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Abstract

Segmentation of 3D FIB-SEM images is a specific problem for porous ma-
terials, where grey intensities are not sufficient to determine the phase rep-
resented by a certain voxel. In this paper a new approach is proposed to
segmentation of FIB-SEM images, which is especially designed for highly
porous materials. It detects and allocates structures based on their last oc-
currence in z-direction. Afterwards, the obtained segmentation is improved
by applying local thresholds. This can be done in an iterative or in a direct
way – both methods are described and compared with each other. Fur-
thermore, the final segmentation is compared to a binarisation obtained by
adaptive local thresholding.

Keywords: Porous Media, FIB-SEM Tomography, 3D Imaging,
Segmentation, Local Thresholding

1. Introduction

Highly porous materials are of current interest within a wide range of
applications, including heat flow management related to insulation and heat
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exchange [1], drug delivery [2], molecular separation by adsorption or chro-
matographic separation [3], and catalysis [4] just to name a few. Furthermore,
many naturally occurring materials, like bone, rock, and wood, not to men-
tion the extracellular space in the brain, exhibit complex pore architectures.
In addition to the total porosity, the distributions of pore shape, pore size,
pore connectivity, and effective pore length are important structural charac-
teristics that control the mass transport properties of the materials, which in
turn directly relates to the material performance in all above mentioned ap-
plication examples. For instance, the thermal conduction in porous materials
is controlled by the ratio between the mean free path of the gas molecules and
the pore diameter [5], but is also highly dependent on the pore connectivity
[6]. The diffusion of reactants and products within catalysts [7] or drugs
within porous drug carriers is also highly dependent on pore shape and pore
connectivity. Depending on the material structure, these parameters may,
however, not be easily experimentally accessible; often only averaged global
values are obtained. This is especially true for amorphous materials with a
wide range of pore sizes, for materials which may contain closed pores, and
in cases when larger pores are connected to each other through smaller pores.
For example, the pore size of mechanically stable macroporous materials, like
macroporous ceramics and metals, is often determined by mercury porosime-
try. Here, the intrusion of mercury into the pores is measured as a function
of pressure, from which the pore size is derived by applying the Washburn
equation, assuming a cylindrical pore shape [8]. This may lead to large er-
rors in cases where the material contains large pores which are connected
to the outside through smaller pores, as mercury will not intrude into the
larger pores before the pressure is high enough to fill small pores. Also the
pores may not have a cylindrical pore shape, which represents another ex-
perimental challenge. Furthermore, tortuosity, defined as the ratio between
the effective and the projected pore length, is often used in modelling dif-
fusion in porous materials, but also here only a global value is obtained. A
global value does not reflect the complexity of the real pore system, which
makes it difficult if not impossible to define true structure-property rela-
tionships. Different imaging techniques are therefore of increasing interest
as an additional means for gaining detailed insight into the 3D structure
of porous materials. Depending on the material and the length-scale of in-
terest, confocal microscopy [9], nuclear magnetic resonance imaging (MRI)
[10], X-ray computerized tomography [11, 12], 3D transmission electron mi-
croscopy (TEM) [13, 14], and focused ion beam scanning electron microscopy
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(FIB-SEM) [15, 16] can all be used for generating 3D images of the material.
High-quality image analysis, including high-quality binarisation of the image,
is the key to accurately compute the above-mentioned parameters, like pore
connectivity, pore shape, tortuosity etc.. This, however, is in many cases a
non-trivial task.

The exemplary data used in this paper was obtained by focused ion beam
(FIB) tomography, which is a common method to analyse nanoscale struc-
tures with spatial resolutions from about 8 nm. The technique was developed
about 10 years ago [17, 18, 19] and today, it is an established and power-
ful method for a wide range of applications in materials science; mainly
to assess the three-dimensional structure and morphology of the material
[20, 21, 22, 23]. FIB-SEM tomography makes use of the imaging ability of
a SEM (scanning electron microscope) [24] and the ability of the FIB to re-
move certain parts of material from the surface of a sample with nanometre
accuracy [25]. These two techniques are combined by sequentially acquiring
an image with the SEM and then using the FIB to remove the current layer
to expose the material behind. By repeating this step many times an image
stack is obtained that consists of 2D images each representing a different
layer of the sample [26].

To perform statistical microstructure analysis as described above, it is
necessary to reconstruct the binary 3D image, where the value of a voxel
indicates whether it belongs to the considered phase or not. This recon-
struction is usually done by aligning, cropping and combining the 2D images
and then segmenting the data with an appropriate segmentation algorithm
[27]. However, when one of the phases is transparent, the single 2D images
acquired via SEM do not only contain information about the material of the
actual layer located directly at the surface, but also about parts that are
located in the background [23, 28]. This can lead to relatively high grey
values in parts of the reconstructed 3D image representing pore space. On
the other hand, when analysing a sample of high porosity, structures of lower
thickness appear darker than those with a higher thickness. In the exemplary
data used in this paper, some of the cell walls separating different pores are
significantly thinner than others. When electrons of the SEM reach such
thin structures they penetrate not only the surface but some of them even
the whole structure. The electrons surpassing the structure vanish in the
empty space behind and therefore cannot be detected by the sensor of the
SEM. This leads to significantly lower grey values and an overlap of grey
values for thin objects close to the sensor and more distant thick ones. The
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overlap prohibits the application of common pre-processing like filtering [29]
that is often used to remove negative effects caused by measurements errors.

This complicates the segmentation of the grey scale image into a binary
image, where each voxel either belongs to the foreground (solid phase) or
to the background (pore space). For example, when using elementary seg-
mentation algorithms like global thresholding, i.e., considering a voxel to be
foreground if its grey value is above a certain prechosen threshold, voxels
that actually represent empty space are often classified foreground as their
grey value is increased significantly by material located behind it. Even more
complex binarisation techniques like local thresholding as described in [30]
and successfully applied in [31] do not consider the special nature of this
issue.

We therefore developed a new approach called local threshold backpropa-

gation that compares grey values in z-direction and detects the appearance
and disappearance of structures based on this comparison rather than relying
on absolute grey values. The algorithm provides good results when it comes
to allocating objects in z-direction. However, further filtering is necessary.
In particular, a dilation of the foreground adds small missing connections,
but it also leads to the expansion of the foreground into the background. In
a second step, we correct this negative effect by applying local thresholds
based on the surroundings of every voxel.

The paper is organized as follows. First, in Section 2, we describe the
material and image data that is used as an exemplary application of our
approach. In Section 3, we introduce our method of local threshold back-
propagation and show how the obtained binary image is postprocessed. We
then present two methods of improving that preliminary segmentation, first
by a direct approach (Section 4) and second we use the framework introduced
in [27] as an iterative alternative (Section 5). The effect of the parameters
and the two improvement methods are discussed in Section 6. Finally, in
Section 7, we compare the final segmentation to a binarisation obtained by
adaptive local thresholding and discuss the advantages and disadvantages of
both techniques.

2. Preliminaries

2.1. Description of Material

As an exemplary material a monolithic foam-like silica material has been
chosen, which has been synthesized under acidic conditions using a sol-gel
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process [32, 33]. Depending on the kinetics of phase separation and gelation,
which in turn can be tuned by changing synthesis temperature for example,
different structures can be obtained, including foam-like structures, three-
dimensionally interconnected macroporous networks, and isolated particles,
as discussed in detail in earlier works [34]. Especially the foam-like structure
is difficult to structurally characterize using standard techniques like mercury
porosimetry for reasons already stated above. A representative SEM image
of this monolithic material is shown in Figure 1, which clearly shows the
foam-like structure with large, often close-to-spherical main pores with a
wide range of pore sizes, which are connected to each other mainly through
smaller pores, often referred to as windows.

2.2. Imaging Technique

A Zeiss 1540EsB CrossBeam R© with an ultra-high resolution GEMINI R©
e-Beam column and a high performance Canion gallium ion column were used
for the FIB-SEM tomography measurements. The SEM was operated at an
acceleration voltage of 5 kV. To prevent the curtain effect, a Pt protective
layer with a thickness of a few 100 nm was applied with the gas injection
system (GIS) [25]. A high efficiency annular type in-lens secondary electron
(SE) detector was applied. The 3D data consists of a stack of 90 2D images
with 1024×768 voxels in the x-y-plane. Each voxel represents a cuboid with
25.29 nm length in x- and y-direction, see Figure 1, and 25 nm in z-direction.

2.3. Data Preprocessing

FIB-SEM images need to be aligned, cropped and combined to a single
3D image. To align the individually acquired 2D images correctly we use a
straight forward implementation of minimizing the difference between two
images for a manually selected region [35]. More precisely, we consider po-
tential shift vectors and calculate the difference of the shifted 2D slice and
a 2D reference image for a certain region. The shift vector which minimizes
this difference is chosen as shift for the corresponding 2D slice, i.e. for every
2D slice, a new shift vector is calculated.

As the aligned image still contains small shifts and we strongly rely on
correct alignment in Section 3, further filtering is needed. We therefore apply
a mean-value filter to each 2D slice of the aligned 3D image I and denote the
result by I2×2, a voxel of I2×2 is given by

I2×2(x, y, z) =
1

4
(I(x, y, z) + I(x+1, y, z) + I(x, y+ 1, z) + I(x+ 1, y+ 1, z))
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A 2D filter is used because only a small smoothing effect in x-y-direction is
desired, which is required to compensate small aligment problems. Note that
we use the image I2×2 only in Section 3 and improve the segmentation result
in Section 4 and 5 based on the original image I.

3. Local Threshold Backpropagation

A typical approach to image segmentation is global thresholding, i.e., con-
sidering a voxel to be foreground if its grey value is above a certain threshold.
As the grey value of a given voxel is not a sufficient criterion for segmenta-
tion of FIB images, a more advanced framework for segmentation has been
introduced in [27]. Although this framework is more flexible, the parameter
classes described in [27] still rely on a reasonable global threshold. How-
ever, choosing a reasonable global threshold for our data is impossible, due
to different grey intensities based on different thicknesses, see Figure 5 iv).
We therefore developed a new technique to detect structures based on their
relative grey value w.r.t. their neighbours rather than their absolute grey
value.

3.1. Local Threshold Backpropagation

Due to the high porosity of the sample and the imaging technique, struc-
tures are visible quite some time before they actually appear in the section
plane. Therefore, when looking at each 2D image individually it is – even
for human vision – difficult to determine the expansion of a structure in
z-direction. However, by inspecting a sequence of images it is easy to deter-
mine the last time a structure is present due to the sudden decrease in the
corresponding grey values, see Figure 2.

This drop of grey values allows us to detect the last occurrence of a
structure and to use the last grey value observed to locate the first occurrence.
The complete process consists of three steps, see also Figure 3: 1. Detecting
the last occurrence of a structure. 2. Estimating a threshold based on the
grey value of the last occurrence. 3. Backpropagating the threshold. Note
that steps 2 and 3 are only performed if the last occurrence of a structure is
detected in the first step. Hence, structures that do not disappear within the
observation window are not detected properly. However, this is not a huge
issue as it is possible to ignore the last few slices of the image stack.

To process the voxels in the right order we divide the 3D image I2×2 into 1-
dimensional images Ixy where Ixy(z) is given by I2×2(x, y, z), see Figure 4. We
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consider each image Ixy individually and process the voxels from z = 1 until
z = zmax. Thus, at the time we process voxel z we can be sure that all voxels
1, . . . , z− 1 are already processed. We use this fact during backpropagation,
when we recognize that the current structure has already been processed
partially, see Section 3.1.3.

3.1.1. Detecting Disappearance

We detect the disappearance of structures by comparing the grey value of
a voxel to the grey value of its successor. If there is a significant drop in
grey value we assume that the current structure disappears in the next slice.
To distinguish drops in grey value caused by the disappearing of the cur-
rent structure from drops caused by measurement errors we choose a global
threshold d based on the average measurement errors. More precisely, we
will constitute voxel z to be the last voxel representing a certain structure
if Ixy(z) > Ixy(z + 1) + d is fulfilled. The condition is met when there is a
drop in grey value from voxel z to z+1 larger than d, see Figure 3 i). In this
case we continue with the following steps 2 and 3. If there is no significant
decrease in the grey value we do not continue processing this voxel, though
it might be classified later on while processing another voxel.

3.1.2. Estimating a Threshold

If z is the last occurrence of a structure we denote it by zlo and use the
grey value Ixy(zlo) to estimate a reasonable local threshold Tfirst(zlo). This
threshold Tfirst(zlo) is used to determine the expansion or more precisely the
first occurrence of the current structure, see Figure 3 ii). However it is not
applied to the voxel zlo because we already classified that voxel as foreground
due to the sudden drop in grey value in step 1. To estimate the local threshold
Tfirst(zlo) we apply a linear transformation x 7→ α · x+ β to Ixy(zlo), where α

and β are prechosen global parameters, leading to Tfirst(zlo) = α · Ixy(zlo)+β.
How these parameters are chosen strongly depends on the nature of both
the data and the analysis to be performed later on. Lower thresholds are
more likely to be met at a greater distance and, therefore, structures are
likely to be estimated too big but a good connectivity is obtained. On the
other hand, higher thresholds may increase accuracy, but we risk missing
some structures or connections. For example, when analysing foam, lower
thresholds may lead to a better estimate of the connectivity, whereas higher
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thresholds may lead to more precise results when analysing the thickness of
cell walls. For the exemplary data set, the effect of the parameters will be
analysed in Section 6.

3.1.3. Backpropagating the Threshold

The threshold Tfirst(zlo) derived in the previous step is now compared to the
grey values of voxels with smaller z coordinates. Starting with z − 1 we
descend in z-direction and constitute the current voxel to be foreground if its
grey value is equal or greater than Tfirst(zlo). This is continued until a voxel
meets one of the following abort criteria.

grey value below threshold: If a voxel has a grey value below the thresh-
old, i.e., Ixy(z) < Tfirst(zlo), we assume to have passed the appearance
of the structure (see Figure 3 iii)).

classified as foreground: If a voxel has already been constituted as fore-
ground we assume that we already have detected the appearance of
the current structure in a previous step. This is most likely to be the
case when a structure disappears not at once but over multiple slices.
As the structure gets thinner with each layer being cut off by the FIB
the grey values are likely to be lower. By not backpropagating this
lower threshold, we automatically use the first threshold to estimate
the appearance of the structure. Figure 4 gives a real-world example of
this. Note that the last drop detected is used for the disappearance of
the structure, even though the first drop determines the local threshold
that is backpropagated.

3.2. Postprocessing

Performing the previously described steps already yields a reasonable seg-
mentation that outperforms usual approaches like global thresholding, see
Figure 5. However, there are small clusters of misclassified voxels that are
removed by the postprocessing described in the following. First, we remove
isolated clusters of foreground voxels that do not represent any structure by
constituting them as background when they have less than 3 foreground vox-
els in their 5 × 5 × 1 neighbourhood. After this, we perform a 2D dilation
on all x-y-planes and denote the result by Bbackprop. For the exemplary data
set, the structuring element for the dilation is a circle with radius 2. The
dilation removes small clusters of background voxels within the foreground
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phase. Additionally, it connects otherwise separate foreground voxels when
they are close enough to each other, see Figure 6. Such cell walls are not
detected properly because they are orthogonal to the x-y-plane and thus do
not disappear suddenly but slowly drift away. This leads to a slow decrease
in grey values that often stays below the threshold d used in Section 3.1.1 to
detect the disappearance of a structure.

Although this kind of postprocessing improves the segmentation signifi-
cantly, the dilation also leads to an increase of the volume and inaccuracy
especially at the edges of both phases. We therefore present two approaches
to compensate for this negative effect, see Sections 4 and 5.

4. Improvement by Direct Local Thresholding

In the following we present a method to further improve the segmentation
obtained in Section 3 by using a simple local thresholding scheme. These local
thresholds are needed to detect background voxels close to an edge that are
currently falsely classified as foreground. To classify such voxels, we compare
their grey value to the grey values of their neighbouring voxels. If a voxel
belongs to the background and is close to the foreground phase it is expected
to have a lower grey value than its neighbouring foreground voxels (and also
a higher grey value than background voxels not close to the foreground). To
increase this effect, we apply a mean-value filter for every x-y-plane, with
a large radius of 10 voxels. We denote this smoothed image by M and
consider the difference image I −M , see Figure 7. For voxels clearly in the
foreground or background, the mean-value filter has nearly no effect, thus the
grey value in the difference image I −M is approximately zero. For voxels
close to the interface between foreground and background, I − M contains
negative or positive values: negative values correspond to voxels that have
brighter voxels in their neighbourhood, positive values correspond to voxels
with darker voxels in the neighbourhood.

We want to detect voxels in the background that are close to the fore-
ground, such that we can remove them from the segmentation Bbackprop ob-
tained in the previous section, where the dilation expanded the foreground.
We apply a global threshold τ to the difference image, the resulting binary
image is called Blocal, and τ is set to a negative value close to zero. Therefore,
the dark (background) phase of Blocal shows the background areas close to
the foreground. These voxels are going to be removed from the foreground
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of the segmentation Bbackprop in the next step. We do this by combining
the local threshold segmentation Blocal with the segmentation Bbackprop by
using a voxel-wise minimum operator. This means we consider a voxel to
be foreground only if it is constituted as foreground in both of the given
techniques. This leads to the result image Bbackprop/local being defined by
Bbackprop/local(x, y, z) = min(Bbackprop(x, y, z), Blocal(x, y, z)).

5. Improvement by Iterative Local Thresholding

In the following we describe and then apply an iterative thresholding
algorithm presented in [27] to improve the segmentation Bbackprop obtained
by the local threshold backpropagation.

5.1. Iterative Framework for Automatic Image Segmentation

The approach proposed in [27] focuses on the boundary of the two phases
that are to be segmented rather than the phases themselves. The surface
given by this boundary is initialized based on a preliminary segmentation
(e.g. global thresholding). This initial surface is then evolved iteratively
based on a partial differential equation whose parameters are derived from
either the original image or a priori information. Finally, when the surface
has reached a steady state, the corresponding segmentation is extracted and
considered as final result. To represent the surface, the approach makes
use of the level set methodology, see [36]. The level set function will be
initialised based on a preliminary segmentation that is derived by a separate
and most likely simpler method like global thresholding. After initialising the
surface it is evolved by iteratively solving the partial differential equation
φt + V · ∇φ + a = bκ, where φ denotes the level set function and κ its
mean curvature defined as κ = φxx + φyy + φzz, a and b are scalar fields
controlling the expansion of the surface in normal direction. V is a vector
field pulling the surface in a certain direction, e.g. to areas of high intensities
of the gradient image. To compute a numerical solution it is necessary to
discretize. The spatial component is discretized based on the 3D grid that is
already used to represent our image data. The grid we use to discretize time
is given by a manually chosen grid granularity ∆t. This leads to the update
rule φn+1 = φn−∆t(V ·∇φn+a− bκn), where φn denotes the – now discrete
– level set function φ at time step n, κn its curvature. a and b still denote
scalar fields and V a vector fields, all being discrete.
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5.2. Application to Iterative Local Thresholding

The dilation performed in Section 3.2 led to an expansion of the fore-
ground into the background. Thus the surface given by the phase boundary
is located in the background. The key idea is to iteratively expand this sur-
face until it reaches relatively high grey values which are expected to belong
to the foreground phase.

Let M again denote the mean-value filtered version of the original image
I and now consider the difference M − I. This difference image is expected
to have negative values for foreground voxels close to an edge and positive
values for background voxels also located close to an edge. We define the
scalar field a by a = max{0,M − I − τ}, where τ is chosen as described in
Section 4. This keeps the surface expanding (while in the background) until
it reaches areas with grey intensities higher than their surroundings. Setting
all negative values of M − I − τ to zero guarantees that the volume enclosed
by the surface is not shrinking anywhere, even if the grey intensities of the
underlying voxels are lower than those of their – possibly in a different slice
located – surroundings.

All other parameters V and b are set to zero as we do not need them here.
This simplifies the update rule to φn+1 = φn − ∆ta. To initialise φ we use
the segmentation Bbackprop obtained by local threshold backpropagation and
denote the final result by Bbackprop/iterative, see Figure 8.

6. Discussion of Parameters and Methods

6.1. Backpropagation Parameters

To get an impression of the influence of the backpropagation parameters,
we computed the result of local threshold backpropagation for various pa-
rameter combinations of α and β. Due to a missing reference binarisation
we can only compare different sets of parameters to each other. Therefore,
we computed the porosity and the spherical contact distribution function for
a certain set of parameters. The spherical contact distribution function is
widely used in spatial statistics to characterize random sets. It is defined as
the cumulative distribution function H(r), r > 0, of the minimum distance
from an arbitrary location in one phase to the other. For example, if HB

is the spherical contact distribution function of the foreground to the back-
ground of binary image B, then HB(x) represents the volume fraction of the
foreground that has a distance to the background smaller than or equal to
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x. Figure 9 i) shows that both parameters α and β have a significant influ-
ence on the result obtained by the local threshold backpropagation. Even
small changes of 10% already have a significant impact on the total porosity.
Furthermore, Figure 9 ii) shows the spherical contact distribution function
for various values of α with all other parameters remaining constant. The
early increase represents the high amount of thin structures (cell walls) that
is confirmed by visual inspection. For α = 1.0, about 85% of all voxels
have a distance less than or equal to 5 voxels to the background phase. The
value increases to 96% when α is increased to 1.1. This represents the higher
amount of thin structures that is natural to appear when higher thresholds
are used. For lower values of α (0.9, 0.8) the reverse effect occurs. A similar
behaviour can be seen for β.

6.2. Detecting Disappearance Parameters

The backpropagation – controlled by the previously discussed parameters
α, β – is only initiated after a drop in grey value larger than d. Hence, one
would expect this parameter to be the most influential one. However, even
for a relatively wide range of values of d (10 to 60) the porosity stays in
a relatively small range (between 0.315 and 0.4). For high values of d the
porosity is decreasing. This is expected, because higher thresholds make it
less likely for a structure to be detected. Surprisingly, for lower values the
same effect can be seen. One possible explanation is that for structures that
disappear not at once, but over multiple slices, the first disappearance is
detected earlier with lower values for d. At this earlier stage the structure
still has a relatively high grey value and therefore the threshold Tfirst is higher.
A higher value of Tfirst then leads to thinner structures as already seen in the
previous section.

6.3. Direct vs. Iterative Local Thresholding

When comparing the iterative approach to the direct one there are almost
no additional background voxels. This is to be expected because the itera-
tive method evolves the surface based on the same local thresholds. However,
0.34% of all voxels are classified foreground with the iterative approach but
not with the direct one. On the one hand the majority of those voxels are
part of very small clusters. On the other hand there are also more serious
differences, i.e., clusters classified as foreground by the iterative method that
are classified background when using the direct approach. Visual inspection
shows that most of these clusters represent actual foreground, see Figure 10.
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Most of the voxels classified differently have a grey value lower than the grey
values of voxels in their neighbourhood. This leads to them being consti-
tuted as background voxels by the direct method although visual inspection
shows that they are actually representing solid space. The iterative approach
which is based on a surface does not remove those voxels from the foreground
because they are not reached by the surface.

We conclude that the iterative approach provides better results for these
regions while performing as good as the direct one for others. However this
comes to the cost of higher complexity in implementation and computation,
e.g., one has to be careful about numerical stability when using the iterative
approach. In contrast most of the operations needed for the direct approach
(e.g. mean-value filtering, thresholding) can be performed by standard image
processing software. Additionally, applying the direct approach takes less
memory and by far less computation time. This is especially a matter during
manual – and therefore labour-consuming – parameter tuning. Considering
the fact that significant differences only occur at larger areas of connected
foreground voxels, the direct approach might be the method of choice for
data without the corresponding property.

7. Comparison to Adaptive Local Thresholding

Because the correct segmentation is unknown, it is not possible to directly
quantify the quality of the proposed segmentation technique. A global thresh-
olding is clearly not adequate (compare Figure 1), therefore we adapted a
local thresholding method proposed in [37]. The method is based on Niblack’s
algorithm [38], which uses the local mean and standard deviation of voxels to
determine local thresholds. We use the efficient implementation given in [39],
adapted to 3D. This second segmentation allows us to discuss the advantages
and disadvantages of both techniques.

7.1. Local Adaptive Thresholding

For a given grayscale image I, the aim is to compute a suitable threshold
T (x, y, z) for every voxel (x, y, z), the resulting binary image is then given by

B(x, y, z) =

{

255, if I(x, y, z) ≥ T (x, y, z),

0, otherwise.

Using the method proposed in [37], the local threshold is computed con-
sidering the mean and standard deviation of the greyscale intensities in a
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symmetric window centred around the voxel. The local thresholds are given
by

T (x, y, z) = m(x, y, z) ·

[

1 + k ·

(

s(x, y, z)

R
− 1

)]

where m(x, y, z) denotes the mean and s(x, y, z) the standard deviation of
grey values in the window centred around voxel (x, y, z). The window size
and k > 0 are parameters of the algorithm. The parameter k controls the
effect of the standard deviation on the threshold. R is the range of the
standard deviation, i.e., for our 8-bit greyscale image it is 128. Therefore,
a very high contrast results in the threshold being approximately the mean
value. For a low contrast (i.e., small standard deviation) the threshold is
lower than the mean value.

To apply this method to our data, we use a window of size wx×wy ×wz.
It is useful to be able to choose the size for all three dimensions separately
due to the different illumination in y-direction and the small depth in z-
direction. Empirical tests showed that a size of 101× 101× 11 voxels yields
good results. For our data, the best value for the parameter k is slightly
negative, i.e., k = −0.2, because this has the effect that in the centre of large
pores less structure is (wrongly) detected. Note that the choice of parameters
is a trade-off between the width or even presence of detected cell walls and
wrongly detected structures located especially in large pores. Figure 11 shows
a slice (for fixed z), where the local thresholds seem to work well, although
it is clearly visible that the structures are in most cases too thick.

7.2. Comparison to Local Threshold Backpropagation

As mentioned above, the local adaptive thresholding proposed in [37]
works surprisingly well when looking at a planar section in x-y-direction. It
is hard to choose a window size because the pore sizes are in a very large
range, but the local standard deviation makes it possible to reduce the mis-
classification of voxels located in the interior of pores larger than the window.
Nonetheless, small cell walls are often lost, see Figure 12, which shows a pla-
nar section in x-z-direction. The local threshold backpropagation uses the
special nature of FIB-SEM images to detect cell walls regardless of their low
contrast, which is not possible for usual local thresholding techniques (or,
only slightly visible structures in the background of pores would be detected,
too). Furthermore, using the local threshold backpropagation, the width of
the detected cell walls can be controlled directly, see Section 6. Note also
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that the postprocessing and the direct/iterative improvement only refine the
result of the local threshold backpropagation, i.e., they have no large effect
themselves.

8. Summary and Conclusion

A new approach to automatic segmentation of FIB-SEM images has been
proposed. The approach is based on the detection of disappearing structures
and subsequent threshold backpropagation, where the choice of parameters
has influence on which features of the 3D image are represented best. The bi-
narisation obtained for an exemplary data set was compared to a binarisation
obtained by the local thresholding method proposed in [37].

In a first step, the stack of 2D SEM images has been preprocessed, where
especially the correct alignment of the 2D images is important. Because
of the high porosity of our monolithic foam-like silica material, every slice
also shows structures located behind the current layer. The alignment of
the slices allows us to track changes of grey values in z-direction, where a
drop in grey values above a certain limit d corresponds to the disappearance
of a structure. Applying a linear function x 7→ αx + β to the grey value
of its last appearance yields a local threshold, which can be used to detect
the first appearance of the same structure. Then, we used a dilation to
close small gaps between the detected foreground voxels. This enhances the
segmentation but also causes an expansion of foreground into background.
This is corrected with either a direct or iterative improvement method, where
local thresholds are used to reconstruct the surface. With both methods
good results are obtained, yet they have different advantages. In addition to
comparing the two improvement methods, we also analyse the effect of the
choice of parameters. The parameter d is relatively insensitive, but α and β

should be chosen according to the features that should be represented best
by the segmentation.

The advantage of the algorithm proposed in the present paper is that
it takes the special nature of FIB-SEM images of porous materials into ac-
count, i.e., visible structures although they are located in a different layer.
In particular, when choosing a global threshold to preserve all existing cell
walls, a huge amount of the cell wall that belongs to another slice is almost
completely classified as foreground as well. On the other hand, if the global
threshold is chosen to partially remove that cell wall, most of the other cell
walls are destroyed. Existing adaptive thresholding techniques can only par-
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tially overcome this problem, because small structures in the foreground are
often very similar to structures located in the background, visible through
large pores. Furthermore, it is very hard to control the thickness of cell walls
without destroying connectivity.
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Figure 1: Example of a 2D slice acquired by SEM

Figure 2: Sequence of images showing a small pore while being cut off by the FIB

20



i) ii) iii)

Figure 3: Schematic example of local threshold backpropagation: i) detecting last oc-
currence with blue and red bars representing the difference between the current and the
following grey value ii) deriving a lower threshold to compensate for measurement errors
iii) backpropagation that stops at the first voxel with a grey value below the threshold
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Figure 4: Example of a 1D image Ixy; the bold horizontal lines indicate the backpropaga-
tion

Figure 5: i) original image, ii) its successor as a reference, iii) the backpropagation result
(before postprocessing), iv) a simple binarisation generated with global thresholding. Note
that the threshold in iv) is not high enough to yield a reasonable segmentation of the bigger
pore, however most of the smaller pores are already removed.
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Figure 6: i) original image of cell wall, ii) result of backpropagation before postprocessing,
iii) result after postprocessing (dilation), iv) for comparison: result after improvement by
iterative local thresholding, which is presented in Section 5

Figure 7: i) original image I, ii) mean-value filtered image M , iii) difference image I −M ,
iv) thresholded image Blocal, where black indicates voxels that are to be removed from
the foreground phase, v) shows the final result, where red voxels have been classified as
foreground by local threshold backpropagation, but were removed from the foreground by
local thresholding

22



Figure 8: The final result of local threshold backpropagation followed by iterative im-
provement, denoted by Bbackprop/iterative.
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Figure 9: i) porosity for different combinations of α and β, ii) empirical spherical contact
distribution function for different values of α. The value d is kept constant.
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Figure 10: Example of misclassification of the surface below the big pore, marked by
the red circle in i), ii) shows the result of the direct approach with blue voxels being
highlighted background voxels, and iii) shows the result of the iterative approach with
correct classification of that region.

Figure 11: i) 2D slice of original image ii) binarisation by adaptive local thresholding
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Figure 12: Cross-section in x-z-direction: i) original image after alignment, ii) binarisation
by adaptive local thresholding, iii) backpropagation without postprocessing, iv) backprop-
agation with postprocessing, i.e., dilation, v) backpropagation with iterative improvement
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