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Abstract A main task of weather services is the issuing of warnings for poten-
tially harmful weather events. Automated warning guidances can be derived, e.g.,
from statistical post-processing of numerical weather prediction using meteorolog-
ical observations. These statistical methods commonly estimate the probability
of an event (e.g. precipitation) occurring at a fixed location (a point probabil-
ity). However, there are no operationally applicable techniques for estimating the
probability of precipitation occurring anywhere in a geographical region (an area
probability). We present an approach to the estimation of area probabilities for the
occurrence of precipitation exceeding given thresholds. This approach is based on a
spatial stochastic model for precipitation cells and precipitation amounts. The ba-
sic modeling component is a non-stationary germ-grain model with circular grains
for the representation of precipitation cells. Then, we assign a randomly scaled
response function to each precipitation cell and sum these functions up to obtain
precipitation amounts. We derive formulas for expectations and variances of point
precipitation amounts and use these formulas to compute further model charac-
teristics based on available sequences of point probabilities. Area probabilities for
arbitrary areas and thresholds can be estimated by repeated Monte Carlo simu-
lation of the fitted precipitation model. Finally, we verify the proposed model by
comparing the generated area probabilities with independent rain gauge adjusted
radar data. The novelty of the presented approach is that, for the first time, a
widely applicable estimation of area probabilities is possible, which is based solely
on predicted point probabilities (i.e., neither precipitation observations nor further
input of the forecaster are necessary). Therefore, this method can be applied for
operational weather predictions.
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1 Introduction4

Meteorological services such as Deutscher Wetterdienst (DWD) are responsible5

for providing timely, accurate and reliable weather forecasts. A particularly chal-6

lenging task is the issuing of weather warnings since some weather events (heavy7

precipitation, strong wind gusts, frozen streets) can cause personal injury and8

high material damage. At DWD automated warning guidances are derived from a9

combination of numerical models and statistical post-processing: They commonly10

provide so-called point probabilities due to the use of meteorological observation11

systems, e.g. rain gauges, that represent a measurement at a given geographical12

location (a point). In some cases the consideration of point probabilities is not13

sufficient for a reasonable weather forecast, e.g., when a critical situation arises if14

the weather event occurs somewhere in an area (rather than at a fixed point). Ex-15

amples are given by the area of responsibility of a fire department, which is called16

into action when there is intense precipitation somewhere within that area or by17

some warning area of a weather service, which issues a warning of freezing streets18

in winter if there is some precipitation somewhere within this area (in combina-19

tion with negative temperature). The probability for a weather event occurring20

somewhere in an area is called an area probability in this paper. According to this21

definition, an area probability of some weather event is always larger than or equal22

to a point probability of the same event for any fixed location within that area.23

The exact relationship between point and area probabilities in a general context24

is still unknown. In [3] and [10] formulas for the computation of area probabilities25

from point probabilities are given under very restrictive assumptions including26

circular forecast areas, circular precipitation cells with a known radius and uni-27

formly distributed cell centers. This, however, makes these formulas inappropriate28

for the automated generation of weather forecasts since model parameters have29

to be determined by the forecaster. Furthermore, this approach could not be used30

on a nation-wide scale, where spatial non-stationarity is expected. Alternatively,31

area probabilities can be estimated based on stochastic models. Recently, a spatial32

stochastic model for the occurrence of precipitation has been proposed in [8] to33

specify the relationship between point and area probabilities. In the mentioned34

approach, the occurrence of precipitation is modeled by a non-stationary germ-35

grain model, with the circular grains approximating single precipitation cells. The36

model parameters are computed algorithmically based on available point proba-37

bilities and their spatial correlation (which is expected to provide valuable infor-38

mation on the size of precipitation cells). Area probabilities are then computed as39

coverage probabilities of the suggested germ-grain model.40

The consideration of area probabilities for the occurrence of precipitation is not41

sufficient for the issuing of weather warnings. Weather services are rather interested42
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in area probabilities for the occurrence of precipitation exceeding a certain warn-43

ing threshold, which cannot be computed using the model suggested in [8]. Thus,44

the additional modeling of precipitation amounts is necessary. Some approaches45

to the spatially continuous (off-grid) modeling of precipitation cells including pre-46

cipitation amounts are given in the literature, see e.g. [11], [16], [17], [18], [19]47

and the references therein. However, most of the presented approaches are subject48

to limitations, which make them inappropriate for the automated generation of49

weather warnings on a nation-wide scale. Such limitations include the assumption50

of spatial stationarity, constant precipitation amounts per precipitation cell, inde-51

pendence of precipitation cells and precipitation amounts, parameter fitting based52

on radar observations or the complete absence of model fitting procedures. If appli-53

cations to real data are provided, then they are mainly focused on a regional scale.54

Furthermore, none of the mentioned papers deals with the computation of area55

probabilities. In the last decade, some effort was done to overcome spatial station-56

arity assumptions using generalized linear models, see e.g. [23], but the considered57

approaches are not yet applicable for the purpose of spatially continuous modeling.58

Despite of existing limitations, the mentioned papers still provide a valuable basis59

for the modeling of precipitation amounts. We focus on some ideas proposed in60

[16], where precipitation amounts are represented by a stationary shot-noise field61

based on Poisson or Neyman-Scott point processes. The authors derive several62

theoretical characteristics of their model and make a comparison for different re-63

sponse functions. Model fitting based on observed data, however, is only described64

vaguely.65

In the present paper, we propose a more robust and less restrictive approach to66

the modeling of precipitation amounts with the purpose of computing area proba-67

bilities for precipitation exceeding an arbitrary threshold. We extend the recently68

developed non-stationary model for precipitation cells presented in [8] by adding69

a model for precipitation amounts with spatially varying distributions. All time-70

dependent model characteristics are computed algorithmically based on available71

point probabilities (which is a basic requirement for operational weather forecast-72

ing). We also show a detailed application of the model to real data on a nation-wide73

scale. A condensed description presenting an earlier version of the suggested model74

can be found in [9].75

The present paper is organized as follows. In Sect. 2 we briefly outline the com-76

putation of point probabilities for precipitation exceeding various thresholds and77

describe the available data. In Sect. 3 the underlying model for the occurrence of78

precipitation is recalled, which provides the basis for the newly developed model79

of precipitation amounts presented in Sect. 4. Sect. 5 deals with the computa-80

tion of area probabilities for the occurrence of precipitation exceeding a threshold81

based on the combined model for precipitation cells and amounts. Finally, Sect. 682

provides a verification of results and Sect. 7 concludes the paper.83

2 Computation of point probabilities and description of data84

In this paper, sequences of point probabilities form the basis for the computation of85

area probabilities by means of a spatial stochastic model for precipitation cells and86
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precipitation amounts. Therefore, precise point probabilities are critical for the es-87

timation of reliable area probabilities. Point probabilities considered in this paper88

are determined by DWD in two steps. At first, forecasts of the numerical weather89

prediction model Globalmodell Europa1 (GME), see [13], and of the Integrated90

Forecasting System of the European Centre for Medium-Range Weather Forecast-91

ing (IFS/ECMWF) are provided. These forecasts are subject to systematic and92

random errors, which result from uncertainties in initial weather conditions and93

inaccuracies in the model specification due to discretization and parametrization.94

The second step involves Model Output Statistics (MOS), which is a statistical95

post-processing procedure based on historical information from about 3000 syn-96

optic weather stations world-wide, see [6] and [20]. This removes systematic biases97

and provides calibrated (statistically unbiased) point probabilities.98

We describe the available data, which has been computed according to the method99

stated above. Our application covers a time frame of four months in the year100

2012 including a summer period from June 1 until July 31 and a winter period101

from November 1 until December 31 in order to consider different seasons. For102

each day of the time frame seven one-hour forecast periods from 02-03 UTC103

(Universal Time, Coordinated) every three hours up to 20-21 UTC are avail-104

able. Furthermore, we consider a system of 503 weather stations, which are lo-105

cated inside the territories of Germany and Luxembourg. For each forecast pe-106

riod and each weather station, a sequence of point probabilities for the occur-107

rence of precipitation of more than u mm is available for thresholds u ∈ T =108

{0, 0.1, 0.2, 0.3, 0.5, 0.7, 1, 2, 3, 5, 10, 15}. In particular, for u = 0 the probability for109

precipitation of any amount at the considered weather station is given. We use110

the data later on for implementation and verification of the presented modeling111

approach.112

3 Stochastic model for the occurrence of precipitation113

We briefly recall a stochastic model for the occurrence of precipitation, which has114

been introduced in [8]. This provides a basis for the modeling of precipitation115

amounts as described in Sect. 4. In the following, a fixed forecast period and a116

probability space (Ω,F , P ) are considered, where Ω is a set containing all possible117

precipitation scenarios and the corresponding predictions of the numerical weather118

forecast models of DWD, F is a σ-algebra of subsets of Ω (so-called events) and119

P is a suitable probability measure, which associates each event A ∈ F with the120

probability P (A) ∈ [0, 1] of its occurrence. We describe the model in a general con-121

text. Let s1, . . . , sn be a sequence of geographically distinct points (e.g., the sites122

of weather stations), which are located within a bounded and convex sampling123

window W ⊂ R2. The true characteristics describing future weather conditions,124

as e.g. point probabilities for the occurrence of precipitation or expected precip-125

itation amounts at s1, . . . , sn, are typically unknown and cannot be determined126

exactly. However, most of these characteristics can be estimated using numerical127

models and statistical post-processing, see e.g. Sect. 2. By applying the MOS ap-128

proach, systematic errors in estimated point probabilities are eliminated but the129

1 The GME has been substituted in January 2015 by the Icosahedral Non-hydrostatic
(ICON) General Circulation Model, see [24].
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estimators are still subject to random errors. To account for that, we introduce the130

random variable E : Ω → S describing the random error of the weather forecast131

models used by DWD, where S is the space of all possible errors. Since estimators132

of point probabilities depend on the random error E, they are also considered to133

be random variables in the following (as usually done in estimation theory). For134

that purpose, we introduce the random field {Pt, t ∈ W}, where Pt : Ω → [0, 1]135

represents the random point probability for the occurrence of precipitation at lo-136

cation t ∈ W . For any fixed t ∈ W , the random variable Pt is assumed to be137

σ(E)-measurable, where σ(E) ⊂ F is the sub-σ-algebra of events generated by E.138

This implies that if conditioned on {E = e} for any realization e of E, the value of139

Pt is non-random (and only depends on e). This value is identified by the condi-140

tional expectation E(Pt |E = e). Heuristically, conditioning on {E = e} for e ∈ S141

means that a concrete realization of the weather forecast models of DWD (with142

error e) is given (which is always the case in applications). We suppose that the143

available data include a sequence p
(0)
s1 = E(Ps1 |E = e), . . . , p

(0)
sn = E(Psn |E = e)144

of point probabilities, which are computed based on a particular realization e of145

E. In our example of application we consider the available point probabilities for146

the occurrence of precipitation described in Sect. 2, n = 503 is the number of147

considered weather stations and e is the error that occurs when providing these148

data.149

The fundamental assumption of our modeling approach is that there is precipita-150

tion at any location t ∈W if and only if t is covered by at least one precipitation151

cell. To allow for spatially varying precipitation probabilities we furthermore sup-152

pose that precipitation cells (i.e., their cell centers) occur according to a random153

location-dependent intensity function {Λt, t ∈ W} with Λt : Ω → [0,∞) being154

the random intensity for the formation of precipitation cells at t ∈ W . Again,155

the value of Λt is non-random conditioned on {E = e} for any e ∈ S, i.e., Λt is156

assumed to be σ(E)-measurable, for all t ∈ W . To account for the fact that data157

are only available at the sites s1, . . . , sn we make the simplifying assumption that158

realizations of {Λt, t ∈ W} are piecewise constant in a neighborhood of each site159

si for i = 1, . . . , n. The most natural choice of such a neighborhood is the Voronoi160

tessellation {V (s1), . . . , V (sn)} of s1, . . . , sn in W , where the Voronoi cell V (si)161

of si is defined as162

V (si) = {x ∈W : |x− si| < |x− sj | for all j = 1, . . . , n with j 6= i} (1)

for i = 1, . . . , n and |x − s| denotes the Euclidean distance between x ∈ W and163

s ∈W . Accordingly, {Λt, t ∈W} is represented as164

Λt =
n∑

j=1

Aj IV (sj)(t) for all t ∈
n⋃

i=1

V (si), (2)

where the σ(E)-measurable random variables A1, . . . , An : Ω → [0,∞) can be165

interpreted as random local intensities for the formation of precipitation cells in166

neighborhoods of s1, . . . , sn. The function IV : W → {0, 1} denotes the indicator167

of the set V ⊂ W . If t ∈ W is not located within any of the Voronoi cells, i.e.,168

it is located on the boundaries of one or more cells, then Λt is set equal to the169

minimum intensity of all adjacent Voronoi cells. For the modeling of centers of170

precipitation cells a two-dimensional Cox point process {Xi, i = 1, . . . , Z} in W171
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with intensity function {Λt, t ∈W} is used, see e.g. [1], where the random variable172

Z : Ω → {0, 1, . . .} describes the total number of precipitation cells in W .173

Due to the irregularity of precipitation patterns it seems hardly possible to give174

a model for the shape of precipitation cells, which exactly represents typical pre-175

cipitation patterns and, simultaneously, is still easy to handle. We rather assume176

that there is precipitation at location t ∈ W if t is close enough to the center of177

at least one precipitation cell. This is equivalent to saying that t is covered by the178

germ-grain model179

M =
Z⋃

i=1

b(Xi, R), (3)

where b(x, r) = {y ∈ R2 : |y − x| ≤ r} denotes the two-dimensional ball with180

center x ∈ R2 and radius r > 0 and the random variable R : Ω → (0,∞) can be181

interpreted as spatial precipitation range. We assume that R is σ(E)-measurable,182

i.e., R is non-random conditioned on {E = e} for any e ∈ S. Although it is obvious183

that precipitation cells are typically not circular in real precipitation patterns,184

they are often approximated as circular or elliptical discs in the literature, see185

e.g. [15], [16] and [19]. Thus, we will also interpret the germ-grain model M as an186

approximate representation for the union set of precipitation cells in the following.187

Note that conditioned on {E = e} for any realization e of E, the Cox process188

{Xi, i = 1, . . . , Z} is a Poisson process with (deterministic) intensity function189

{λt, t ∈ W}, where λt = E(Λt |E = e) for t ∈ W , and M is a Boolean model190

based on {Xi, i = 1, . . . , Z} with grain radius r = E(R |E = e), see e.g. [1] or191

[4]. In application, where a particular realization of the weather forecast models192

of DWD providing the underlying data is given (and thus a realization e of E is193

considered) we assume the distribution of future precipitation fields, described by194

{λt, t ∈ W} and r, to be deterministic. Both {Xi, i = 1, . . . , Z} and M , however,195

which represent the still unknown future precipitation scenario, are still considered196

to be random (i.e., not σ(E)-measurable). Finally, point probabilities are modeled197

as (conditional) coverage probabilities of the union set M of precipitation cells,198

i.e., the random point probability Pt is represented as Pt = P (t ∈ M |E) for199

t ∈ W . We will show in Sect. 5 how these settings are used to compute point200

and area probabilities for the occurrence of precipitation as (conditional) coverage201

probabilities of the germ-grain model M in applications. In order to do this, the202

intensity function {λt, t ∈W} and the precipitation range r (given e ∈ S) need to203

be represented in terms of the available data. Since this is of minor importance for204

the main objective of the present paper, the modeling of precipitation amounts,205

we refer to [8] for further details.206

4 Stochastic model for precipitation amounts207

4.1 Model description208

The computation of area probabilities for precipitation exceeding various thresh-209

olds based solely on a model for precipitation cells does not seem to be possible.210

Therefore, the additional modeling of precipitation amounts is required. For that211

purpose, we introduce the random field {Γt, t ∈ W}, where Γt : Ω → [0,∞) is212
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interpreted as the random amount of precipitation at location t ∈ W . We expect213

that precipitation cells and precipitation amounts cannot be considered to be in-214

dependent of one another, which is also indicated by the results of a statistical215

test performed in [7]. Thus, we suggest to represent {Γt, t ∈ W} as a random216

shot-noise field. Note that this class of random fields has already been used in217

the literature for the modeling of precipitation amounts, see e.g. [16]. At first,218

a symmetric response function Kp(·, Xi, R) is assigned to each precipitation cell219

b(Xi, R) for i = 1, . . . , Z, where we choose Kp : R2 × R2 × (0,∞)→ [0,∞) with220

Kp(t, x, r) =

(
1− |t− x|

2

r2

)p

Ib(t,r)(x) for all t, x ∈ R2, r > 0. (4)

Here, p > 0 is a certain shape parameter. This choice comprises a variety of pos-221

sible response functions, e.g., the upper half of the unit ball (p = 0.5), a scaled222

version of the Epanechnikov kernel (p = 1), a scaled version of the biweight kernel223

(p = 2) or a scaled version of the triweight kernel (p = 3). However, these response224

functions are not yet suitable to model precipitation fields generated by single225

precipitation cells since the distribution of precipitation amounts should vary spa-226

tially for most forecast periods. An example would be the forecast shown in Fig.227

2, where clearly higher precipitation amounts are expected in the north and west228

than in the south and east part of the sampling window. For that purpose, each229

response function Kp(·, Xi, R) is multiplied by a random location-dependent scal-230

ing variable. We suppose that information on expectation and variance of point231

precipitation amounts is only available at s1, . . . , sn, so we make the simplifying232

assumption that all precipitation cells with centers in a given Voronoi cell V (si)233

are multiplied by the same scaling variable for i = 1, . . . , n. Thus, we consider a234

sequence C1, . . . , Cn : Ω → [0,∞) of non-negative random scaling variables, which235

correspond to the n Voronoi cells V (s1), . . . , V (sn). Again, C1, . . . , Cn can clearly236

not be assumed to be σ(E)-measurable since they are still random for a given237

realization of the weather forecast models of DWD. However, we assume that con-238

ditioned on E, the variables C1, . . . , Cn are independent of each other and of the239

point process {Xi, i = 1, . . . , Z} of precipitation cell centers. For each t ∈ W , we240

interpret the value of the response function Kp(t,Xi, R) multiplied by the corre-241

sponding scaling variable as the random amount of precipitation generated by the242

i-th precipitation cell b(Xi, R) at location t. The total amount of precipitation at243

t ∈W is obtained by summing up the individual precipitation amounts generated244

by all Z precipitation cells. Combining the modeling steps suggested above leads245

to the following representation formula for the random amount of precipitation Γt246

at location t:247

Γt =
Z∑

i=1

n∑
j=1

CjIV (sj)(Xi)Kp(t,Xi, R) for all t ∈W. (5)

The consecutive steps of this modeling approach are illustrated in Fig. 1.248

The random field {Γt, t ∈W} of precipitation amounts is completely described by249

the Cox process {Xi, i = 1, . . . , Z} of cell centers (which in turn is characterized250

by the local random intensities A1, . . . , An), the random precipitation range R,251

the local random scaling variables C1, . . . , Cn and the shape parameter p. In the252

following, let e be a particular realization of the random error E that occurs253
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Fig. 1 Illustration of the modeling approach for precipitation amounts: (i) modeling of precipi-
tation cells using a germ-grain model with circular grains (top left), (ii) assigning a symmetric
response function to each cell (top right), (iii) multiplying response functions with random
scaling variables (bottom left), (iv) summing scaled response functions to obtain precipitation
amounts (bottom right).

when computing the underlying data using the weather forecast models of DWD.254

Recall that the (conditional) intensities a1 = E(A1 |E = e), . . . , an = E(An |E =255

e) and the precipitation range r = E(R |E = e) are computed based on the256

corresponding point probabilities p
(0)
s1 = E(Ps1 |E = e), . . . , p

(0)
sn = E(Psn |E =257

e), see Sect. 3 or [8]. It remains to fit (conditional) distributions of the random258

scaling variables C1, . . . , Cn and to choose a suitable shape parameter p. For that259

purpose we introduce the deterministic fields {µt, t ∈ W} and {vt, t ∈ W}, where260

µt = E(Γt |E = e) ∈ [0,∞) denotes the conditional expectation of Γt and vt =261

var(Γt |E = e) ∈ [0,∞) the conditional variance of Γt given {E = e} for all t ∈W .262

4.2 Fitting the distributions of precipitation amounts at weather stations263

In Sect. 4.3 below, we suggest a procedure to fit the distributions of the random264

scaling variables C1, . . . , Cn based on data given for the locations of weather sta-265

tions. Recall that for each station s ∈ {s1, . . . , sn} the available data described in266

Sect. 2 include a sequence of point probabilities for the occurrence of precipitation267

of more than u mm for thresholds u ∈ T = {0, 0.1, 0.2, 0.3, 0.5, 0.7, 1, 2, 3, 5, 10, 15}.268

Furthermore, using the probability for the occurrence of precipitation, the (con-269

ditional) probability of precipitation exceeding u mm (given that precipitation270

occurs) can be computed for all thresholds u ∈ T \ {0}. However, these data are271

not yet suitable for model fitting. On the one hand, point probabilities are ex-272

pected to be monotonically decreasing with increasing threshold u ∈ T in mm.273
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By using the MOS approach in the post-processing step, however, the probabili-274

ties of each threshold are computed separately, which does not guarantee mono-275

tonicity due to statistically independent noise. In a few cases in our data it is276

possible that, e.g., the probability of precipitation of more than 0.3 mm at a277

given weather station is slightly higher than the probability of precipitation of278

more than 0.2 mm. On the other hand, expectations and variances of point pre-279

cipitation amounts, which are needed for model fitting, are not directly included280

in the data. To overcome both problems we assume that if precipitation occurs,281

then the random precipitation amounts at the weather stations s1, . . . , sn are282

gamma distributed as suggested e.g. in [20] and [21]. For a fixed weather station283

s ∈ {s1, . . . , sn} and a particular realization e of E, consider the (conditional)284

probabilities p
(u)
s = P (Γs > u |E = e) for all u ∈ T , where Γs denotes the random285

precipitation amount at location s ∈W as introduced at the beginning of Sect. 4.1.286

However, the gamma distribution is not directly suitable for the modeling of Γs287

(given E = e) since the gamma distribution is an absolutely continuous distribu-288

tion and P (Γs = 0 |E = e) > 0 in general. Thus, as described before, only positive289

precipitation amounts are modeled using the gamma distribution. For that pur-290

pose, we consider the conditional probabilities p̃
(u)
s = P (Γs > u |Γs > 0, E = e)291

for the occurrence of precipitation of more than u mm given that precipitation of292

any (positive) amount occurs at s for each threshold u ∈ T \{0}. Then, the param-293

eters of a gamma distribution are fitted based on the (conditional) probabilities294

of precipitation exceeding u mm, u ∈ T \ {0}, given that precipitation occurs at295

weather station s, which were derived from the data before. This allows to analyti-296

cally compute the sequence {p̃(u)s , u ∈ T \{0}} of (conditional) probabilities based297

on the fitted gamma distribution. We also compute the conditional expectations298

µ̃s = E(Γs |Γs > 0, E = e) and m̃s = E(Γ 2
s |Γs > 0, E = e) according to the299

fitted gamma distribution. Finally, the point probabilities p
(u)
s for u ∈ T \ {0}300

can be recomputed easily using the identity p
(u)
s = p

(0)
s p̃

(u)
s , where the zero-level301

probability p
(0)
s is directly taken from the data. This approach has the advantage302

that the point probabilities {p(u)s , u ∈ T} are now monotonically decreasing with303

increasing threshold u. Moreover, the fitted gamma distribution allows to easily304

compute the expectation µs and variance vs of Γs (conditioned on {E = e}) ac-305

cording to µs = E(Γs |E = e) = p
(0)
s µ̃s and vs = var(Γs |E = e) = p

(0)
s m̃s − µ2

s.306

Fig. 2 illustrates some sample data for a given forecast period. Note that precipi-307

tation of more than 5, 10 or 15 mm is considered to be an extreme event since the308

corresponding point probabilities are close to zero in almost all cases.309

4.3 Fitting the distributions of random scaling variables310

In this section, we introduce an approach to fitting (conditional) distributions311

of the random scaling variables C1, . . . , Cn. At first, we state formulas for the312

conditional expectation µt and variance vt of Γt conditioned on {E = e}. It holds313

that:314

µt =
n∑

j=1

E(Cj |E = e) ajI(sj , t) (6)
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Fig. 2 Sample data for December 25, 2012, 11-12 UTC obtained from the fitted gamma dis-
tribution: the locations of the considered 503 weather stations and the corresponding Voronoi
tessellation, see equation (1), where each Voronoi cell is colored according to the point proba-
bility for the occurrence of precipitation of more than 0 mm (top left), 0.1 mm (top right), 0.3
mm (center left), 1 mm (center right) and 3 mm (bottom left) or the expected precipitation
amount (bottom right).
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and315

vt =
n∑

j=1

var(Cj |E = e)
[
aj Ĩ(sj , t) + a2jI

2(sj , t)
]

+
n∑

j=1

(E(Cj |E = e))2aj Ĩ(sj , t)

(7)
for all t ∈W , where316

I(sj , t) =

∫
V (sj)∩b(t,r)

(
1− |t− x|

2

r2

)p

dx (8)

and317

Ĩ(sj , t) =

∫
V (sj)∩b(t,r)

(
1− |t− x|

2

r2

)2p

dx. (9)

A derivation of equations (6) and (7) is given in the appendix. We suppose that318

the expectations µs1 = E(Γs1 |E = e), . . . , µsn = E(Γsn |E = e) and variances319

vs1 = var(Γs1 |E = e), . . . , vsn = var(Γsn |E = e) of point precipitation amounts320

at s1, . . . , sn can be computed from available data. In our example of application,321

µs1 , . . . , µs503 and vs1 , . . . , vs503 are the expectations and variances that were ob-322

tained from the fitted gamma distributions in Sect. 4.2 and e is the particular error323

of the weather forecast models of DWD when computing the underlying data. By324

cj = E(Cj |E = e) and c̃j = var(Cj |E = e) we denote the conditional expectation325

and variance of Cj given {E = e} for j = 1, . . . , n. Intuitively, c1, . . . , cn should326

be chosen in such a way that (6) holds for t = s1, . . . , sn. This results in a system327

of n linear equations with unknown variables c1, . . . , cn. In general, this system of328

equations cannot be solved exactly under the constraint that c1, . . . , cn ≥ 0. Thus,329

we compute c1, . . . , cn in a nonnegative least-squares sense, i.e.,330

(c1, . . . , cn) = argmin
c′1,...,c

′
n≥0


n∑

i=1

µsi −
n∑

j=1

c′j ajI(sj , si)

2 , (10)

see [12]. Analogously, c̃1, . . . , c̃n should satisfy (7) for t = s1, . . . , sn. Again, this331

results in a system of n linear equations with unknown variables c̃1, . . . , c̃n. Due332

to the constraint c̃1, . . . , c̃n ≥ 0 we solve the system of equations in a nonnegative333

least-squares sense, too, i.e.,334

(c̃1, . . . , c̃n) = argmin
c′1,...,c

′
n≥0


n∑

i=1

vsi −
n∑

j=1

c2jaj Ĩ(sj , si) (11)

−
n∑

j=1

c′j

[
aj Ĩ(sj , si) + a2jI

2(sj , si)
]2 .

Now, knowing the (conditional) expectations and variances of the local scaling335

variables C1, . . . , Cn, we fit a two-parameter distribution to each Ci using the336

method of moments. We suggest to use one of the following parametric families of337

distributions: beta prime, gamma, inverse gamma, inverse normal or log-normal.338

These distributions seem to be the most suitable ones since they are defined on the339
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nonnegative real line, have finite second moments2 and their parameters can be340

represented as closed functions of expectation and variance, which is required for341

applying the method of moments. Finally, all (conditional) characteristics of the342

random field {Γt, t ∈W} given {E = e} have been determined: the local intensities343

a1, . . . , an for the formation of precipitation cells, the precipitation range r and344

the (conditional) distributions of the local scaling variables C1, . . . , Cn. Note that345

the type of distributions of local scaling variables as well as the shape parameter346

p of the response function Kp are chosen globally (i.e., for all forecast periods). A347

recommendation on how to make this model choice in practice is given in Sect. 6.348

5 Model-based estimation of area probabilities349

The combined model for precipitation cells and precipitation amounts introduced350

in Sect. 3 and 4 allows for the computation of point and area probabilities for351

the occurrence of precipitation exceeding an arbitrary threshold u ≥ 0. Again,352

we consider a particular realization e of the random error E and the correspond-353

ing model characteristics a1, . . . , an and r. A central assumption of our modeling354

approach is that there is precipitation at any location t ∈ W if and only if t is355

covered by the germ-grain model M of precipitation cells introduced in equation356

(3). Accordingly, the point probability p
(0)
t for the occurrence of precipitation at357

any location t ∈ W is given by p
(0)
t = P (t ∈ M |E = e). Note that the following358

closed formula for p
(0)
t holds, see [8]:359

p
(0)
t = 1− exp

− n∑
j=1

aj ν2 (b(t, r) ∩ V (sj))

 for all t ∈W, (12)

where ν2 denotes the two-dimensional Lebesgue measure. Analogously, we assume360

that there is precipitation somewhere within an area B ⊂ W if B intersects M .361

Thus, the area probability π(0)(B) for the occurrence of precipitation in any Borel362

set B ⊂ W is given by π(0)(B) = P (B ∩M 6= ∅ |E = e), where the following363

representation formula holds, see [8]:364

π(0)(B) = 1− exp

− n∑
j=1

aj ν2 ((B ⊕ b(o, r)) ∩ V (sj))

 . (13)

Here, o ∈ R2 denotes the origin and A ⊕ B = {x + y, x ∈ A, y ∈ B} is the365

Minkowski sum of two sets A,B ⊂W .366

The above approach can be generalized as follows. We suppose that for any thresh-367

old u ≥ 0, there is precipitation of more than u mm at t ∈ W if Γt > u. This368

implies that the point probability p
(u)
t for more than u mm of precipitation at369

any location t ∈ W is given by p
(u)
t = P (Γt > u |E = e), see Sect. 4.2. Sim-370

ilarly, we suppose that there is precipitation of more than u mm somewhere371

within an area B ⊂ W if Γt > u for some t ∈ B. Thus, the area probability372

2 For beta prime and inverse gamma distribution only those parameter configurations are
considered that lead to a finite variance.
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Fig. 3 Simulation results for December 25, 2012, 11-12 UTC: typical realization of the random
field {Γt, t ∈W} of precipitation amounts given in equation (5) (left) and mean precipitation
amounts estimated based on 5000 realizations of {Γt, t ∈W} (right).

π(u)(B) for the occurrence of precipitation exceeding u somewhere in B is given373

by π(u)(B) = P (max{Γt, t ∈ B} > u |E = e). Unfortunately, for both these point374

and area probabilities no closed representation formulas are known. As an alterna-375

tive we suggest to estimate p
(u)
t and π(u)(B) by repeated simulation of the fitted376

random field {Γt, t ∈ W} of precipitation amounts given {E = e}. In order to377

do so, we generate a large number of realizations of the germ-grain model M and378

of the random scaling variables C1, . . . , Cn and estimate the desired probabilities379

as relative frequencies of the considered events among all realizations. In Fig. 3380

simulation results for a forecast period selected from our example of application381

are illustrated. A comparison with Fig. 2 shows that the results agree well with382

the underlying data.383

6 Implementation and forecast verification384

The combined model for precipitation cells and precipitation amounts has been385

implemented in Java using the GeoStoch library, see [14]. We compute the model386

characteristics for all forecast periods described in Sect. 2 using the available point387

probabilities at the locations s1, . . . , sn of the n = 503 weather stations and the388

expectations and variances of point precipitation amounts obtained from the fitted389

gamma distributions as described in Sect. 4.2.390

6.1 Choice of model configuration391

At first, a comparison between the point probabilities estimated according to the392

proposed model and those obtained from the fitted gamma distributions is made393

in order to give a recommendation on how to choose the shape parameter p and394

the type of (conditional) distributions of the local scaling variables. We consider395

p to take one of the five values from {0.5, 1, 2, 3, 4} and the following types of396
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two-parameter distributions for the scaling variables: beta prime, gamma, inverse397

gamma, inverse normal and log-normal. Choosing p > 4 does not lead to significant398

changes in estimated probabilities compared to p = 4. For each value of p, each399

distribution type and each threshold u ∈ {0.1, 0.2, 0.3, 0.5, 0.7, 1, 2, 3, 5, 10, 15},400

point probabilities at s1, . . . , s503 are estimated for all available forecast periods as401

described in Sect. 5. Then, a comparison with the point probabilities obtained from402

the fitted gamma distributions, see Sect. 4.2, is made. For each shape parameter,403

distribution type, threshold and weather station, the bias, correlation coefficient404

and mean squared difference (msd) are computed using the point probabilities of all405

forecast periods. Since this results in a huge amount of computed values, the scores406

are averaged once more over all weather stations. Note that near the boundaries407

of the sampling window no consistent estimation of (point and area) probabilities408

can be guaranteed due to edge effects and thus, only weather stations inside the409

boundaries of Germany are taken into account here. The results yield that for all410

thresholds and shape parameters, the correlation coefficients and msd’s perform411

best when using gamma distributions for the local scaling variables. However, the412

effect of changing this type of distribution seems to be minor since only small413

variations in the scores are observed. Similar results are found when analyzing the414

effect of changing the shape parameter. The scaled Epanechnikov kernel (p = 1)415

leads to the smallest msd’s and highest correlation coefficients but only minor416

differences are observed for p = 2, 3, 4 (see also Table 1 in [9]). Only the upper half417

of the unit ball (p = 0.5) produces larger biases and msd’s making it inappropriate418

for the use as response function. Since the computed scores vary only slightly for419

most shape parameters and distribution types, we also consider a verification of420

area probabilities using radar data in order to give a final recommendation on how421

to choose these model configurations, see Sect. 6.2.422

6.2 Verification of area probabilities using radar data423

We compare estimated area probabilities with precipitation indicators derived from424

independent rain gauge adjusted radar data. As test areas we choose the Voronoi425

cells V (s1), . . . , V (s503) that correspond to the locations s1, . . . , s503 of the 503426

weather stations. The Voronoi cells are suitable for verification since they include427

areas of different shape, size and orientation. Again, for each value of p and each428

distribution type as described in Sect. 6.1, area probabilities for V (s1), . . . , V (s503)429

are estimated according to the procedure explained in Sect. 5 for all available430

forecast periods and thresholds u ∈ {0.1, 0.2, 0.3, 0.5, 0.7, 1, 2, 3, 5, 10, 15}. Hourly431

accumulated precipitation amounts for all considered forecast periods are obtained432

from the German operational radar network of DWD, see [22]. To each estimated433

area probability for the occurrence of precipitation of more than u mm somewhere434

in a Voronoi cell V (si), i = 1, . . . , n, we assign the corresponding precipitation435

indicator, which is 1 if there is precipitation of more than u mm somewhere within436

V (si) with respect to radar data and 0 otherwise.437

The following three scores are considered in order to compare area probabilities and438

precipitation indicators for fixed thresholds. For each threshold and each Voronoi439

cell, the bias, the Brier skill score and the empirical correlation coefficient are440

computed based on estimated area probabilities and precipitation indicators for441

all forecast periods. Again, only Voronoi cells inside the boundaries of Germany442
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are taken into account to avoid edge effects. The bias is simply the difference of443

the mean probability and the mean precipitation indicator and the correlation co-444

efficient should be self-explanatory. The Brier skill score, however, is more difficult445

to explain, see also Chap. 8 in [20]. At first, the Brier score BS is determined as446

the mean squared difference of estimated area probabilities and precipitation in-447

dicators. This score, however, is difficult to interpret and thus, the Brier score B̃S448

of a reference forecast is additionally determined. As reference method we use the449

climate mean, where each probability is given as the mean precipitation indicator.450

The Brier skill score is then defined as 1 − BS/B̃S. Of course, area probabilities451

computed from our precipitation model should be more precise than the climate452

mean, which is why the Brier skill score is required to be clearly positive. To in-453

crease the significance of the verification results, all three scores are only computed454

if the corresponding weather event occurs at least 10 times in the considered time455

period.456

At first, we analyze the performance of the three scores when varying the shape457

parameter p and the type of the (conditional) distributions of the local scaling458

variables C1, . . . , C503. The results confirm what we found in Sect. 6.1. For almost459

all shape parameters and thresholds, the gamma distribution yields the highest460

Brier skill scores and correlation coefficients, although the choice of the type of the461

scaling distributions has a minor effect. A more noticeable impact (particularly on462

the bias) is observed when changing the value of the shape parameter p. It seems463

that larger values of p are more appropriate when computing area probabilities for464

higher thresholds. To obtain a bias that is as close as possible to 0 we recommend465

to use the scaled Epanechnikov kernel (p = 1) for thresholds smaller than 0.2 mm,466

the scaled biweight kernel (p = 2) for thresholds between 0.2 and 0.5 mm and the467

scaled triweight kernel (p = 3) for thresholds of at least 0.5 mm. A larger p can468

improve the bias even more for thresholds of more than 1 mm but this will also469

lead to decreasing Brier skill scores and correlation coefficients and is therefore470

not recommended.471

We analyze the bias, Brier skill score and correlation coefficient of estimated area472

probabilities and precipitation indicators, where the model configuration suggested473

above is used. Since estimated area probabilities are expected to depend heavily474

on the precision of the underlying input data, we also provide a comparison of475

point probabilities for the locations of the weather stations obtained according to476

the fitted gamma distributions (which in turn are based on the point probabilities477

provided by DWD) and precipitation indicators derived from radar data. Again,478

the bias, the Brier skill score and the empirical correlation coefficient are taken479

into account, where scores are only computed for those weather stations at which480

the corresponding weather event occurs at least 10 times during the considered481

time period. This implies, however, that no verification of point probabilities for482

thresholds of 5 mm or higher is possible. To avoid edge effects, only weather sta-483

tions and Voronoi cells inside the boundaries of Germany are considered. Scores484

for each threshold are visualized using boxplots in Fig. 4 for point probabilities485

and in Fig. 5 for area probabilities.486

When analyzing mean biases for estimated area probabilities, we find that there487

is no systematic error for all thresholds up to 5 mm, whereas area probabilities488

seem to be slightly too low for thresholds of 10 and 15 mm. More variation is489

observed for single Voronoi cells. Although the bias is close to zero for most areas,490
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Fig. 4 Forecast verification using radar data: scores of point probabilities that are obtained by
fitting gamma distributions to data provided by DWD. For a sequence of thresholds the biases
(top), Brier skill scores (center) and correlation coefficients (bottom) of all stations inside the
boundaries of Germany are visualized as boxplots. Thresholds of 5 mm and more are not
considered since the corresponding weather events occur less than 10 times at all weather
stations.
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Fig. 5 Forecast verification using radar data: scores of area probabilities that are estimated
based on the proposed precipitation model. For a sequence of thresholds the biases (top),
Brier skill scores (center) and correlation coefficients (bottom) of all Voronoi cells inside the
boundaries of Germany are visualized as boxplots. For thresholds of 5 mm and more only those
Voronoi cells are considered where the corresponding weather event occurs at least 10 times.
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we occasionally obtain values reaching up to −6% or +10%, see Fig. 5 top. Biases491

are closer to zero for higher thresholds, since the corresponding probabilities are492

smaller. Several reasons causing these occasional biases are conceivable. On the493

one hand, radar measurements are susceptible to interference that can result in494

systematic errors for some regions. On the other hand, we indicated in [8], where495

a verification of area probabilities for the occurrence of precipitation covering the496

same period is performed, that biases in estimated area probabilities are induced497

by biases in the underlying point probabilities (even if these are smaller). Indeed,498

we observe positive biases of point and area probabilities in northern Germany499

and small negative biases in southern Germany. Thus, it seems that biases of es-500

timated area probabilities are caused (and slightly amplified) by the underlying501

point probabilities.502

At next, Brier skill scores and empirical correlation coefficients are analyzed. In503

general, these scores decrease with increasing threshold (for both point and area504

probabilities), which shows that precipitation events occurring less frequently are505

more difficult to predict. We find that averaged scores as well as almost all single506

scores are clearly positive for all thresholds up to u = 3 mm, see Fig. 5 center507

and bottom. Furthermore, a direct comparison with the scores computed from508

the underlying point probabilities, see Fig. 4 center and bottom, shows that Brier509

skill scores and correlation coefficients of estimated area probabilities for thresh-510

olds up to 2 mm actually perform slightly better than the corresponding scores511

of point probabilities. Even the few weather stations with more unreliable point512

probabilities, indicated by very low (or negative) Brier skill scores and correla-513

tion coefficients, do not affect estimated area probabilities very much. This is a514

particularly nice result. Again, we observe that best results (i.e., highest Brier515

skill scores and correlation coefficients) are obtained in those regions where the516

underlying data are the most reliable (i.e., have the highest Brier skill scores and517

correlation coefficients), whereas small insufficiencies in our method seem to be518

influenced by less reliable data. A meaningful verification of area probabilities519

estimated for thresholds of 5 mm or higher is difficult since the corresponding520

(extreme) precipitation events occur rarely in the data. For example, a verifica-521

tion of area probabilities is only possible for 34 Voronoi cells if the threshold is 10522

mm and for only 1 Voronoi cell if the threshold is 15 mm. Brier skill scores and523

correlation coefficients are significantly smaller than for lower thresholds but still524

positive for most test areas. Although our results indicate that our procedure gives525

more reliable area probabilities for extreme precipitation events than the climate526

mean, we also observe that forecast quality is considerably lower than for smaller527

thresholds. Thus, such area probabilities should be handled with some caution.528

The previously computed scores are only able to assess forecast quality in de-529

pendence of a chosen threshold. To conclude forecast verification we thus con-530

sider a score which assesses the overall forecast quality of the proposed method.531

For that purpose, we analyze the ranked probability skill score, see e.g. [2] or532

[20]. This score can be considered as a multiple-category version of the Brier533

skill score and is constructed as follows. At first, the interval [0,∞) of all pos-534

sible precipitation amounts in mm is divided into a sequence J1 = [0, 0.1], J2 =535

(0.1, 0.2], . . . , J11 = (10, 15], J12 = (15,∞) of 12 subintervals, whose endpoints536

correspond to the thresholds considered above. Then, for each forecast period and537

Voronoi cell we determine sequences y1, . . . , y12 and o1, . . . , o12, where yi denotes538
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Fig. 6 Forecast verification using radar data: ranked probability skill scores for point prob-
abilities (obtained by fitting gamma distributions to data provided by DWD; left) and area
probabilities (estimated based on the proposed precipitation model; right). Voronoi cells inside
the boundaries of Germany are colored according to the ranked probability skill scores of the
corresponding weather stations/Voronoi cells.

the probability of a precipitation amount in Ji occurring within the considered539

Voronoi cell (estimated according to our method) and oi is equal to 1 if a pre-540

cipitation amount in Ji is observed according to radar data and 0 otherwise for541

i = 1, . . . , 12. Then, the ranked probability score RPS is computed as542

RPS =
12∑

m=1

((
m∑
i=1

yi

)
−

(
m∑
i=1

oi

))2

. (14)

Similar as for the Brier skill score a reference rank probability score R̃PS is com-543

puted based on the climate mean and the ranked probability skill score is de-544

termined as 1 − RPS/R̃PS. Analogously, ranked probability skill scores can be545

computed for the underlying point probabilities. Values of this score should be546

positive and as high as possible. Fig. 6 shows the ranked probability skill scores of547

all weather stations and Voronoi cells inside the boundaries of Germany. All com-548

puted values (except for three stations) are clearly positive with values between549

0.15 and 0.4. In particular, we find that scores for area probabilities have similar550

values as those for point probabilities, which indicates that our method provides551

forecasts that have a similar quality as the underlying data. The mean ranked552

probability score of area probabilities even has a higher value than that for point553

probabilities (point probabilities: 0.25, area probabilities: 0.28). We conclude that554

precipitation events occur mainly in those areas and forecast periods, where the555

corresponding estimated area probabilities are high.556

7 Conclusion557

In the present paper we extended a stochastic modeling approach for the compu-558

tation of area precipitation probabilities, which was recently introduced in [8]. For559

the first time, a combined model for precipitation cells and precipitation amounts560
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is given, which allows for the estimation of area probabilities for the occurrence561

of precipitation exceeding arbitrary thresholds while fulfilling requirements for ap-562

plication in operational weather prediction. In the proposed model, precipitation563

cells are represented by a non-stationary germ-grain model with circular grains564

described by a sequence of random local intensities and a random grain radius.565

A randomly scaled response function is assigned to each precipitation cell and566

the summed response functions are interpreted as random precipitation amounts.567

Most model characteristics, i.e., intensities of precipitation cells, cell radius and568

expectations and variances of random scaling variables, were computed for each569

forecast period separately based on point probabilities for the occurrence of precip-570

itation exceeding different thresholds. In particular, all characteristics are deter-571

mined algorithmically based on predicted point probabilities, i.e., no precipitation572

observations are needed for model fitting. Since no further input of the forecaster573

is necessary and due to the reasonable computation time, the method is suitable574

for the issuing of automated weather predictions and warnings on a nation-wide575

scale.576

A comparison of estimated area probabilities with precipitation indicators obtained577

from radar data showed a very good agreement. For thresholds up to 3 mm we578

received reasonable Brier skill scores and correlation coefficients for almost all test579

areas (in many cases even higher than for underlying point probabilities). Biases580

were close to zero for most areas but also showed some deviations occasionally.581

Although we described possible reasons causing these biases, a higher precision of582

estimated probabilities will be a goal of future work. For higher thresholds (5 mm583

or more) forecast verification shows less significant results. It seems that area prob-584

abilities are slightly underestimated and forecast quality is lower than for smaller585

thresholds. Nevertheless, we obtained positive Brier skill scores and correlation586

coefficients for most test areas indicating that predicted probabilities are superior587

to naive estimators as the climate mean. The analysis of ranked probability skill588

scores also reveals a clear relationship between estimated area probabilities and589

radar observations. Here, we get similar values for point and area probabilities,590

too, which indicates that forecasts provided by the proposed method have a sim-591

ilar quality as the underlying data. On the other hand, however, we observe that592

the considered verification scores for area probabilities correspond strongly to the593

scores of underlying point probabilities. Thus, precise and unbiased data are cru-594

cial for the success of the presented method. Although it is not completely clear595

whether the lower quality of area probabilities for extreme thresholds is caused596

by the underlying data or the method, we will consider the computation of more597

precise area probabilities for extreme precipitation events as one major goal in598

future research. It also needs to be investigated how the presented approach works599

for areas with sizes and shapes varying from those investigated here or in regions600

with different climatological or geographical conditions than central Europe.601

The proposed methodology is not only expected to further sensitize the meteoro-602

logical community for the difference of point and area probabilities and thus will603

strengthen the consideration of area probabilities (for different weather events) in604

probabilistic weather prediction. Additionally, the proposed precipitation model605

can also be used to estimate further characteristics that might be interesting for606

the issuing of weather warnings (and do not necessarily depend on extreme pre-607

cipitation events). For example, it is possible to estimate the mean cumulated608
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precipitation amount that occurs in an area, e.g. the drainage area of a river,609

over a longer time period to assess flood risks. Such applications, however, are610

beyond the scope of the present paper and could be a topic of future research.611

Furthermore, this kind of models can be applied to other weather events, e.g., the612

occurrence of wind gusts or thunderstorms exceeding a certain strength. However,613

it is crucial that the size of “cells” in the considered weather event is not too small614

in comparison to the density of weather stations.615

Appendix616

We give a brief derivation of equations (6) and (7) for the conditional expectation
and variance of the random precipitation amount Γt at t ∈ W given {E = e}.
In order to derive (7), we need the following general result for Poisson processes.
Let {Yi, i = 1, 2, . . .} be a Poisson process in R2 with locally integrable intensity
function λ : R2 → [0,∞), second-order moment measure µ(2) : B(R2×R2)→ [0,∞]
and second-order product density %(2) : R2 × R2 → [0,∞). Furthermore, let f, g :
R2 → [0,∞) be two nonnegative measurable functions. By using the definition of
the second-order moment measure and the result that %(2)(x, y) = λ(x)λ(y) for
x, y ∈ R2, see e.g. [4], p. 119, we get

E

 ∞∑
i=1

f(Yi)
∞∑
j=1

g(Yj)

 = E

 ∞∑
i,j=1

f(Yi) g(Yj)


=

∫ ∫
f(x) g(y)µ(2)(d(x, y))

=

∫ ∫
f(x) g(y) %(2)(x, y) d(x, y) +

∫
f(x) g(x)λ(x) dx

=

∫
f(x)λ(x) dx

∫
g(y)λ(y) dy +

∫
f(x) g(x)λ(x) dx.

We start with equation (6) for the conditional expectation E(Γt |E = e) of Γt

given {E = e}. In the following, we again use the notation introduced in Sect.
4, i.e., let aj = E(Aj |E = e), cj = E(Cj |E = e) and c̃j = var(Cj |E = e) for
j = 1, . . . , n and r = E(R |E = e). Recall that conditioned on {E = e} the point
process {Xi, i = 1, . . . , Z} is a Poisson process with intensity function {λt, t ∈W},
where λt =

∑n
j=1 ajIV (sj)(t) for all t ∈ W . Furthermore, {Xi, i = 1, . . . , Z} is

conditionally independent of the scaling variables C1, . . . , Cn given {E = e}. By
applying the Campbell theorem for point processes (see e.g. [1], Theorem 4.1) we
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get

E(Γt |E = e) = E

 Z∑
i=1

n∑
j=1

CjIV (sj)(Xi)Kp(t,Xi, R)
∣∣∣E = e


=

n∑
j=1

cj E

(
Z∑

i=1

IV (sj)(Xi)Kp(t,Xi, r)
∣∣∣E = e

)

=
n∑

j=1

cj

∫
IV (sj)(x)

(
1− |t− x|

2

r2

)p

Ib(t,r)(x)
n∑

k=1

akIV (sk)(x) dx

=
n∑

j=1

E(Cj |E = e) aj

∫
V (sj)∩b(t,r)

(
1− |t− x|

2

r2

)p

dx.

Now, we consider the conditional variance var(Γt |E = e) for a fixed t ∈ W . To
simplify the notation we introduce the function fj : R2 → [0,∞) with fj(x) =
IV (sj)(x)Kp(t, x, r) for all x ∈ R2 and j = 1, . . . , n. Obviously, fj(x)fk(x) = 0 for

all x ∈ R2 if j 6= k. Furthermore,
∫
fj(x) dx = I(sj , t) and

∫
f2
j (x) dx = Ĩ(sj , t) for

j = 1, . . . , n, where I(sj , t) and Ĩ(sj , t) are defined according to equations (8) and
(9). By using the result for Poisson processes shown before and that conditioned
on {E = e}, the scaling variables C1, . . . , Cn are independent of each other and of
{Xi, i = 1, . . . , Z}, we get that

E
(
Γ 2
t

∣∣∣E = e
)

= E

 Z∑
i=1

n∑
j=1

CjIV (sj)(Xi)Kp(t,Xi, R)

2 ∣∣∣E = e


= E

 n∑
j=1

n∑
k=1

CjCk

Z∑
i=1

IV (sj)(Xi)Kp(t,Xi, R)
Z∑

l=1

IV (sk)(Xl)Kp(t,Xl, R)
∣∣∣E = e


=

n∑
j=1

n∑
k=1

E(CjCk |E = e)E

(
Z∑

i=1

fj(Xi)
Z∑

l=1

fk(Xl)
∣∣∣E = e

)

=

n∑
j=1

n∑
k=1

E(CjCk |E = e)

(∫
fj(x) aj dx

∫
fk(x) ak dx+

∫
fj(x) fk(x)λx dx

)

=
n∑

j=1

E(C2
j |E = e)

(
a2j I

2(sj , t) + aj Ĩ(sj , t)
)

+
n∑

j=1

n∑
k=1
k 6=j

cj ck aj ak I(sj , t) I(sk, t).
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Moreover, according to equation (6), we get

(
E (Γt |E = e)

)2
=

 n∑
j=1

cj aj

∫
V (sj)∩b(t,r)

(
1− |t− x|

2

r2

)p

dx

2

=
n∑

j=1

n∑
k=1

cj ck aj ak I(sj , t) I(sk, t)

=
n∑

j=1

c2j a
2
j I

2(sj , t) +
n∑

j=1

n∑
k=1
k 6=j

cj ck aj ak I(sj , t) I(sk, t).

Finally, combining both representation formulas results in

var(Γt |E = e) = E
(
Γ 2
t

∣∣∣E = e
)
−
(
E (Γt |E = e)

)2
=

n∑
j=1

E(C2
j |E = e)

(
a2j I

2(sj , t) + aj Ĩ(sj , t)
)
−

n∑
j=1

c2j a
2
j I

2(sj , t)

=
n∑

j=1

c̃j
[
aj Ĩ(sj , t) + a2jI

2(sj , t)
]

+
n∑

j=1

c2jaj Ĩ(sj , t),

which coincides with the representation formula for the conditional variance of Γt617

given in (7).618
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