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Abstract Shortest-path trees play an important role in the field of optimising
fixed-access telecommunication networks with respect to costs and capacities. Dis-
tributional properties of the corresponding two half-trees originating from the root
of such a tree are of special interest for engineers. In the present paper, we derive
parametric approximation formulas for the marginal density functions of the total
lengths of both half-trees. Besides, a parametric copula is used in order to combine
the marginal distributions of these functionals to a bivariate joint distribution as,
naturally, the total lengths of the half-trees are not independent random variables.
Asymptotic results for infinitely sparse and infinitely dense networks are discussed
as well.
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1 Introduction

The Stochastic Subscriber Line Model, as described in [2], [4] and [14], is a pow-
erful tool to model access networks in urban areas. In [9], it has recently been
extended by so-called shortest-path trees which allow engineers and telecommuni-
cation companies such as Orange Labs not only for estimating cable lengths but
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also for calculating capacity demands in telecommunication networks. Since the
geometry of such trees can be extremely tricky and complex, the idea of attack-
ing this problem is to build models of increasing elaborateness which enable to
describe shortest-path trees in further and further details. A first step towards
this goal has been done in [9], where we focused on the bivariate distribution of
the lengths of the main branches of each half-tree. The present paper can be seen
as a continuation and extension of this research process. Consequently, we study
further important functionals of the shortest-path tree, namely the total lengths
of the corresponding half-trees.
The paper is organised as follows. In Section 2, we introduce the mathematical
tools which allow for modelling telecommunication networks by means of stochastic
geometry. In particular, random tessellations, point processes and Palm calculus
play an important role in this context. Sections 3 and 4 deal with modelling the to-
tal lengths of the half-trees in the shortest-path tree, where we proceed in a similar
way as in [9], using parametric approximation formulas for the marginal distribu-
tions of the total lengths of the half-trees. However, in contrast to the situation
considered in [9], it now turns out that the marginal distributions investigated in
the present paper are much more difficult to handle and as a consequence, the
fitting procedure is no longer just straightforward. Furthermore, we employ para-
metric copulas in order to combine these univariate distributions as the half-trees
(and therefore their total lengths) cannot be assumed to be independent. Asymp-
totic results for infinitely sparse and infinitely dense networks are discussed as
well. Then, in Section 5, we validate the model in two ways. On the one hand,
we perform a visual validation which is comparable to the one considered in [9].
Additionally, on the other hand, we also provide a statistically rigorous distribu-
tional test for our model based on a multivariate version of the Wald-Wolfowitz
test introduced in [3]. Section 6 finally concludes the paper and gives an outlook
to possible future research.

2 Mathematical Preliminaries

As already mentioned in the introduction, the Stochastic Subscriber Line Model
(SSLM) uses tools of stochastic geometry to model copper or optical fibre networks
in urban but also rural regions. The SSLM consists of four layers, which will be
-for the convenience of the reader- briefly discussed in the following.

2.1 Random Tessellations of Poisson Type

The first layer of the SSLM concerns the geometrical support. With the inten-
tion to reach as many customers as possible, cables and fibres are installed along
the road system of cities and towns. Modelling road systems in the SSLM is car-
ried out by the usage of connected, stationary random graphs T , such as various
types of random tessellations or β-skeletons, see [10]. The present paper is re-
stricted to random tessellations based upon a homogeneous Poisson point process
in R2, namely Poisson-Voronoi tessellations (PVT), Poisson-Delaunay tessellations
(PDT) as well as Poisson line tessellations (PLT). To get more information about
these well-known random geometric graphs, the reader is referred to [12] and [13].
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2.2 Cox Processes Representing Network Nodes

The second layer of the SSLM consists of the placement of the network compo-
nents. Note that we consider two-hierarchy-level networks, i.e., investigated path
properties are always between a higher-level component (HLC) and a lower-level
component (LLC), such as paths between service area interfaces and subscribers.
All network components are assumed to be located on the underlying infrastruc-
ture represented by a stationary random tessellation T . In particular, we make use
of a stationary Cox process XH = {XH,i} in order to model the locations of HLC.

The random intensity measure of XH is concentrated on the edge set T (1) of the
tessellation T and is proportional to the one-dimensional Hausdorff measure ν1
on T (1). More precisely, we have EXH(B) = λ` Eν1(B ∩ T (1)) for each Borel set
B ⊂ R2 and linear intensity λ` > 0. Note that the planar intensity of XH is thus
given by λH = λ`γ where γ = Eν1([0, 1]2 ∩ T (1)) denotes the total length of T (1)

per unit area. For additional information about point processes, the reader can
consult e.g. [1] and [6]. Note that if the intensity of the LLC is sufficiently high,
then the corresponding point process differs only negligibly from the underlying
road system. Due to this approximation, we only consider certain sub-networks
defined by the HLC.

2.3 Cox-Voronoi Cells as Serving Zones and Typical Cells

Although we have the underlying infrastructure and the network components mod-
elled, we still have to specify how HLC and LLC – any point of the underlying
infrastructure in the present setting – are connected to each other. The third layer
of the SSLM, the topological part, defines these connection rules. We link each
LLC to its nearest HLC in the Euclidean sense. More formally, we define the tes-
sellation {ΞH,i}i≥1 as the Voronoi tessellation generated by the points of the Cox
process XH = {XH,i} of higher-level components (also called Cox-Voronoi tessel-
lation). Then, each LLC located inside a so-called serving zone ΞH,i is connected
to its corresponding HLC XH,i along the edges of the underlying tessellation T .
Nodes are connected via shortest paths, i.e., the distance between LLC and corre-
sponding HLC measured along T (1) is the smallest possible one. For further details
on connection rules, the reader is referred to [10].
Note that the supply of the network for one single user is often not as important
as the expected network quality averaged over all users in a large area. Palm cal-
culus and Palm distributions provide a convenient formalisation of this problem.
Therefore, the Palm version X∗H of XH is of special interest in this context. Its
distribution can be interpreted as conditional distribution of XH given that there
is a HLC located at the origin o = (0, 0)> ∈ R2. More formally, the distribution
of X∗H is determined by the representation formula

Eg(X∗H) =
1

λH
E

∑
i:XH,i∈[0,1]2

g({XH,n} −XH,i) ,

where g : L→ [0,∞) is an arbitrary measurable function and L denotes the family
of all locally finite sets of R2. Furthermore, we define the typical serving zone Ξ∗H
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of XH as the Voronoi cell whose cell centre is located at the origin o in the Voronoi
tessellation constructed from X∗H , i.e.,

Ξ∗H = {x ∈ R2 : ‖x‖ ≤ ‖x−X∗H,j‖ for all j ≥ 1} .

Besides, in order to construct the shortest-path tree, we are interested in a fur-
ther characteristic of the Voronoi tessellation constructed from X∗H , the so-called
typical segment system S∗H . To define this, let SH,i = ΞH,i ∩ T (1) denote the seg-
ment system of the serving zone ΞH,i which belongs to the corresponding HLC
XH,i. Then, the typical segment system S∗H is defined as the typical mark of the
point process of higher-level nodes XH,i marked with their corresponding segment
systems SH,i. For definitions and details on marked point processes, Palm mark
distribution and typical marks, the reader is referred to [1] and [13].

2.4 Shortest-Path Tree Representing the Inner Life of a Serving Zone

Under our assumption on the intensity of LLC, the fourth layer of the SSLM,
the so-called shortest-path tree G, is roughly speaking just a rearrangement of the
typical segment system S∗H . Following the paths from all points in S∗H to the origin
o in the typical serving zone Ξ∗H induces a natural tree structure. Note that these
paths can sometimes leave Ξ∗H . For further details on this tree, see [9]. Besides,
one should bear in mind that G can be subdivided into two subtrees, say Gh1 and
Gh2 , as the origin o (representing the root of the tree) lies with probability 1 in
the interior of a segment of S∗H . Note that Gh1 is characterised as the half-tree
containing the longest branch of the shortest-path tree. For an illustration of the
situation, see Figure 2.1.

Fig. 2.1 Typical cell Ξ∗H (dot-dashed) and typical segment system S∗H (solid) on the left-hand

side and corresponding shortest path tree G with its half-trees Gh1 (solid) and Gh2 (dashed) on
the right-hand side

3 Modelling Approach

One specific functional of G which has already been discussed in our previous work
[9] is the so-called skeletal backbone, i.e., the main branches in the half-tree Gh1
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and Gh2 . In the present paper, we want to go one step further and examine the
total lengths of Gh1 and Gh2 . The goal is to derive a general approach to model the
joint bivariate distribution of the functional I = (I1, I2), where

Ii = ν1(Ghi ), i ∈ {1, 2}. (3.1)

3.1 Bivariate Copulas

Note that, analogously to the skeletal backbone, the random functionals considered
in (3.1) are certainly not independent. Thus, they prevent the usage of a bivariate
distribution function given by

F(I1,I2)(x1, x2) = FI1(x1) · FI2(x2).

In this context, copulas provide a powerful framework to model the correlation
structure of the functionals I1, I2, and this methodology has already been suc-
cessfully applied in [9]. For the convenience of the reader, we briefly recall the
definition of a bivariate copula. A function C : [0, 1]2 → [0, 1] is called bivariate
copula if there exists a probability space (Ω,F ,P) supporting a random vector
U = (U1, U2) such that

C(u1, u2) = P(U1 ≤ u1, U2 ≤ u2), u1, u2 ∈ [0, 1],

and Ui ∼ U [0, 1] for i ∈ {1, 2}. For further details on copulas, the reader is referred
to [7] and [8]. Now, the bivariate joint distribution function of the random vector
I = (I1, I2) can be written as

FI(x) = CI(FI1(x1), FI2(x2)),

where x = (x1, x2), x1, x2 > 0. In order to obtain a parsimonious parametric model
applicable for any values of the linear intensity λ` of HLC and the length intensity
γ of T , we utilise a family of parametric copulas. One possible tool for fitting
parametric models to given datasets is the maximum-likelihood method. Suppose
we consider parametric models FI1(· ; η1), FI2(· ; η2) and CI(· ; η) with parameter
vectors η1, η2 and η for the marginals as well as for the copula, respectively, and

assume an i.i.d. sample I(j) = (I
(j)
1 , I

(j)
2 ), j = 1, . . . , n where n denotes the sample

size. Then, the log-likelihood function loglik1 has representation

loglik1(η1 η2, η)

=

n∑
j=1

(
log fI1(I

(j)
1 ; η1) + log fI2(I

(j)
2 ; η2)

+ log
[
cI
(
FI1(I

(j)
1 ; η1), FI2(I

(j)
2 ; η2); η

)])
,

(3.2)

where cI(· ; η) denotes the density function of CI(· ; η). An uncomfortable disad-
vantage of this tool is that while computing maximum-likelihood estimates of the
parameters of the bivariate distributions describing I1 and I2, numerical problems
can occur due to the inherent optimisation problem that involves several param-
eters. In the following, we therefore make use of a parametric pseudo-maximum-
likelihood approach to avoid such difficulties. In particular, the optimisation prob-
lem can be subdivided into two steps which are considered separately. First, we
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determine the univariate marginal distributions of I1 and I2. Second, a parametric
copula is fitted in order to model their correlation structure. For further details
on the pseudo-maximum-likelihood approach, see [9] and especially [11].

3.2 Fitting Procedure for the Marginal Densities

The fitting procedure for the marginal density of I1 is quite different from the
procedure for I2. On the one hand, in order to fit an approximative parametric
representation formula for the density of I1, we can proceed by using ordinary
maximum-likelihood estimation and by manual choice of an eligible class of com-
monly used distributions. Looking at the histograms of the datasets, we can use
e.g. gamma distributions, Weibull distributions, etc., see Figure 3.1. Results are
provided in Section 4. Note that similar to [15], a certain scaling invariance in our
model can be shown for underlying PVT, PDT or PLT and therefore it suffices
to investigate the dependence of the distribution of Ii on the scaling parameter
κ = γ

λ`
.

Fig. 3.1 Histograms of the functional I1 with underlying PVT for κ = 20 (left) and with
underlying PDT for κ = 50 (right)

Finding an approximative parametric representation formula for the density of I2
on the other hand is a much more challenging task. In Figure 3.2, the mindful
reader detects a very high peak at the left hand side of each histogram which
makes a density fitting by commonly used methods and parametric distributions
(as we did in [9]) nearly impossible. This effect is caused by the fact that if the
origin, representing the root of G, is located close to the boundary of the typical
serving zone Ξ∗H , the number and lengths of segments in Gh2 are very small. This,
in turn, causes a very small value of I2. The effect decreases for increasing values of
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Fig. 3.2 Histograms of the functional I2 with underlying PVT for κ = 20 (left) and with
underlying PDT and κ = 50 (right)

κ and vanishes for κ sufficiently large as the network becomes denser and denser.
Figures 3.3 and 3.4 show two constellations, where the origin is located close to the
boundary and deeply in the interior of the typical serving zone Ξ∗H , respectively.
Furthermore, this effect depends on the type of the underlying tessellation T .
Therefore, we decided to subdivide the range R of the scaling parameter κ into
two disjoint intervals Rpeak, where this effect can be observed, and R\Rpeak, where
it does not appear. Then, we fit an approximative parametric density for I2 for
each of these two intervals separately. In particular, we have the following possible
constellations which are shown in Table 3.1.

Table 3.1 Subintervals Rpeak and R \ Rpeak of κ, depending on the type of the underlying
tessellation T

T Rpeak R \Rpeak

PVT [10, 40] (40, 1000]
PDT [10, 90] (90, 1000]
PLT ∅ [10, 1000]

So as to manage the difficulties caused by scenarios where the origin is located
closely to the boundary of Ξ∗H in the range Rpeak of κ, we subdivide the data
into two parts: scenarios where Gh2 consists of one single segment and scenarios
where Gh2 consists of several segments. For each of the two cases, we fit paramet-
ric densities via the ordinary maximum-likelihood method. The parametric density
function in Rpeak is therefore a mixture of these two densities with a mixing param-
eter ρ ∈ [0, 1] which denotes the probability that Gh2 consists of several segments.
It can be easily estimated by taking the ratio of the number of observed scenarios
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Fig. 3.3 Scenario 1: Gh2 (black) consisting of a single segment in PVT case (left) and PDT
case (right)

Fig. 3.4 Scenario 2: Gh2 (black) consisting of several segments in PVT case (left) and PDT
case (right)

where Gh2 consists of several segments and the total number of realisations in the
dataset. This kind of attacking the ’origin is close to boundary problem’ turns out
to provide very good fitting results, see Section 5. In the range R \Rpeak, where κ
is sufficiently large, it is quite easy to fit a parametric density via the maximum-
likelihood method. Afterwards, in order to obtain the parametric density for the
whole range R of κ, we add the two densities multiplied by the indicator functions
of their corresponding ranges Rpeak and R \Rpeak (see Section 4.1.2). Note that in
the PLT case, we have no subdivision of R, i.e., R = R \Rpeak.
We also remark that the methodology of separately considering the scenario where
the origin is closely located to the boundary can also be useful in the analysis of
further important quantities of G. For instance, in [9], it is observed that the dis-
tribution of the longest branch of Gh2 is of bimodal type where the location of
the first mode is mainly determined by this ’boundary scenario’. However, in [9],
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standard statistical methods were sufficient to obtain parametric density functions
which provide a satisfactory approximation to the data.

3.3 Fitting Procedure for the Copula

The copula types considered in the present paper are the t-copula, the Gaussian
copula and the Archimedean copulas Clayton, Gumbel, Joe, Ali-Mikhail-Haq as
well as Frank (for further explanations, see [7] and [8]). The fitting procedure for
the copula is done by means of Akaike’s information criterion defined as

AIC = 2 (p− loglik2(η̂)) , (3.3)

where p denotes the number of parameters in the model and loglik2(η̂) is the
maximised log-likelihood where the log-likelihood function is given by

loglik2(η) =
n∑
j=1

log
[
cI
(
F̂I1(I

(j)
1 ), F̂I2(I

(j)
2 ); η

)]
. (3.4)

Note that (3.4) is obtained from (3.2) by omitting summands not depending on
η and by replacing the marginal distribution functions FIi by their empirical dis-
tribution functions F̂Ii . The copula type which minimises (3.3) is chosen to work
with.

4 Results

We now present results for the joint bivariate distribution of I = (I1, I2) which
is obtained by the parametric pseudo-maximum-likelihood approach discussed in
Section 3.

4.1 Parametric Approximation Formulas for the Marginal Density Functions

Due to the different approaches when fitting parametric formulas to the density
functions fI1 and fI2 , we obtain quite different results for the half-trees Gh1 and
Gh2 . For fI1 we can use the same type of distribution for all three types of the
underlying tessellation T whereas for fI2 , we have to distinguish between the
types of T . In particular, we obtain the following results.

4.1.1 Parametric Approximation Formula for fI1

For all three types of the underlying tessellation T , namely PVT, PDT and PLT,
it approximately holds that I1 ∼ Gamma(k, λ) with some shape parameter k > 0
and some scale parameter λ > 0. In particular, the density function of I1 is given
by

fI1(x) =
1

λk
1

Γ (k)
xk−1e−

x
λ ,

where Γ (·) denotes the gamma function and x > 0. Note that the parameters k
and λ obtained by the fitting procedure both depend on the scaling parameter κ
and on the type of T .
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4.1.2 Parametric Approximation Formula for fI2

Concerning approximation formulas for fI2 , we have to distinguish between the
different types of tessellation. The approximation formulas for fI2 are based on
the following three types of distributions which are given by

1. the lognormal distribution with density flogN (x) = 1√
2πxσ

exp
(
− (log x−ν)2

2σ2

)
for some ν ∈ R and σ, x > 0 (short: logN(ν, σ)),

2. the Nakagami distribution with density fNaka(x) = 2µµx2µ−1

Γ (µ)Ωµ exp
(
− µ
Ωx

2
)

for

some µ ≥ 1
2 and Ω, x > 0 (short: Naka(µ,Ω)),

3. the Weibull distribution with density fWei(x) = `
θ

(
x
θ

)`−1
exp

(
−
(
x
θ

)`)
for

some `, θ > 0 and x ≥ 0 (short: Wei(`, θ)).

Table 4.1 shows the resulting approximative distributions for I2.

Table 4.1 Approximative distributions for I2

T distribution in Rpeak distribution in R \Rpeak

PVT ρ · logN(ν, σ) + (1− ρ) ·Naka(µ,Ω) Wei(`, θ)
PDT ρ · logN(ν, σ) + (1− ρ) ·Naka(µ,Ω) Wei(`, θ)
PLT ———— Wei(`, θ)

Note that, analogously to the I1-case, the parameters ρ, ν, σ, µ,Ω, ` and θ depend
on both κ and the type of T .

4.2 Choosing a Suitable Parametric Copula

Among the considered copula types mentioned in Section 3.3, the Gaussian copula
is the one which minimises (3.3). It is given by

CGaussΣ (u, v) = ΦΣ
(
Φ−1(u), Φ−1(v)

)
,

where ΦΣ denotes the joint cumulative distribution function of a bivariate normal
distribution with mean vector o and covariance matrix Σ and where Φ−1 denotes
the inverse cumulative distribution function of the one-dimensional standard nor-
mal distribution. The covariance matrix Σ with correlation coefficient ψ ∈ [−1, 1]
has representation

Σ =

(
1 ψ
ψ 1

)
.

This optimisation result is true for all three types of the underlying tessellation T .
Furthermore, the copula type does not depend on the scaling parameter κ. On the
other hand, the parameter ψ of the Gaussian copula depends on the type of T and
κ, i.e., ψ = ψ(T, κ). However, it turns out that the dependence of ψ(T, κ) in κ is
negligible, so that we can assume ψ = ψ(T ). Note that in our considered data, the
total lengths of the two half-trees differ at least by 10−6 length units in 99.5% of
all cases. This justifies the usage of a copula which is absolutely continuous with
respect to the two-dimensional Lebesgue measure.
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4.3 Joint Distribution for Infinitely Sparse and Infinitely Dense Road Systems

In addition to the parametric approximation results obtained in Sections 4.1
and 4.2, we also provide a description of the joint distribution of I for infinitely
sparse and infinitely dense networks. Limit scenarios where the underlying road
system becomes infinitely sparse or infinitely dense are of special interest since the
extracted data of the typical segment system is available for a large but only finite
range of κ. For very small κ, fitting methods are unstable and for increasing values
of κ, Monte Carlo simulations become very time consuming.

4.3.1 Infinitely Sparse Networks

First, we consider the case of infinitely sparse networks, i.e., λ` → ∞ and γ = 1
(and therefore κ → 0). In this scenario, the typical segment system S∗H consists
of the union of two segments, say L1 and L2, with independent and exponentially
distributed lengths joined at the origin. In particular, we have that ν1(Li) ∼
Exp(2λ`), i ∈ {1, 2}. We thus obtain P(I1 ≤ x) = P(max{ν1(L1), ν1(L2)} ≤ x) =
P(ν1(L1) ≤ x, ν1(L2) ≤ x) = (1− exp (−2λ`x))2 and therefore

fI1(x) = 4λ` (exp (−2λ`x)− exp (−4λ`x)).

Similarly, we obtain P(I2 ≤ x) = 1 − P(I2 > x) = 1 − P(min{ν1(L1), ν1(L2)} >
x) = 1− P(ν1(L1) > x, ν1(L2) > x) = 1− (exp (−2λ`x))2 = 1− exp (−4λ`x) and
therefore

fI2(x) = 4λ` exp (−4λ`x).

To summarise, the joint distribution of I = (I1, I2) is given by the distribution
of the random vector (max{V1, V2},min{V1, V2}), where V1, V2 are independent
exponentially distributed random variables with parameter 2λ`.

4.3.2 Infinitely Dense Networks

Second, we provide a description of the joint distribution of I for infinitely dense
networks, i.e., λ` → 0 and γ = 1 (and therefore κ→∞). In order to achieve this
goal, we first note that as λ` → 0, the rescaled typical serving zone

√
λ`Ξ

∗
H,λ`

at intensity λ` converges in distribution to a typical Poisson-Voronoi cell Ξ∗PV .
This can be heuristically explained by observing that, as the road system becomes
infinitely dense, the rescaled Cox process of HLC converges to a homogeneous
Poisson point process. Moreover, the boundary between the half-trees Gh1 and Gh2
asymptotically approaches the union of two rays corresponding to the asymptotic
directions of these boundaries. Hence, the division of the typical serving zone in-
duced by the half-trees can be recovered as a decomposition Ξ∗PV = A1 ∪ A2,
where the two sets A1, A2 are defined by two rays whose enclosed angle only de-
pends on the type of the underlying tessellation. In particular, as λ` → 0, the
suitably rescaled total lengths of the half-trees converge to the areas of the two
parts A1 and A2. Combining these asymptotic properties, the joint distribution
of the rescaled total lengths (λ`I1, λ`I2) converges in distribution to the distribu-
tion of the random vector (ν2(A1), ν2(A2)), where ν2 denotes the two-dimensional
Lebesgue measure. In a forthcoming paper [5], we will provide a rigorous proof for
this heuristically derived asymptotic result.
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5 Validation of the Model

In the following, we give two possibilities to validate the model introduced in
the present paper. The first one is rather heuristic while the second one relies on
statistical tools. In particular, we used the following validation methods.

5.1 Visual Validation

A first possibility to validate our model for the functionals Ii, i ∈ {1, 2} of G is
a visual comparison between empirical data extracted from S∗H on the one hand
and directly simulated data on the other hand. We compare both the univariate
datasets of the marginals and the bivariate datasets of I = (I1, I2).

5.1.1 Marginal Densities

In Figure 5.1, the histograms of I1 are plotted together with the fitted density
functions of the corresponding gamma distributions for two different scenarios,
namely for an underlying PVT with scaling parameter κ = 250 (left) and an
underlying PDT with scaling parameter κ = 50 (right). Both densities fit to the
empirical data quite well.

Fig. 5.1 Histograms of I1 with underlying PVT for κ = 250 (left) and with underlying PDT
for κ = 50 (right) together with the fitted densities according to Section 4.1.1

In Figure 5.2, we present the histograms of I2 together with the fitted density
functions of the corresponding Weibull distributions for the same scenarios as in
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Figure 5.1. Both densities fit to the empirical data quite well, too. Using our
suggested modelling approach, especially the difficulties due to the high peaks in
the histograms for lower values of κ mentioned in Section 3 can thus obviously be
handled well.

Fig. 5.2 Histograms of I2 with underlying PVT for κ = 250 (left) and with underlying PDT
for κ = 50 (right) together with the fitted densities according to Section 4.1.2

5.1.2 Joint Distribution

Figure 5.3 shows the contour plot of the empirical copula, coloured black, and the
contour plot of the fitted Gaussian copula, coloured red. Only slight and negligible
differences between the contour plots can be observed, which is a first hint that
our fitted copula should be suitable.
Furthermore, we take a look at the shape of the empirical density function of I
and the density function of the corresponding fitted bivariate Gaussian copula.
Figure 5.4 shows the corresponding plots with underlying PVT and κ = 75. We
can observe that empirical and simulated density plots seem to be nearly equal.
In order to see if the empirical data extracted from the typical segment system
S∗Ξ and the data directly simulated from the Gaussian copula coincide, we take a
look at the corresponding scatterplots, see Figure 5.5. The final results are very
similar, so that we can conclude that the model provides realistic scenarios.
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Fig. 5.3 Contour plots of the empirical copula (black) and the fitted Gaussian copula (red)
for I in PVT case with κ = 75

Fig. 5.4 Empirical density function (left) and fitted Gaussian copula density (right) for I in
PVT case with κ = 75
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Fig. 5.5 Scatterplots of the empirical data (left) and directly simulated data (right) for I in
PVT case with κ = 75

5.2 Multivariate Wald-Wolfowitz Test

Besides a visual comparison, it is also desirable to validate the model with statisti-
cal tools, where we make use of a multivariate generalisation of the well-known uni-
variate Wald-Wolfowitz two-sample test. This generalisation has been extensively
discussed in [3]. For the convenience of the reader, we briefly recall the general set-
tings of the test. Let X1, . . . , Xn, Y1, . . . , Ym ∈ R2 be independent bivariate vectors
and let furthermore X1, . . . , Xn ∼ FX and Y1, . . . , Ym ∼ FY for some arbitrary dis-
tribution functions FX and FY . We want to test the null-hypothesis H0 : FX = FY
against the alternative H1 : FX 6= FY . In our case, {Xj}1≤j≤n corresponds to em-
pirical data extracted from the typical segment system S∗H whereas {Yk}1≤k≤m
corresponds to data simulated directly from the copula and the marginal distri-
butions. In order to define a decision rule whether H0 will be rejected or not, we
have to take a look at the minimal spanning tree (MST) based on (the Euclidean
distances of) the joint sample X1, . . . , Xn, Y1, . . . , Ym. Let S denote the number
of disjoint subtrees resulting from erasing all edges of MST with nodes from dif-
ferent samples. Additionally, let D denote the number of edge pairs that share
a common node in MST, Var(S|D) denote the conditional variance of S given
D and let N = n + m. Then, it is shown in [3] that under H0, ES = 2nm

N + 1,

Var(S|D) = 2nm
N(N−1)

(
2nm−N

N + D−N+2
(N−2)(N−3) (N(N − 1)− 4nm+ 2)

)
and further-

more S−ES√
Var(S|D)

is asymptotically N(0, 1)-distributed. The null-hypothesis H0 is

therefore rejected for specific realisations x1, . . . , xn of X1, . . . , Xn and y1, . . . , ym
of Y1, . . . , Ym if ∣∣∣∣∣ S − ES√

Var(S|D)

∣∣∣∣∣ > z1−α/2,

where z1−α/2 denotes the (1− α/2)-quantile of the N(0, 1)-distribution. In Table
5.1, the results of the multivariate generalisation of the Wald-Wolfowitz test for
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various scenarios are listed. We chose n = m = 1000 and the confidence level
δ = 1 − α = 95%. For all considered examples of structural scenarios, H0 is not
rejected which supports our visual validation.

Table 5.1 Results of the Wald-Wolfowitz test

Scenario

∣∣∣∣ S−ES√
Var(S|D)

∣∣∣∣ z0.975 H0

PVT κ = 40 0.074 1.96 not rejected
PVT κ = 250 0.054 1.96 not rejected
PDT κ = 20 0.044 1.96 not rejected
PDT κ = 120 0.050 1.96 not rejected
PLT κ = 75 0.062 1.96 not rejected
PLT κ = 750 0.010 1.96 not rejected

6 Conclusions and Outlook

The present paper provides a substantial extension of the copula methodology
which was previously proposed in [9]. We derived parametric approximation for-
mulas for the univariate density functions of the total lengths Ii of both half-trees
of the shortest-path tree. Besides, a one-parametric bivariate Gaussian copula has
been used to model the correlation structure between the components of the ran-
dom vector I = (I1, I2). Visual validation and the multivariate Wald-Wolfowitz
test showed that this approach to model the bivariate distribution of the functional
I in shortest-path trees and their corresponding half-trees is suitable to directly
simulate random vectors representing the data extracted from the typical segment
system S∗H in telecommunication networks.
In a forthcoming paper [5], we will provide a rigorous proof for the asymptotic dis-
tribution of I as the scaling parameter κ tends to ∞. Additional research topics
in future could be the investigation of further, e.g. capacity-related functionals of
the shortest-path tree G. Note that studying the asymmetry of the half-trees of G
is an important topic from the telecommunication point of view as knowing the
corresponding capacities determines the choice of size for the two biggest cables
from higher to lower nodes. For instance, it answers the question whether engi-
neers should use two cables each with capacity of 50% (since the half-trees have
more or less the same capacities) or rather a partition of 70% and 30%.
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