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Abstract Fast assessment of the composition of amyloid fibril samples from
cryo-EM data poses a serious challenge to existing image analysis tools. We
develop a method for automated segmentation of single fibrils requiring only
little user input during the training process. This is achieved by combining
a binary segmentation based on a convolutional neural network with prepro-
cessing steps to allow for easy manual generation of training data. Subsequent
skeletonization turns the binary segmentation into a single-object segmenta-
tion. Then, we compute properties of shape and texture of each segmented
fibril, including an estimation of the fibril width. We discuss the composition
of the sample based on the distributions of these computed properties and
outline how a classification of fibril morphologies might be performed using
these properties.
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1 Introduction

Endogenous proteins regularly form fibrillary structures which serve important
cellular functions. However, formation of amyloid fibrils, i.e. abnormal protein
filaments, gives raise to a group of diseases, so-called amyloid diseases [4]. Ex-
amples include Parkinson’s or Alzheimer’s disease and systemic amyloidosis.
Studying the underlying mechanism includes the investigation of amyloid fib-
ril samples by cryogenic electron microscopy (cryo-EM) [19,23]. As amyloid
fibrils are often helically twisted, the resulting 2D images show objects of pe-
riodically varying apparent width. The features regarding geometrical shape
and texture of the fibrils observed in the 2D data contain plenty information
about the underlying 3D structure of the fibrils. Software packages for EM-
reconstruction like RELION [12], cryoSPARC [18] or EMAN2 [26] make use
of this information to fully reconstruct the molecular 3D structure of amyloid
fibrils. However, this process involves cumbersome hand-picking of fibrils and
requires huge computational resources. Thus, for a fast characterization of a
collection of fibrils, a different procedure is needed.

A viable approach to this is the statistical analysis of fibril shapes and tex-
tures, which are directly accessible from 2D image data. In a previous study,
we proposed an automated method for the extraction of so-called cross-over
points [29] from 2D data without performing an actual segmentation of the
entire fibrils. Based on a similar approach, a method for automated picking
of fibril center lines was proposed [27]. While cross-over points and center
lines are helpful tools for further analysis of fibrils, only a full segmentation
allows for characterization by properties of shape and texture, e.g., the mean
width or variance in intensity. To enable the detailed analysis of such proper-
ties, we will present an automated segmentation of fibrils from the cryo-EM
images based on the application of a suitably chosen architecture of convolu-
tional neural networks (CNNs). For high-quality micrographs where gray-scale
thresholding is feasible, viable approaches for binary segmentation exist [25,
30]. When thresholding is infeasible, e.g., due to noise or the inner structure
of fibrils, CNNs provide a promising approach. They have proven successful
for segmentation of image data from various microscopic techniques [8,9,10,
11]. However, the cryo-EM data investigated in the present paper poses chal-
lenges already for hand-labeling and further processing. Thus, we propose a
preprocessing workflow alleviating many of these challenges and facilitating
easy hand-labeling and processing. The employed kind of neural networks is
typically used for phase-based segmentation, resulting in an image which dis-
tinguishes between fibrils and background, but not between individual fibrils.
For their analysis, it is necessary to perform an additional segmentation step in
order to extract single fibrils from cryo-EM data, where our method operates
on the segmentation provided by the CNN using a skeletonization algorithm
to detect and distinguish single fibrils.

Based on the provided segmentation, we show how to compute various
properties of shape and texture of fibrils. These properties may usually be
exploited for the classification of fibril morphologies.
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The rest of this paper is organized as follows. In Section 2, materials and
methods considered in the present paper are described. In particular, we de-
scribe the two-step segmentation procedure including the employed neural
network and skeletonization methods as well as the properties of shape and
texture by which we characterize each fibril. In Section 3, we describe, validate
and discuss the results obtained by the segmentation procedure and provide a
description of various properties computed from the segmented fibrils. Finally,
Section 4 concludes.

2 Materials and Methods

2.1 Sample Description and Cryo-EM

Previously described, de-novo designed heptapeptide sequence LHLHLRL,
with terminal acetyl and amide groups, was used for fibrillation [21]. The
peptide was dissolved in 10 mM HCl to get 0.6 mm stock solution. This was
stored as 20 µL aliquots at −80 ◦C. Fibrillation was set up using 91 µL of buffer
(25 mm Tris pH 8.0, 1 mm ZnCl2) and 9 µL of peptide stock to get a final pep-
tide concentration of 0.054 mm. This was incubated at room temperature for
three days to get the final sample. Sample grids for cryo-EM data collection
were prepared by applying a 3.5 µL aliquot (0.054 mm) to glow-discharged ho-
ley carbon coated grids (400 mesh C-flat 1.2/1.3), blotted with filter paper
and plunge-frozen in liquid ethane using a Vitrobot Mark 3 (Thermo Fisher
Scientific).

The grid quality was checked during optimization with a JEM-2100 trans-
mission electron microscope (JEOL) at 200 kV. The data set analyzed here
was acquired using a K2-Summit detector (Gatan) in counting mode on a
Titan Krios transmission electron microscope (Thermo Fisher Scientific) at
300 kV. Data was collected using 1.04 Å pixel size, 40 frames and a defocus
range around −0.8 µm to −2.0 µm. Movie frames were gain corrected using
IMOD [14]. MOTIONCOR2 [33] was used for motion correction and dose
weighing. Motion corrected images were further used for estimation of the
contrast transfer function using gctf [31].

The cryo-EM data set used in the presented work consists of 1970 images.
From 691 selected images, a total of 1000 fibrils were manually examined to
determine the fibril properties. This was done on the basis of fibril width and
cross-over distance which were measured using the program Fiji [22].

2.2 Binary Segmentation

Most sample images contain more than one fibril, among various kinds of
artifacts. The goal of this paper is the development of a procedure for the
automated extraction of these fibrils from 2D cryo-EM images and for the
statistical analysis of their shapes and textures. The first measure towards
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Fig. 1 Preprocessing steps applied to a sample image. The original image is downscaled and
smoothed (a). Then, the container wall is detected (b) and removed (c). Finally, illumination
gradients are removed (d).

single-fibril segmentation consists of a binary segmentation which distinguishes
a foreground phase, i.e. fibrils, from the background phase. For this, a neural
network is used which is trained on hand-labeled data. To simplify hand-
labeling and the application of the neural network, we perform a series of
preprocessing steps, visualized in Fig. 1.

In a first step, we scale each image to 25 % of its original size, as this drasti-
cally reduces computation time for subsequent processing while still preserving
sufficient information for accurate segmentation. The resulting images have a
pixel size of 4.16 Å. While downscaling reduces noise significantly, we apply
a Gaussian smoothing with standard deviation of 2.5 px to further eliminate
noise. Some images were taken close to the edge of the sample container.
They show the container wall which we detect by applying a Sobel edge-
detection [13]. After some morphological closing, the detected walls split the
image into an inside and an outside part. Parts of the image outside the de-
tected wall should not be considered for further analysis and, therefore, are
removed from the image. In a final preprocessing step, we eliminate illumi-
nation gradients present in the images by subtracting a Gaussian filter with
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standard deviation of 50 px from the image. The Gaussian filter is computed
only within the “inside part” of each image. Further measures are taken to
avoid edge-effects from the Gaussian filter.

For binary segmentation of the resulting image data, various architectures
of neural networks exist. A common network architecture is a sequence of con-
volutional and intermediary layers to project the input image into so-called
latent space. This representation is supposed to contain the necessary infor-
mation to perform the segmentation task for which the network is trained. To
reconstruct the segmented image, transposed convolutions (or de-convolutions)
are often used in combination with upsampling layers, resulting in a full-sized
segmentation map. Examples of these networks include the popular U-net ar-
chitecture [20] and Xception networks [6]. We use a U-net style adaption of the
Xception architecture, i.e., a sequence of convolutional layers as described in [6]
followed by upsampling and transposed convolution layers in a similar man-
ner to achieve a full-sized segmentation map. The implementation was done
in Keras/Tensorflow [1] and was based on [5]. It operates on image patches
of size 128 px× 128 px. To generate training data, we perform hand-labeling
of fibrils on the preprocessed images, where the preprocessing steps simplify
this task considerably as contrast is improved and artifacts do not need to
be considered manually. Hand-labeling is done by manually tracing the out-
line of each fibril and automatically filling in the rest of the fibril. Ambiguous
cases where background is encompassed by a loop of overlapping fibrils are re-
solved by marking the background manually at any single point within it. The
hand-labeled images are then cut into appropriately sized patches to train the
neural network. In total, we used 58 hand-labeled images for training and 13
hand-labeled images for testing the neural network. Despite the low number
of manually labeled images, a reliable segmentation is achieved.

Applying the trained CNN to the remaining preprocessed images yields
grayscale images where the value of each pixel measures its likeliness to belong
to a fibril. By setting a threshold of 0.5, we obtain a binary image where the
true phase corresponds to fibrils as predicted by the CNN.

2.3 Single Fibril Segmentation

For statistical analysis, the foreground phase of the binarized images corre-
sponding to the union set of all fibrils needs to be further segmented into
single fibrils. Often, two or more fibrils cross each other at a single point,
rendering analysis of their shape at this point infeasible. Thus, we resort to
segmentation of the foreground phase into straight, non-overlapping segments
of fibrils. To achieve this, we employ a skeletonization and subsequent pro-
cessing of the skeleton to identify these segments as shown in Fig. 2. First,
we apply a dilation with a disk of 10 px radius to the binarized images in
order to eliminate noise-induced artifacts which otherwise would lead to er-
rors in the skeleton. Then, we apply Zhang’s algorithm [32] which calculates
a skeleton of the foreground phase by successively removing boundary pixels
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without breaking the connectivity of the object. Similar to other skeletoniza-
tion algorithms like, e.g., Lee-thinning [15], the resulting skeleton suffers from
undesirable branches which may be induced by surface roughness of the object.
In our case, these spurs need to be removed, because they do not correspond
to actual fibril segments.

(a) (b) (c) (d)

Fig. 2 Preprocessed image (a) and dilated binary segmentation map (b), obtained from
application of the CNN, which is then skeletonized using Zhang’s algorithm (c). Undesirable
spurs (short branches) are shown in red. Pruning deletes these branches and, finally, the
skeleton is split into non-branching parts (d). For visualization purposes all skeletons have
been dilated by a few pixels.

To achieve a spur-free skeleton, so-called pruning algorithms are frequently
applied, see e.g. [3]. However, standard pruning algorithms suffer from in-
consistencies when two branches starting from the same point are shorter
than a given threshold. These inconsistencies may result in both branches be-
ing removed, when one actually belongs to the (long) main branch, or both
branches staying in place. We avoid this by successively removing the shortest
branch/spur of the skeleton as long as it is shorter than a given threshold.
This is achieved by determining branching points and end points of the skele-
ton using the hit-and-miss transformation [24] and computing the geodesic
distance along each branch from its end point to the next branching point.
Then, the shortest branch is removed from the skeleton if it is shorter than
the given threshold and the process is repeated. Splitting the pruned skeleton
at its branching points, the resulting parts correspond to the fibril segments of
interest. These fibril segments are reconstructed by computing the Euclidean
distance transform with respect to the skeleton segments. In doing so, we mem-
orize the part of the skeleton to which the distance of a given point is smallest,
see Fig. 3. The resulting map identifies the closest skeleton part for each pixel
of the fibril. Finally, we rotate each fibril segment such that its major axis is
parallel to the x-axis. As most fibril segments are fairly straight with no bends,
this results in well-defined data for subsequent analysis.

2.4 Properties of Shape and Texture

For each fibril (i.e., fibril segment), we compute various properties of shape and
texture, where we mask the original grayscale image with the segmented fibril.
Then, we apply a one-dimensional Gaussian filter with standard deviation of
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(a) (b)

Fig. 3 By Euclidean distance transform, each pixel is labeled according to the nearest part
of the skeleton (a). Using this information together with the binary segmentation map yields
individual pieces of non-overlapping fibrils (b).

10 px along the major axis of the fibril to reduce noise and localized artifacts
on the fibril. Furthermore, we apply a masked version of the Gaussian filter to
eliminate edge effects. Many fibrils exhibit a grayscale gradient orthogonal to
the major axis where the innermost part of the fibril is darkest and the outer
parts are brighter. This is due to the molecular structure of the fibril consisting
of twisted protofilaments [2]. Note that the one-dimensional Gaussian filter
mostly conserves this gradient while still eliminating noise.

At each position along the major axis of a fibril, we compute the width
of the fibril, the mean gray value and the variance in gray values on a slice
orthogonal to the major axis. For each fibril, this yields three curves as shown
in Fig. 4. It turns out that many fibrils exhibit a periodic pattern in all curves
which is due to the helical structure of the fibrils also seen in the grayscale
images. However, the sample seems to comprise different types of fibrils which
also exhibit different patterns in these curves. Furthermore, an established
property of amyloid fibrils is the so-called cross-over distance [2,16]. Formally,
cross-overs are points on the fibril’s skeleton where the fibril width (in its
2D projection) takes a local minimum. The distance between these points
equals the pitch of the helical fibril structure. For measuring the cross-over
distance, we fit sine functions to the width and gray values of each fibril. The
wavelength of these functions roughly corresponds to the cross-over distance.
By comparing the wavelengths and the fit quality, we can assess the reliability
of the computed cross-over distance and identify fibrils which do not exhibit
cross-overs.

Thus, for each fibril, we compute a number of scalar properties consisting
of their width, the gray value at the cross-overs, the coefficient of variation of
width along the major axis, and the cross-over distance.
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Fig. 4 Three examples of segmented fibrils, showing the (rotated) grayscale image of the
fibril (top row), the width of the fibril along its major axis (second row), as well as the mean
gray value (third row) and the variance in gray values (bottom row) at each slice orthogonal
to the major axis. Each curve is overlaid with an fitted sine function shown in red.

3 Results

3.1 Manual Assessment of Fibril Morphologies

To investigate the possible presence of different fibril morphologies, 1000 fibrils
were manually analyzed regarding width and cross-over distance. While the
cross-over distance could not be measured for roughly 40% of the fibrils, the
fibril width was obtained for all analyzed fibril structures. Based on a plot
of the cross-over distance versus fibril width for ≈ 60% of the fibrils (Fig. 5)
and the histogram of the fibril width for all analyzed fibrils (Fig. 6), it was not
possible to readily subdivide the data set into well-resolved fibril morphologies.
Nevertheless, visual analysis of the micrographs appeared to yield similar fibril
morphologies at widths of approximately 5-6, 7-8, 9-10 and 11-12 nm (Fig. 7).

Fig. 5 Cryo-EM based measurement of fibril width and cross-over distance computed on
1000 fibrils. No cross-overs were found in the images for 413 fibrils, which are shown as dots
on the horizontal axis.
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Fig. 6 Histogram of the distribution of fibril width present in the cryo-EM data set, com-
puted by analyzing 1000 fibrils and using a binning of 1nm.

Fig. 7 Cryo-EM images of fibril morphologies present in the data set. Scalebar: 50 nm.

3.2 Segmentation

For the chosen approach to single-fibril segmentation, we note that segmenta-
tion quality can be assessed at various intermediate steps. The most crucial
part of the segmentation procedure is the binary segmentation performed by
the CNN, see Section 2.2 As we retained hand-labeled data which was not
used for training, we can test the performance of the CNN segmentation using
this data. A well-established measure for the quality of binary segmentation
maps is the Sørensen-Dice coefficient γ ∈ [0, 1], see [7], which is defined by

γ =
2|T ∩ S|
|T |+ |S|

,

where |T∩S| is the area of the intersection of ground truth T and segmentation
map S and |T | and |S| are their respective areas. A value of γ = 1 corresponds
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(a) (b)

Fig. 8 Sample cutouts with fibril outlines overlaid on top, where each cutout is rotated
such that the fibril’s major axis matches the x-axis: Original (preprocessed) image (a) and
single-fibril segmentation obtained by applying the CNN and the skeleton-based method (b).

to T = S while a value of γ = 0 indicates that no pixel is classified correctly
in the segmentation map. Applying the trained neural network to the retained
test data yields a mean Sørensen-Dice coefficient of γ = 0.83, indicating a
reliable binary segmentation.

Assuming a sufficiently correct binary segmentation, the remaining steps
can be assessed by visual inspection. However, still a possible pitfall is split-
ting the foreground phase into single fibril segments. Here, overlapping fibrils
might not be split into separate parts or straight fibrils without any overlap
might be split into different segments. While the former would pose serious
problems for further analysis and result in unreliable data, the latter would be
a mere nuisance as we would only loose some information regarding connec-
tivity. However, our method for single-fibril segmentation aims to avoid both
errors and achieves good results, see Fig. 8. In total, we detected 2334 fibrils.

3.3 Validation

Based on the manually determined fibril widths, we performed further valida-
tion of the segmentation. For 500 of the manually measured fibrils, coordinates
on the fibrils were stored and used to link the manually measured widths to the
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Fig. 9 Scatterplot of manually measured widths (x-axis) and automatically determined
widths (y-axis). The red line indicates the diagonal. Histograms of both variables are shown
on the sides.

widths measured on the automated segmentation. As explained in Section 3.1,
fibril widths may typically be used to classify fibril morphologies. Fig. 9 shows
the measured and automatically determined widths for all fibrils. The mean
width obtained by manual measurement was 124.3 Å while the mean width
obtained by automated segmentation was 124.9 Å. The median deviation of
manually and automatically measured width was 13.9 Å. Note that, as manual
measurements were performed on images with a resolution reduced by a factor
of 4, this corresponds to a difference of only 3.33 px. This result strengthens
the proof of reliability established by computing the Sørensen-Dice coefficient,
sse Section 3.2.

3.4 Geometric Properties of Extracted Fibrils

As described in Section 2.4, we computed several properties for each fibril.
They are based on the width and mean gray values along each fibril, see
Fig. 4. Histograms of various fibril properties are shown in Fig. 10. Note that
the histograms of minimum, maximum and mean width of all fibrils, auto-
matically extracted from image data, show a similar distribution, which is
due to a strong positive correlation between these three properties. The cor-
relation between minimum and maximum width is 0.76, between mean width
and maximum width 0.97 and between mean width and minimum width 0.88.
Properties based on the gray values which can be obtained from the single-
fibril segmentation include the mean gray value and the variance of the gray
value within each fibril. As the gray values observed in the cryo-EM data are
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Fig. 10 Histograms of various fibril properties. Note that all histograms exhibit a large
variance but do not show clear multi-modal behavior.

linked to the type of protofilaments and their arrangement, they might be used
as a proxy to determine fibril morphologies. When different morphologies are
present in the sample, we would expect a broad variation in both properties
and, more importantly, multi-modal distributions. While we observe a broad
variation, the distributions do not appear to be multi-modal and thus, an ap-
propriate classification of fibril morphologies based on these histograms is not
feasible. This may be due to heterogeneity in the fibril morphologies. Simi-
larly, a classification based on the properties derived from fibrils widths fails.
In line with the attempt to manually classify different fibril morphologies (cf.
Section 3.1, this suggests a high variability of the visual appearance of fibrils
of the same morphology in cryo-EM data. As this heterogeneity is specific to
the present data, a similar approach on other data may yield sufficient infor-
mation for a fast classification of fibril morphologies using, e.g., a Gaussian
mixture model [17] on any combination of the computed properties.

3.5 Discussion

The proposed method for automated segmentation of single fibrils leads to
visually convincing results which is corroborated by the computed validation
measures. Unlike many previously developed methods, see, e.g., [27,28], the
resulting segmentation does not only give the fibril center lines or rough out-
lines but also their precise shapes. While we mainly use this information to
determine the fibril morphologies, further characteristics may be derived from
the segmentation of single fibrils in order to characterize the obtained fib-
ril morphologies. The methodology developed in the present paper does not
use any preliminary classification of short fibril segments, as, e.g., in [18].
This pre-classification leads to noise reduction before the final classification of
morphologies is performed, which is beneficial compared to the methodology
proposed in the present paper. However, an advantage of our approach is that
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it is independent of possible errors occurring at the stage of pre-classification,
see the discussion in Section 4 of [18].

As described above, the single-fibril segmentation lends itself to the com-
putation of various properties of fibrils. When classification of fibril morpholo-
gies based on fibrils widths is feasible, the presented approach may be used
to quickly and reliably determine the fibril widths and thus facilitating a fast
classification. However, for the present data no such classification was possible
due to heterogeneity in the fibril morphologies. As a further application, the
single-fibril segmentation may be used as input for tools like, e.g., RELION [12]
which require center lines or other segmentation-like input.

4 Conclusion

In the present work, we proposed a method for mostly automated segmenta-
tion of amyloid fibrils from cryo-EM image data. While our method relied on
binary segmentation by a convolutional neural network, preprocessing steps
ensured that only little ground-truth data was needed. Furthermore, man-
ual labeling of the preprocessed image data was fast and easy. The method
yielded a reliable binary segmentation as shown by computing the Sørensen-
Dice coefficient as well as by visual inspection. Further statistical analysis
of the sample composition required a single-object segmentation achieved by
employing a skeletonization scheme. This resulted in individually segmented
fibrils for which we then computed various properties of shape and texture. In
agreement with the attempt to manually classify different fibril morphologies,
a high variability of the properties with no clear multi-modal distribution was
observed, rendering an easy classification infeasible. However, insofar as manu-
ally measured values were available, the validation of the computed properties
corroborated the reliability of the proposed method.
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