is smaller than some predefined
where the electron transport is expected to be leshiresholddyay> O.

efficient.

For our analysis, we use different values afay
i.e., dﬁ};x = 2, dﬁ?&x = 4, and d,ﬁf’gx = 6. For each
of these values ofimay the result is a 3D graph
(V,E), where the set of vertice¥ is equal to the
set (s,...,5) of sphere centers. The set of edges
E consists of the (undirected) line segments between
pairs of points fronV such that the distance between
the corresponding spheres is smaller thdgy as
explained above. Cutouts of such 3D graphs obtained
in this way are shown in Figure 15.

COORDINATION NUMBER

A common characteristic to describe the
connectivity of a graph is the distribution of degrees
of its vertices, i.e., the number of edges emanating
from each vertex. By some authors, this characteristic
is called the coordination number of the graph. The
histograms of the coordination numbers, which have
been obtained for the three graphs of nanoparticles
introduced in earlier in this section, are displayed in
Figure 16. It is clearly visible that the shape of the
histograms essentially depends on the choice of the
hopping distancamax For dmax = 2 the histogram
is quite narrow, whereas falnax = 4 anddmax = 6
it becomes wider and more symmetric. In particular,
Fig. 15.Cutouts of 3D graphs with hopping distancethe mean coordination number increases from 2.2 for
Omax = 2 (top), thax = 4 (middle), and ghax =6 dmax= 2 to 4.7 and 7.0 fodmax = 4 anddmax = 6,
(bottom) respectively.

12
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—_—— percolation pathways. More precisely, fiyax= 2 the

03 . graph consists of 119 isolated subgraphs. In contrast,
g for dmax= 4, the graph consists of 9 subgraphs, where
g 02 . for dmax= 6, the whole graph is connected. Thus, the
o graph with hopping distancéax = 6 has very good
g 01 - connectivity properties, i.e., the charge transport to the
B electrodes should work very well in this case.

0 2 4 6 8 10 12 14 16
coordination number

GEOMETRIC TORTUOSITY

T For describing transport processes in composite
03 ] materials, the tortuosity of their phases is an important
g’ characteristic. It is usually defined as the ratio of the
g o2r . mean effective path length through a material divided
e by the material thickness. In this paper, we use a
g oaf . geometric approach to describe this kind of property.
We consider shortest path lengths instead of effective

0 path lengths. This has the essential advantage that not

0 2 4 6 8 10 12 14 16
coordination number

only a single value is obtained, like the effective path
length being a mean value, but a whole distribution
of local geometric tortuosities can be considered,
which contains much more information. Additionally,
the shortest—path approach can be seen as a purely
structural method, i.e., it does not dependent on
physical constraints, see also Decladral. (1998),

0.3 | E

relative frequency

oLr i Peyregeet al. (2009), and Thiedmanet al. (2009).
0 For electrical conductivity within CdSe—(QCio-
0 2 4 6 8 10 12 14 16 PPV) composites the Euclidean distances, which

coordination number

electrons have to go, are not important, but rather
Fig. 16. Histograms of the coordination number for the number of hops of charges until reaching the
Omax = 2 (t0p), Onax = 4 (middle), and gax = 6 electrode. Thus, shortest paths are considered in the
(bottom) way that the number of hops is counted. This approach
is quite close to the physical understanding, where

a large number of hops causes increased likelihood

MINIMUM-SPANNING TREE of losses by recombination. The normalization is

Another characteristic describing the connectivitydon€ with respect to the material thickness, which is
of graphs is the so—called minimum spanning tresupposed to bg the Euchdgan distance between the
(MST), which is a popular tool in graph theory, seeleft-hand and right-hand side of the boundary of the

e.g. Diestel (2005) or Jungnickel (1999). The idea i$2MPpling window. Thus, the number of hops relative
to consider the sub—graph with the minimum IengtHO the material thickness is considered. This quantity

but the same connectivity as the original graph, i.e., al related to the required energy of an electron to
nodes that can be connected in the original graph b ove one voxel size closer towards the electrode. Note

a sequence of edges are also connected in the MS at in contrast to the standard definition of tortuosity,
Then, as a characteristic to describe connectivity, th4alues smaller than 1 are possible.

relative lengtlY of the MST is considered, i.e., The results for maximum hopping distance of
dmax = 4 anddmax = 6 are displayed in Figure 17.
length of the MST Note that both histograms are quite narrow. Anyhow, it

~ length of the original graph can be seen that they (slightly) depend on the selected
where we obtain the values= 0.83, ¢ = 0.48, and maximum hopping distanatyax.
¢ =0.32 for the graphs with hopping distandigax= 2, Because of the bad connectivity of the graph with

dnax = 4, and dmax = 6, respectively. These values maximum hopping distance admax = 2, for most
can be interpreted as follows. The graph with arstarting points there does not exist a path to the end
assumed hopping distance dfax = 2 has no good points. Thus, in this case, it is not reasonable to
connectivity at all, i.e., it is hard to find any good compute the histogram of tortuosity.

13
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Fig. 17.Histograms of geometric tortuosity fopgk=
4 (top) and ¢hax= 6 (bottom)

Fig. 18. 2D sections of 3D image based on the
extracted spheres, once shown as perfect spheres (top)
VALIDATION and after Gaussian blur with white noise (bottom)

To validate our sphere—extraction algorithm, we
use the extracted spherbgs,ri), i = 1...k, to draw COMPARISON OF INPUT AND OUTPUT
them into an empty 3D image. After adding a Gaussian
blur and white noise, see Burger and Burge (2008), we A visual comparison of the detection results shows
apply the algorithm once again. This approach allowshat the algorithm works quite well, see Figure 19.
us to compare the detected spheres with the (knowro compare the sets of spheres used as input and
spheres given in the input image. obtained as output, we match the spheres using a
criterion based on their overlapping. For every “input”
GENERATION OE SYNTHETIC INPUT sphere, tht_a sphere with the highest overlapping from

the output is detected. Analogously, for every sphere of

IMAGE the output we detect the input sphere with the highest

We use the centers and radii of the spheres detecté’@e”appmg' In both cases an overlapping of at least

from the original image to create a new 3D image5/o is required. Then, we consider two spheres to be a

with the same dimensions. Similar as in real data, thEatch only if both have been assigned to each other.
spheres are drawn in a light gray (gray value 175),’0\ very small minimum percentage is used _because
the background is a dark gray (gray value 100). TgV€ want to match as much spheres as possible, even
make the extraction of the spheres more difficult andf they do not match perfectly. Using this approach,
especially more realistic, we apply a Gaussian blupPout 95% of all spheres are matched. For the pairs
with standard deviation .3 and insert white noise ©Of matched input and output spheres, we can compute
subsequently. White noise is modeled by a Gaussidfie distance of their centers and the difference of
random variable with expectation zero and standarthe their radii, see Figure 20. In particular, the mean
deviation/20, i.e., we add a realization to the graydistance between the centers of two matched spheres
value of all voxels independently. Clamping ensuress equal to 06 voxels and the mean of the (absolute)
that all gray values remain in the intenjal 255, see difference between the radii is equal tdl8 voxels.
Figure 18. This leads to data similar to the real 3D datén comparison to the mean radius 082 voxels these
set, at least by visual inspection. differences are very small.
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Table 2.Analysis of radii in voxels for validation of the
sphere—extraction algorithm

input radii | output radii
sample mean  7.82 7.81
sample variance  3.44 3.43

SUMMARY AND CONCLUSIONS

In the present paper, we have developed and
validated an algorithm for the detection of CdSe
nanoparticles in CdSe—(QC;o-PPV) composites
based on 3D grayscale images. The considered cutout
of the 3D image was a representative sample of
a dense-packed region of CdSe nanoparticles. In a
first step, we have filtered the 3D image data and
applied a morphological closing to reduce noise and
to enhance edges of the objects. The developed
iterative thresholding procedure combined with a
cluster detection is applied subsequently to locate
potential centers of CdSe nanoparticles. For their

: _— _ , precise localization, we decomposed the image domain
Fig. 19.Validation of sphere—extraction, once with theinto pairwise disjoint basins, where in each basin

expected spheres (top) and once with the image usd4ctly one object is detected using a modified Hough
as input for the algorithm (bottom) transform for sphere extraction. A post—processing
of detected particles reduces overlapping artifacts. A
e second run of the same procedure is considered where,
after removing the previously detected spheres, some
additional particles are found. They are then added to
get the final sphere representation of the system of
CdSe nanoparticles.

The second part of the paper concerns the
statistical analysis of the system of detected patrticles.
0 s L The spherical particles are interpreted as a marked

o r 2z 3 4 point pattern, wherefore tools from point—process

center distances in voxels .. . .

statistics are applied. In addition, we have connected
neighboring CdSe nanopatrticles to form 3D graphs,
where the fact that electrons can cross small gaps
between disjoint nanoparticles by hopping is taken
into account. The considered characteristics are mainly
focused on describing the connectivity of the graphs,
which is strongly related with the transport processes
of electrons within the considered organic—inorganic
4 3 2 -1 0 1 2 3 4 CompOSite'

radius difference in voxels

relative frequency
o
o
1 1 1 1 1 1 1 1 1

(&2}

relative frequency
o
(52
T T T T T T T T T

The results obtained in the present paper can be
Fig. 20. Distances between centers (top) andconsidered as a first step towards the development of
differences between radii (bottom) for all pairs of SPatial stochastic models for systems of nanoparticles
matched spheres in organic—inorganic composites. By means of
such models, non—interactive statistical methods can
_ o o be established in order to detect and quantify
In view of these results it is not surprising that alsostryctural advantages/disadvantages of various types of
the sample mean and variance of the radii match nearlyanoparticle systems in organic—inorganic composites.
perfectly, see Table 2. Moreover, model-based Monte Carlo simulations of
virtual materials can be accomplished, where the
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