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Abstract

The performance and durability of lithium-ion batteries are highly de-
pendent on the microstructures of their components. Recently, methods
have been developed that make possible the simulation of electrochem-
ical processes on 3D representations of lithium-ion batteries. However,
it is difficult to obtain realistic microstructures on which these simula-
tions can be carried out. In this paper, we develop a stochastic model
that is able to produce realistic microstructures of lithium-ion battery
anodes, which can serve as input for the simulations. We introduce the
use of Gaussian random fields on the sphere as models for the particles
that form the anodes. Using this new approach, we are able to model
realistic particle geometries. The stochastic model also uses a number
of techniques from stochastic geometry and spatial statistics. We carry
out validation of our model, in order to demonstrate that it realistically
describes the key features of the anode’s microstructure.

Keywords: Stochastic 3D microstructure modeling, Lithium-ion cell
anodes, Gaussian random fields, Spherical harmonics;

1. Introduction

Lithium-ion batteries used in electric vehicles need to fulfill a number of
requirements. They should charge quickly, especially at low temperatures, be
highly durable under a wide range of climatic conditions, and provide sufficient
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energy storage capabilities for long driving ranges [1]. A number of challenges
remain, however, in satisfying these requirements. These are largely due to the
complex nature of the batteries’ microstructures. For example, lithium plating
can occur at low temperatures; see [2, 3, 4, 5]. This is caused by the slow
transport of lithium ions in the electroyte and bulk material, which is a direct
result of the geometry of the microstructure; see [6, 7]. Cyclic aging is also
related to the microstructure; see, e.g., [8, 5, 9]. The influence of different
operating conditions on cell degradation has been studied using electrochemical
principles; see, e.g., [10, 7]. Much of this research has made use of 1D or
pseudo-2D models developed by Newman and co-workers [7]. For example,
aging has been studied in [11] and lithium plating has been studied in [10] and
[12]. However, these models do not fully take into account the importance of the
microstructure and use only averaged structural characteristics like tortuosity,
volume fraction and mean particle radius. Recent research, however, shows that
the microstructure plays a key role in determining functional characteristics of
the material; see, e.g., [13, 14].

Recently, significant advances have been made in the simulation of electro-
chemical processes in 3D models of lithium-ion batteries [15, 16, 6, 17, 18].
Using these simulations, it is possible to carry out detailed studies of the rela-
tionships between the morphologies of battery materials and their corresponding
transport behaviors. This approach has proven very effective in studying other
energy materials, such as fuel cells; see, e.g., [19, 20]. Important processes such
as degradation can also be investigated and connected to the properties of the
materials. A limitation of these simulation based approaches, however, is that
it is very difficult to obtain realistic 3D microstructure models to use as in-
put. This is because the small scales make 3D imaging of sufficiently large and
representative material samples very difficult; see [21, 22, 23, 24, 25]. In addi-
tion, it would be desirable to investigate realistic microstructures that do not
correspond to materials that have already been physically produced [26].

Stochastic modeling has proved to be a very effective method of producing
realistic microstructures without the need for microscopy or computationally
expensive physics-based simulations; see, e.g., [27, 28, 29, 30, 31, 32, 33, 34, 35].
Stochastic models have also been successfully coupled with numerical simula-
tions; see, e.g., [28, 36, 37]. Using fast and flexible stochastic models, it is then
possible to investigate the relationships between microstructure characteristics
and material functionality [38].

In this paper, we develop a stochastic model for the microstructure of lithium-
ion battery anodes, which consists of a network of connected graphite particles.
The model uses a number of techniques from stochastic geometry and spatial
statistics; see, e.g., [39, 40, 41]. As a major innovation, it introduces the use of
Gaussian random fields on the sphere to model particle shapes. In most standard
approaches, particles are described by simple geometric objects such as balls and
ellipsoids. However, the particles we consider are not adequately described by
such shapes [42, 43]. Using spherical harmonics expansions of Gaussian ran-
dom fields, we are able to represent particles with much more complex shapes
[44, 42].
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(a) Grayscale image. (b) Binary image. (c) Segmented image.

Figure 1: 2D cutout of experimental data.

Our stochastic model uses a random tessellation to roughly describe the
shape, size and position of the particles. A random graph is then used to
describe how the particles connect with one another, in order to replicate the
connectivity structure of the material itself. Using the tessellation and the
connectivity graph, the particles themselves are produced. We exploit properties
of Gaussian random fields to force the particles to connect in the desired manner.
In the final step, the structure is morphologically smoothed to resemble the
empirical microstructures as closely as possible.

The paper has the following structure. We first briefly describe the material
and the methods by which we image it and extract its microstructure. We then
describe the stochastic model itself. Afterward, we carry out validation of the
model, by considering a number of important microstructure characteristics. In
the last section, we provide a summary of the paper and describe future research
that we will carry out.

2. Experimental data

The experimental data in this paper consists of four samples that are ex-
tracted from a large scale lithium-ion battery used in automotive applications.
The cell did not contain electrolyte in order to ensure that the microstructure
of the anode was not altered by electrical operation. The cell was disassembled
and four samples were extracted from different positions and layers in the cell.
This was done to ensure that the samples were as reflective as possible of the
material’s structure; see [23]. The obtained image data is shown in Figure 1
alongside the binarized and segmented versions.

2.1. Description of samples & imaging technique
The 3D data sets were created at the Synchrotron X-ray imaging facility

BAMLine at BESSY (Berlin, Germany). The setup consists of a PCO4000
detector system with 4008× 2672 pixels and an optical system (Optique Peter)
with a CWO scintillator screen that was used to convert X-rays into visible light.
An X-ray energy of 19 keV was used. The pixel size was about 0.44 µm2. During
the tomographic measurement, 2200 single radiographic projections were taken
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at equidistant angles over a range of 180°. A filtered back-projection algorithm
was used for 3D data reconstruction.

Details on the measurement and on the sample preparation method that was
used to minimize the differences in the samples induced by varying measurement
conditions are described in [23]. After imaging and reconstruction, the sample
data is in the form of four 3D images, each 2097× 828× 119 voxels. Each voxel
has a grayscale value, which ranges from 0 to 255.

2.2. Structural segmentation
A graphite electrode comprises a fully connected network of particles. In

order to extract information about the individual particles from the image data,
we carry out a structural segmentation procedure consisting of four steps: (1) we
binarize the original grayscale image; (2) we remove holes within the particles;
(3) we remove irregularities such as parts extruding from the surfaces of the
particles; (4) we segment the image into separate particles using a watershed
procedure.

In the binarization step, we allocate each voxel to either the solid (graphite)
phase or to the pore space. We first apply a Gaussian filter with σ = 1.0 in
order to reduce the noise in the image data. We then use a global threshold to
produce a binarized image. More precisely, every voxel with a grayscale value
greater than or equal to 32 is assigned to the solid phase and every voxel with
a value less than 32 is assigned to the pore phase; see [45] for more details. The
threshold value is chosen to reproduce the volume fraction of the solid phase,
which is known to be 73% for this material.

In the second step, we remove holes within the solid phase in order to avoid
over-segmentation which would otherwise occur; see [46]. These holes are mainly
caused by artifacts in the imaging and thresholding procedures. The particles
themselves should not contain holes. We remove the holes using a Hoshen-
Kopelman clustering algorithm (see [47]) on the pore phase of the thresholded
image. Every cluster consisting of less than 5000 pore space voxels is removed by
relabeling all the member voxels as belonging to the solid phase. The threshold
of 5000 was chosen to ensure that hollow regions within particles were removed,
but isolated pores still remained.

We then remove regions where the pore space intrudes significantly into
the particles. The procedure is as follows. We generate a one voxel thick
skeletonization of the pore phase. The skeleton, S1, is generated using Lee
thinning [48]. The ‘dead-end’ branches of S1, which are only connected at one
end, represent intrusions into the solid phase. We generate a second skeleton,
S2, which is simply S1 with the ‘dead-end’ branches removed. We remove the
intrusions by reassigning to the solid phase all voxels in the pore space that are
closer to S1 than S2.

In the last step, the four binary images are segmented into disjoint parts,
with each part containing only one particle. The segmentation is performed for
each binary image using a marker watershed algorithm as in [49, 50]. In order
to calculate the positions of the markers, we first calculate a distance transform
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Figure 2: Schematic depiction of the stochastic model. 1. A random
tessellation is produced, which roughly determines the particle shapes, sizes

and locations. 2. A random graph describes how the particles connect. 3. The
connected particles are produced using Gaussian random fields on the sphere.
4 and 5. The connected particles are retained and morphological smoothing is

carried out.

of each binary image. This results in a transformed image, D, where each voxel
is assigned its (minimum) distance from the pore phase, with voxels belonging
to the pore phase being assigned a value of 0. We then consider the reflection
of the distance transformed image, D̃ = −D. For each image, we take the local
minima of D̃ as potential markers to use in the watershed transform. However,
because there is still a risk of over-segmentation — due, for example, to slightly
cracked particles — we take only a subset of these local minima as markers,
using the method described in [51]. The segmentation is then performed on the
distance transformed image D̃ using this subset of markers.

3. Stochastic 3D model of the microstructure

We model the solid phase of the anode using a connected network of irreg-
ular particles. The modeling procedure consists of four distinct steps: (1) the
positions of the particles are determined using a random tessellation; (2) a graph
is generated, conditional on the tessellation, that describes the connectivity be-
tween particles; (3) the particles themselves are modeled as Gaussian random
fields on the sphere, whose properties depend on the tessellation and connection
graph; and, (4) morphological smoothing is performed on the simulated particle
system. A schematic description of the modeling procedure is shown in Figure 2.
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Figure 3: A Laguerre diagram fitted to a 2D cutout of the experimental data
set. The generating particles are also shown.

3.1. Determining the locations of the particles
The particles in the material are densely packed, with a volume fraction of

73%. In order to ensure that the stochastic model produces similarly dense
configurations, we use a random tessellation to partition the space into cells.
We then place a particle in each cell. The size and shape of each particle is
largely determined by the geometry of its corresponding cell. In particular, the
expected volume of a particle is equal to 73% of the corresponding cell’s volume.
In this manner, we are able to achieve tightly packed configurations of particles
with realistic volume fractions. As it transpires, random tessellations based on
Laguerre diagrams can describe the shape, size and location of the particles very
well.

A Laguerre diagram in the d-dimensional Euclidean space Rd (in particular,
for d = 2 and d = 3) is defined by a sequence of marked points, ϕ = {(xi, ri)},
where the xi ∈ Rd and the ri ∈ [0,∞). It partitions the space Rd into cells such
that the cell associated with the jth marked point, (xj , rj), is given by

Cj = C((xj , rj), ϕ) = {y ∈ Rd : dL(y, (xj , rj)) ≤ dL(y, (x′, r′)), (x′, r′) ∈ ϕ},

where dL(y, (x, r)) = ‖y− x‖2− r2, with ‖ · ‖ the Euclidean norm in Rd. Under
suitable regularity conditions on ϕ (see [52]), this will define a tessellation. For
more details on Laguerre tessellations, see [52, 53].

When describing the empirical data using a Laguerre diagram, an obvious
choice of the xi is the centroids of the particles. Likewise, the ri can be taken
to be the equivalent radii of the particles. That is, the radii of spheres with the
same volumes. Figure 3 shows a 2D cutout of a Laguerre diagram fitted to one
of the empirical data sets. Note that the sizes and shapes of the particles are
closely related to the geometry of their corresponding cells.
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Figure 4: Generating the random tessellation. 1. The marked point process is
generated. 2. The tessellation is generated by the marked points. 3. The

points are discarded and the tessellation is retained.

A random tessellation in R3 with properties very close to those of the tes-
sellations produced by the empirical data can be produced using a version of a
random sequential adsorption (RSA) process (see [39] and [41] for details). This
results in a random marked point process, ϕ, which is generated sequentially
in a bounded window, W ⊂ R3, using an acceptance-rejection approach. This
continues until a stopping condition is met. The procedure is as follows:

1. Set ϕ = ∅.

2. Generate a proposal point, (x̃, r̃ ), with x̃ distributed uniformly in W and
r̃ sampled from a gamma distribution with shape parameter α and rate
parameter β.

3. Add the point (x̃, r̃ ) to the point set ϕ if the ball centered at x̃ with radius
r̃ does not overlap with the ball of any point already in ϕ. That is, set
ϕ = ϕ ∪ {(x̃, r̃ )} if

⋃

(x′,r′)∈ϕ

(Br̃(x̃) ∩Br′(x′)) = ∅,

where Br(x) = {y ∈ R3 : ‖y − x‖ < r} with ‖ · ‖ the Euclidean norm.

4. If the fraction of W covered by the balls is larger than vf or there is no
possibility to add another ball with minimal radius rl without overlapping
the balls of existing points, then stop. Otherwise, repeat from step 2.

The RSA process has three parameters: α, β and vf . These are chosen
so that the resulting tessellations resemble the tessellations extracted from the
empirical data as closely as possible. We consider a vector q = (q1, . . . , q6) of
tessellation characteristics: q1, the mean volume of the cells; q2, the variance
of the volumes of the cells; q3, the mean surface area of the cell faces; q4, the
variance of the surface areas of the cell faces; q5, the mean number of faces
of each cell; and q6, the variance of the mean numbers of faces of each cell.
We estimate these characteristics for each of the four empirical data sets. We
then take pointwise averages to get an estimate of the empirical tessellation
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Figure 5: A graph showing how particles are connected to one another in one
of the empirical data sets.

characteristics, q̂E . In order to calculate the corresponding characteristics for
the point process with parameter constellation (vf , α, β), we first produce a
realization of the marked point process with these parameters in a window
W = [0, 2000]× [0, 2000]× [0, 120]. We then estimate the characteristics of the
tessellation produced by this point process, resulting in a vector q̂ (vf ,α,β). The
parameters of the RSA process are chosen to minimize the cost function

L(vf , α, β) =

√√√√
6∑

i=1

(
q̂Ei − q̂

(vf ,α,β)
i

q̂Ei

)2

.

The minimization is carried out using the Nelder-Mead algorithm, with ini-
tial parameters v0f = 0.230, α0 = 2.217 and β0 = 0.312. The initial pa-
rameters were chosen using a preliminary optimization step, where the RSA
process parameters were fitted to key characteristics of the empirical marked
point patterns. The final parameters for the tessellation model are given by
(v̂f , α̂, β̂) = (0.231, 2.329, 0.1988). The procedure for generating the random
tessellation is illustrated in Figure 4. Note that the RSA process is subject to
edge effects. However, these can be removed by, e.g., plus sampling; see [39].

3.2. Connectivity Graph
The particles in the anode form a connected system. The connectivity re-

lations of the empirical data sets are extracted by treating two particles as
connected if voxels from one particle directly neighbor voxels from the other
particle. Figure 5 shows a graph of the connectivity relationship in one of the
samples. It is clear that the particles are connected in a highly complex man-
ner. We model the connectivity relations using a random graph, Gc = (Vc, Ec);
see also [54, 55]. The vertices of the graph, Vc, correspond to the cells of the
Laguerre tessellation generated above. The edges of the graph, Ec, designate
which particles will be connected to one another. For this reason, we only allow
edges to be placed between vertices whose corresponding tessellation cells have
a common face.

8



0.2

0.3

0.4

0.5

0.6

0.7

0 200 400 600
A

̂̀ (A
)

Figure 6: Estimate of ̂̀(A), the probability two particles with a separating
tessellation face of area A are connected. Black: estimated probability ̂̀(A);

blue: approximating function given in (3.1).

In order to ensure that the particles form a single connected component, we
use a minimal spanning tree as the basis of the connectivity graph. We generate
the minimal spanning tree as follows. We consider the graph containing every
possible edge (i.e., where all neighboring particles are connected to one another).
For each pair of vertices, i and j, such that there is a possible edge, we weight
the edge by 1/Ai,j , where Ai,j is the surface area of the face of the tessellation
separating the two corresponding cells. We then calculate the minimal spanning
tree of this weighted graph, resulting in a fully connected graph with a small
number of edges.

We add additional edges to Gc so that the connectivity structure resembles
that of the material. To do this, we consider each potential edge separately.
It turns out that the probability of two neighboring particles, i and j, being
connected is directly related to Ai,j . Figure 6 shows an estimate, ̂̀(A), of the
probability two particles are connected given the surface area of the face of the
tessellation separating them is A. This is a conditional probability of the form

`(A) = P (particles i and j are connected |Ai,j = A) .

The probability is estimated from the data using the estimator

̂̀(A) =
f̂ (Ai,j = A |particles i and j are connected)

f̂(Ai,j = A)
· NC
NT

,

where NC is the number of pairs of connected particles in the experimental
tessellations, NT is the total number of faces in the experimental tessellations,
and f̂(B) is a kernel density estimate of the density of faces with property B.
Choosing an appropriate approximating function, we have

`(A) ≈ min(c1A
3 + c2A

2 + c3A+ c4, 1). (3.1)
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Figure 7: Generating the particle network. Left: particles are created by
simulating Gaussian random fields on the sphere inside each tessellation cell.
Right: as the particles are simulated, they are forced to connect according to

the graph Gc (shown in blue).

The coefficients of the polynomial are fitted via non-linear least squares using
the Gauss-Newton algorithm, obtaining c1 = 1.714 · 10−9, c2 = −3.133 · 10−6,
c3 = 2.140 · 10−3 and c4 = 1.897 · 10−1. Figure 6 shows the approximating
function gives an excellent fit to ̂̀(A).

3.3. Generating the particles
Given the tessellation and the connection graph, we are able to generate the

particle network itself. We first place a particle inside each cell of the tessel-
lation. The individual particles are realizations of isotropic Gaussian random
fields on the sphere. We use Gaussian random fields as they provide enor-
mous flexibility in modeling particle shapes, are easily implemented, and can
be adapted to produce a network of connected particles. We consider random
fields, ψ : [0, π] × [0, 2π) → R, that are completely characterized by a mean
radius, µ, and an angular power function, A : [0,∞) → [0,∞). The value
ψ(θ, φ) describes the distance from the centroid of a particle to its surface in
direction (θ, φ). The mean radius controls the size of a particle and the angular
power function controls its shape. We choose a common angular power function
to describe the shape of all the particles and mean radii that ensure the par-
ticle system has the desired volume fraction. Approximate realizations of the
Gaussian random fields are then generated by simulating multivariate normal
random vectors. We are able to use the properties of the multivariate normal
distribution, combined with the information from the connectivity graph, Gc,
to ensure that the particles are connected as desired. The basic idea of this step
of our modeling approach is illustrated in Figure 7. Note that, although it is
possible that the Gaussian random field may take negative values, we choose
the coefficients of our model so that this occurs with negligible probability. If,
by chance, a random field with negative values is generated, we discard it and
generate a new particle.
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3.3.1. Isotropic Gaussian random fields on the sphere
For l ∈ {0, 1, . . .} and m ∈ {0, 1, . . . , l}, we define the spherical harmonic

function, Yl,m : [0, π]× [0, 2π)→ C, by

Yl,m(θ, φ) =

√
2l + 1

4π

(l −m)!

(l +m)!
Pl,m(cos(θ))eimθ, l ∈ {0, 1, . . .}, m ∈ 0, 1, . . . , l,

where Pl,m(u) is the associated Legendre function; see [56]. The angular power
function defines an angular power spectrum, (Al)

∞
l=0, by Al = A(l) for l ∈

{0, 1, . . .}. An isotropic Gaussian random field on the sphere, ψ, with mean
radius µ and angular power spectrum (Al)

∞
l=0, can be represented in terms of

spherical harmonic functions by the infinite sum

ψ(θ, φ) =

∞∑

l=0

[
al,0Yl,0(θ, φ) + 2

l∑

m=1

[Re (al,m)Re (Yl,m(θ, φ)) + Im (al,m) Im (Yl,m(θ, φ))]

]
,

(3.2)
where

a0,0 ∼ N (µ,A0) , al,0 ∼ N (0, Al) for l > 0,

and

Re (al,m) ∼ N (0, Al/2) and Im (al,m) ∼ N (0, Al/2) for l,m > 0;

see [56]. In practice, we truncate (3.2) so that we have

ψ(θ, φ) ≈
L∑

l=0

[
al,0Yl,0(θ, φ) + 2

l∑

m=1

[Re (al,m)Re (Yl,m(θ, φ)) + Im (al,m) Im (Yl,m(θ, φ))]

]
.

We can then write the al,0, l ∈ {1, . . . , L} and the real and imaginary compo-
nents of al,m, m ∈ {1, . . . , l}, l ∈ {1, . . . , L}, in a vector as

a = (a0,0, a1,0,Re (a1,1) , Im (a1,1) , a2,0,Re (a2,1) , Im (a2,1) ,Re (a2,2) , . . . , Im (aL,L))
ᵀ
,

(3.3)
with a ∼ N (µ,Σ), where µ = (µ, 0, . . . , 0) and

Σ = diag (A0, A1, A1/2, A1/2, A2, A2/2, A2/2, A2/2, . . . , AL/2, AL/2) .

We will denote the components of a by a1, . . . , aM , where M = (L + 1)2. The
spherical harmonics functions can also be written in vector form as

y(θ,φ) = (Y0,0(θ, φ), Y1,0(θ, φ), 2 · Re (Y1,1(θ, φ)) . . . , 2 · Re (YL,L(θ, φ)) , 2 · Im (YL,L(θ, φ)))
ᵀ
,

with the components of y(θ,φ) denoted by y(θ,φ)1 , . . . , y
(θ,φ)
M . The Gaussian ran-

dom field, ψ, is thus approximated by

ψ(θ, φ) ≈ aᵀy(θ,φ) =

M∑

k=1

y
(θ,φ)
k ak. (3.4)

Using this formulation, we can simulate an approximation of an isotropic Gaus-
sian random field on the sphere by generating a multivariate normal random
vector of length M . For all numerical calculations in this paper we use L = 14.
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Figure 8: The fitted angular power function. Black points: empirical estimates
of the angular power spectrum; red line: estimated angular power function.

3.3.2. Determining the angular power function
The shapes of the particles are determined by the angular power function

A : [0,∞) → [0,∞). Because we use truncations to approximate the Gaussian
random fields by sums involving onlyM terms, we wish to use an angular power
function that is able to describe the shapes of the particles in the experimental
data but also goes to zero quickly. A suitable choice is a rational function of
the form

A(l) =
al + b

l2 + cl + d
. (3.5)

In order to fit this function, we consider every particle in the four experimental
samples. For each particle, we compute the vector of coefficients given in (3.3).
This is done using the procedure introduced in [42]. By calculating the sample
variances of appropriately scaled versions of these coefficients, we get estimates,
Â0, . . . , ÂM of A0, . . . , AM . We then find the coefficients of (3.5) via non-linear
least squares using the Levenberg-Marquard algorithm; see [57]. The estimated
coefficients are a = 0.4241, b = 0.356, c = −3.858 and d = 3.903 with R2 = 0.98.
Figure 8 shows the estimated angular power function. Note that it decays to
zero quickly, justifying our use of the truncated sum, (3.4), to simulate the
Gaussian random fields.

3.3.3. Describing individual particles by Gaussian random fields
We use the same angular power function for each particle. However, every

individual particle has a centroid and a mean radius that are determined by the
geometry of the corresponding cell in the tessellation generated in Section 3.1.
For the ith particle, we choose the centroid, ci, to be the barycenter of all the
vertices of its cell Ci.

In order to sufficiently control the volume of the particles so as to ensure that
the volume fraction of the particle system is correct, it is necessary to replace
the normally distributed first spherical harmonic coefficient, a1, by a constant.
This constant is calculated by noting that the expected volume of a particle,
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Figure 9: The points on the face of a tessellation cell that the random field
must touch.

when using the angular power function determined in Section 3.3.2, is given by

EV ≈ 0.09403a31 + 4.34444a1.

We select the a1 value for each particle to be such that the expected volume
of the particle is 0.73ρ of the volume of its corresponding cell in the Laguerre
tessellation, where ρ is an adjustment factor introduced to compensate for the
effects of morphological smoothing and particles overlapping. Using the mini-
mum contrast method, this factor was found to be 0.9251.

3.3.4. Determining the constraints on the particle shapes
We are able to generate particles with the desired shapes and locations using

the specified angular power function, mean radii and particle centroids. How-
ever, the particles will not be connected to each other in the manner described
by Gc. We resolve this issue by first determining, for each particle, a set of points
that it should touch. These points translate into constraints on the spherical
harmonics coefficients, which ensure points connect in the manner we intend.

We determine the points that the ith particle must touch as follows. We
consider the set Ni = {j ∈ Vc : i 6= j, (i, j) ∈ Ec}. This represents the particles
with which the ith particle should connect, as determined by Gc. Corresponding
to each of these particles is a face in the Laguerre tessellation. Let Fi,j be the face
in the tessellation separating particles i and j. For each Fi,j , j ∈ Ni, we define a
set of points the particle must touch. We place points a fixed proportion, 0.15,
of the distance from the centroid of Fi,j to each of its vertices. This procedure
is illustrated in Figure 9. We then express these points in spherical coordinates,
(θ, φ, r), with the origin being the centroid of the ith Laguerre cell. Thus, for
the ith particle, we get a sequence of points, (θ1, φ1, r1), . . . , (θni , φni , rni), that
the particle must touch.
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3.3.5. Generating the particles conditional on the constraints being satisfied
We generate each particle’s spherical harmonics coefficient vector, a, from a

multivariate normal distribution conditioned on the points (θ1, φ1, r1), . . . , (θni
, φni

, rni
)

being touched. Using (3.4), we can write each of the constraints as a linear equa-
tion

M∑

k=1

y
(θj ,φj)
k ak = rj , j = 1, . . . , ni.

Because we treat a1 as constant for each particle, we rewrite this equation with
only random quantities on the left hand side, to get

M∑

k=2

y
(θj ,φj)
k ak = rj − a1Y

(θj ,φj)
1 , j = 1, . . . , ni.

Writing this system of equations in matrix form, we obtain

Y · ã = r̃, (3.6)

where ã ∼ N
(
0, Σ̃

)
, with Σ̃ = diag (A1, A1/2, . . . , AL/2). The matrix Y admits

the singular value decomposition Y = USV ᵀ, where U and V are orthogonal
matrices and S = diag (σ1, . . . , σs, 0, . . . , 0), with s = rk(Y ) and σ1, . . . , σs
the singular values of Y . Using the singular value decomposition, we rewrite
(3.6) as USV ᵀã = r̃ which allows us to write SV ᵀã = Uᵀr̃, with V ᵀã ∼
N (µV ᵀã,ΣV ᵀã). The boundary conditions can then be written as

(V ᵀã)i = σ−1i Uᵀr̃, i = 1, . . . , s.

Thus, we can impose the boundary conditions by drawing (V ᵀã)Mi=s+1 from a
N (µV ᵀã,ΣV ᵀã) distribution conditional on {(V ᵀã)1 = σ−11 Uᵀr̃, . . . , (V ᵀã)s =
σ−1s Uᵀr̃ }. Having generated the random vector, V ᵀã, which is conditioned
on the boundary conditions being satisfied, we obtain the vector of spherical
harmonics coefficients, a, by setting a = V V ᵀã.

3.4. Morphological Smoothing
The particles in the material are actually encased in a thin layer of binder.

However, the volume fraction of this binder is too small to be modeled directly.
Instead, we carry out morphological smoothing, which mimics this effect. In
particular, it smooths the sharp edges around particle connections. The mor-
phological smoothing is performed using a ball with radius 1 as the structuring
element, where the union set of particles is first dilated, then eroded. For more
details on the procedure, see [58].

4. Validation

Figure 10 shows 2D and 3D cutouts from the experimental data alongside
cutouts from a realization of the stochastic model. On the surface, the experi-
mental and simulated microstructures appear to have very similar characteris-
tics. In order to ensure that these characteristics are indeed sufficiently close, we
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(a) 2D cutout of the experimental
data.

(b) 2D cutout of a simulated struc-
ture.

(c) 3D cutout of the experimental
data.

(d) 3D cutout of a simulated struc-
ture.

Figure 10: 2D and 3D cutouts of the experimental and simulated
microstructures.
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Experimental Simulated Relative Error
Volume Fraction 0.734 0.732 0.225 %

Specific Surface Area (voxel−1) 303842.2 299305 1.493 %
Mean Tortuosity of Pore Space 1.577 1.569 0.517 %

Table 1: Characteristics describing the particle system.
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Figure 11: The spherical contact distribution functions for the experimental
and stochastic microstructures. Red: experimental; blue: simulated.

carry out an extensive validation. We compare a number of key characteristics
of the microstructures produced by the stochastic model with those of the struc-
tures extracted from the empirical data. All the characteristics we consider are
estimated directly from binary images of dimension 500×500×119. In the case
of the experimental data, 50 such images are sampled uniformly from the larger
images. In the case of the stochastic model, 50 realizations of the stochastic
model are generated in windows of the appropriate size.

The characteristics we consider include both standard characteristics used
in the evaluation of microstructures, see, e.g., [39, 41], and characteristics that
play key roles in determining the functionality of lithium-ion batteries; see, e.g.
[33, 34]. We first compute characteristics for the solid phase. Then, we consider
characteristics for the pore phase, as these play an important role in determining
the transport properties of the material.

4.1. Characteristics of the solid phase
We begin by considering a number of first order characteristics describing

the microstructure the particle system. These are given in Table 1. The average
volume fraction of the simulated particle systems is, as expected, close to that
observed in the experimental data. Likewise, the specific surface areas of the
particle systems are very similar. The mean tortuosities of paths through pores
of the particle network are also very close to one another.
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(b) Chord length in y-
direction
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(c) Chord length in z-
direction

Figure 12: Chord length distribution functions in the x, y and z directions.
Red: experimental; blue: simulated.

A more detailed description of the geometry of the solid phase is given by
the spherical contact distribution function. This gives the probability that the
distance from a randomly chosen voxel of the pore space to a voxel of the
solid phase is less than or equal to a given number; see [39] for more details.
Figure 11 shows the spherical contact distribution functions of the solid phase
for the simulated and experimental microstructures.

Chord length distribution functions are also important characteristics. A
chord length distribution function is computed as follows. Straight lines with a
fixed direction (e.g., parallel to the x-axis) are intersected with the solid phase.
The chord length distribution function is the cumulative distribution function of
the lengths of the resulting intersections. Figure 12 shows the chord length dis-
tribution functions for lines parallel to the x, y and z axes. All three functions
are essentially identical, indicating that both the material and the stochastic
model are isotropic, as expected. The chord length distribution functions of the
experimental microstructures and the microstructures produced by the stochas-
tic model are very close to one another.

As discussed in Section 3.2, the connectivity structure of the particle system
is complex and difficult to model. In order to evaluate our success in this
respect, we extract connectivity graphs from the experimental samples and the
realizations of the stochastic model. We then consider the distributions of the
coordination numbers of these graphs. The connectivity graphs are extracted
from the binary images by skeletonizing the solid phases using the technique
described in [48]. Each skeleton is then converted into a graph as follows. All
voxels of the skeleton with more than two neighbors are treated as vertices of
the graph. Likewise, all voxels with only one neighbor are treated as vertices.
Two vertices are connected by an edge if they can be connected by voxels in the
skeleton without passing through another vertex. The degree of a vertex is the
number of neighboring vertices. The distributions of the coordination numbers
are shown in Figure 13. Note the similarity between the distributions for the
stochastic model and the experimental samples.
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Figure 13: Distribution functions of coordination numbers of the connectivity
graph. Red: experimental; blue: simulated.

4.2. Characteristics of the pore phase
The geometry of the pore space of the material plays an important role

in determining the material’s functionality, as the transport of lithium ions
takes place in the pores. We consider two characteristics of the pore space
that are related to transport properties of the lithium-ion anode: the pore size
distribution and the distribution of local tortuosities.

The pore size distribution describes the proportion of the pore phase that
can be covered by spheres with a given radius. The pore size distributions of the
experimental and simulated microstructures are shown in Figure 14. One can
see that the curves differ for pores larger than 4 voxels. However, this difference
is not too important, as local tortuosity, which we consider next, plays a far
greater role in determining the transport behavior of a structure [54, 55].

The local tortuosity of the pore space of a material, defined in [54], is a
characteristic describing the tortuosity of a path through the pore space from a
point on the surface of the material to the closest point on the opposite surface.
It is calculated by first skeletonizing the pore space. The shortest path from
the point on the surface through the graph to a point on the opposite face
is then calculated. If the point is not inside the pore space, the path travels
along the surface of the material until it reaches the pore phase. The local
tortuosity is then given by the ratio of the shortest path length to the shortest
Euclidean distance from the point to the opposite surface. We consider the
local tortuosities of points placed uniformly on the surfaces of the materials.
The probability densities of these local tortuosities are shown in Figure 15.
The tortuosity distributions of the experimental and simulated microstructures
show strong accordance with one another. This indicates that the functional
properties of the output of the stochastic model should resemble the functional
properties of the actual materials quite closely.
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Figure 14: Pore size distributions. Red: experimental; blue: simulated.
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Figure 15: Probability densities of local tortuosities. Mean values are
indicated by the dark lines and the ranges between the 0.05 and 0.95 quantiles

are shown in lighter colors. Red: experimental; blue: simulated.
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5. Summary & Outlook

In this paper, we introduced a stochastic 3D model for the microstructure
of lithium-ion battery anodes. Such anodes consist of a network of connected
graphite particles. The data basis for our model was four 3D images of samples
extracted from a lithium-ion battery. The model itself consists of four steps. In
the first step, a random tessellation is produced which roughly determines the
shape and size of the particles. In the second step, a random graph is generated.
This graph describes how the particles connect with one another. In the third
step, the particles themselves are generated. We do this using a novel approach,
based on Gaussian random fields on the sphere. In the final step, the resulting
microstructure is smoothed in order to ensure that it realistically models the
material.

The stochastic model was developed in order to produce a large number of
virtual, but realistic, microstructures by systematic modification of model pa-
rameters. In the next stage of our research, electrochemical simulations will be
carried out on these microstructures, in order to understand the relationships
between various microstructure characteristics and the functionality of the ma-
terial. Additionally, we will consider a number of microstructures produced
using different production parameters. We will fit our model to these structures
and investigate the relationship between production parameters and model pa-
rameters. This will ultimately allow us to carry out virtual materials design,
where simulated structures are generated for a wide spectrum of production pa-
rameters and investigated in order to identify optimal production parameters.

Acknowledgement

This work was partially funded by BMBF under grant number 05M13VUA
in the programme “Mathematik für Innovationen in Industrie und Dienstleis-
tungen”.

20



[1] A. Barré, B. Deguilhem, S. Grolleau, M. Gérard, F. Suard, D. Riu, A review
on lithium-ion battery ageing mechanisms and estimations for automotive
applications, Journal of Power Sources 241 (2013) 680–689.

[2] P. Arora, R. E. White, M. Doyle, Capacity fade mechanisms and side
reactions in lithium-ion batteries, Journal of the Electrochemical Society
145 (10) (1998) 3647–3667.

[3] M. Broussely, P. Biensan, F. Bonhomme, P. Blanchard, S. Herreyre,
K. Nechev, R. J. Staniewicz, Main aging mechanisms in Li ion batteries,
Journal of Power Sources 146 (1) (2005) 90–96.

[4] J. Fan, S. Tan, Studies on charging lithium-ion cells at low temperatures,
Journal of the Electrochemical Society 153 (6) (2006) A1081–A1092.

[5] J. Vetter, P. Novak, M. R. Wagner, C. Veit, K.-C. Möller, J. O. Besen-
hard, M. Winter, M. Wohlfahrt-Mehrens, C. Vogler, A. Hammouche, Age-
ing mechanisms in lithium-ion batteries, Journal of Power Sources 147 (1)
(2005) 269–281.

[6] A. Latz, J. Zausch, Thermodynamic consistent transport theory of Li-ion
batteries, Journal of Power Sources 196 (6) (2011) 3296–3302.

[7] J. Newman, K. E. Thomas, H. Hafezi, D. R. Wheeler, Modeling of lithium-
ion batteries, Journal of Power Sources 119 (2003) 838–843.

[8] A. F. Bower, P. R. Guduru, V. A. Sethuraman, A finite strain model of
stress, diffusion, plastic flow, and electrochemical reactions in a lithium-
ion half-cell, Journal of the Mechanics and Physics of Solids 59 (4) (2011)
804–828.

[9] X. Zhang, W. Shyy, A. M. Sastry, Numerical simulation of intercalation-
induced stress in Li-ion battery electrode particles, Journal of the Electro-
chemical Society 154 (10) (2007) A910–A916.

[10] P. Arora, M. Doyle, R. E. White, Mathematical modeling of the lithium
deposition overcharge reaction in lithium-ion batteries using carbon-based
negative electrodes, Journal of the Electrochemical Society 146 (10) (1999)
3543–3553.

[11] B. Y. Liaw, R. G. Jungst, G. Nagasubramanian, H. L. Case, D. H. Doughty,
Modeling capacity fade in lithium-ion cells, Journal of Power Sources
140 (1) (2005) 157–161.

[12] S. Tippmann, D. Walper, B. Spier, W. G. Bessler, Low-temperature charg-
ing of lithium-ion cells. Part I: Electrochemical modeling and experimental
investigation on degradation behavior, Journal of Power Sources 252 (2014)
305–316.

21



[13] C.-F. Chen, P. P. Mukherjee, Probing the morphological influence on solid
electrolyte interphase and impedance response in intercalation electrodes,
Physical Chemistry Chemical Physics 17 (15) (2015) 9812–9827.

[14] S. Cho, C.-F. Chen, P. P. Mukherjee, Influence of microstructure on
impedance response in intercalation electrodes, Journal of the Electrochem-
ical Society 162 (7) (2015) A1202–A1214.

[15] S. Cooper, D. Eastwood, J. Gelb, G. Damblanc, D. Brett, R. Bradley,
P. Withers, P. D. Lee, A. Marquis, N. P. Brandon, P. R. Shearing, Image
based modelling of microstructural heterogeneity in LiFePO4 electrodes for
Li-ion batteries, Journal of Power Sources 247 (2013) 1033–1039.

[16] S. J. Harris, P. Lu, Effects of inhomogeneities - nanoscale to mesoscale -
on the durability of Li-ion batteries, The Journal of Physical Chemistry C
117 (13) (2013) 6481–6492.

[17] A. Latz, J. Zausch, O. Iliev, Modeling of species and charge transport in
Li–ion batteries based on non-equilibrium thermodynamics, in: I. Dimov,
S. Dimova, N. Kolkovska (Eds.), Numerical Methods and Applications, Vol.
6046 of Lecture Notes in Computer Science, Springer, 2011, pp. 329–337.

[18] V. Ramadesigan, P. W. Northrop, S. De, S. Santhanagopalan, R. D. Braatz,
V. R. Subramanian, Modeling and simulation of lithium-ion batteries from
a systems engineering perspective, Journal of the Electrochemical Society
159 (3) (2012) R31–R45.

[19] S. H. Kim, H. Pitsch, Reconstruction and effective transport properties of
the catalyst layer in PEM fuel cells, Journal of the Electrochemical Society
156 (6) (2009) B673–B681.

[20] N. Siddique, F. Liu, Process based reconstruction and simulation of a three-
dimensional fuel cell catalyst layer, Electrochimica Acta 55 (19) (2010)
5357–5366.

[21] D. Eastwood, P. Bayley, H. Chang, O. Taiwo, J. Vila-Comamala, D. Brett,
C. Rau, P. Withers, P. R. Shearing, C. Grey, P. D. Lee, Three-dimensional
characterization of electrodeposited lithium microstructures using syn-
chrotron X-ray phase contrast imaging, Chemical Communications 51 (2)
(2015) 266–268.

[22] D. Eastwood, R. Bradley, F. Tariq, S. Cooper, O. Taiwo, J. Gelb, A. Merkle,
D. Brett, N. P. Brandon, P. Withers, P. D. Lee, P. R. Shearing, The ap-
plication of phase contrast X-ray techniques for imaging Li-ion battery
electrodes, Nuclear Instruments and Methods in Physics Research Section
B: Beam Interactions with Materials and Atoms 324 (2014) 118–123.

[23] T. Mitsch, Y. Krämer, J. Feinauer, G. Gaiselmann, H. Markötter, I. Manke,
A. Hintennach, V. Schmidt, Preparation and characterization of Li-ion

22



graphite anodes using synchrotron tomography, Materials 7 (6) (2014)
4455–4472.

[24] P. R. Shearing, Y. Wu, S. J. Harris, N. Brandon, In situ X-ray spectroscopy
and imaging of battery materials, Interface-Electrochemical Society 20 (3)
(2011) 43.

[25] F. Tariq, V. Yufit, M. Kishimoto, P. R. Shearing, S. Menkin, D. Golodnit-
sky, J. Gelb, E. Peled, N. P. Brandon, Three-dimensional high resolution
X-ray imaging and quantification of lithium ion battery mesocarbon mi-
crobead anodes, Journal of Power Sources 248 (2014) 1014–1020.

[26] G. Teixidor, B. Park, P. P. Mukherjee, Q. Kang, M. J. Madou, Modeling
fractal electrodes for Li-ion batteries, Electrochimica Acta 54 (24) (2009)
5928–5936.

[27] W. Wu, F. M. Jiang, Simulated annealing reconstruction and characteri-
zation of a LiCoO2 Lithium-ion battery cathode, Chinese Science Bulletin
58 (36) (2013) 4692–4695.

[28] W. Wu, F. M. Jiang, Microstructure reconstruction and characterization
of PEMFC electrodes, International Journal of Hydrogen Energy 39 (28)
(2014) 15894–15906.

[29] L. Zielke, T. Hutzenlaub, D. R. Wheeler, I. Manke, T. Arlt, N. Paust,
R. Zengerle, S. Thiele, A combination of X-ray tomography and carbon
binder modeling: Reconstructing the three phases of LiCoO2 Li-ion battery
cathodes, Advanced Energy Materials 4 (8) (2014) 1301617.

[30] L. Zielke, T. Hutzenlaub, D. R. Wheeler, C.-W. Chao, I. Manke, A. Hilger,
N. Paust, R. Zengerle, S. Thiele, Three-phase multiscale modeling of a
LiCoO2 cathode: Combining the advantages of FIB-SEM imaging and X-
ray tomography, Advanced Energy Materials 5 (5) (2014) 1401612.

[31] G. Gaiselmann, R. Thiedmann, I. Manke, W. Lehnert, V. Schmidt,
Stochastic 3D modeling of fiber-based materials, Computational Materi-
als Science 59 (2012) 75–86.

[32] O. Stenzel, L. Koster, R. Thiedmann, S. D. Oosterhout, R. A. J. Janssen,
V. Schmidt, A new approach to model-based simulation of disordered poly-
mer blend solar cells, Advanced Functional Materials 22 (2012) 1236–1244.

[33] O. Stenzel, D. Westhoff, I. Manke, M. Kasper, D. P. Kroese, V. Schmidt,
Graph-based simulated annealing: a hybrid approach to stochastic mod-
eling of complex microstructures, Modelling and Simulation in Materials
Science and Engineering 21 (5) (2013) 055004.

[34] R. Thiedmann, O. Stenzel, A. Spettl, P. R. Shearing, S. J. Harris, N. P.
Brandon, V. Schmidt, Stochastic simulation model for the 3D morphology
of composite materials in Li–ion batteries, Computational Materials Science
50 (12) (2011) 3365–3376.

23



[35] D. Westhoff, J. J. van Franeker, T. Brereton, D. P. Kroese, R. A. J. Janssen,
V. Schmidt, Stochastic modeling and predictive simulations for the mi-
crostructure of organic semiconductor films processed with different spin
coating velocities, Modelling and Simulation in Materials Science and En-
gineering 23 (4) (2015) 045003.

[36] G. Gaiselmann, M. Neumann, O. Pecho, T. Hocker, V. Schmidt, L. Holzer,
Quantitative relationships between microstructure and effective transport
properties based on virtual materials testing, AIChE Journal 60 (2014)
1983–1999.

[37] M. Roland, A. Kruglova, G. Gaiselmann, T. Brereton, V. Schmidt,
F. Mücklich, S. Diebels, Numerical simulation and comparison of a real
Al-Si alloy with virtually generated alloys, Archive of Applied Mechanics.

[38] Z. Liu, P. P. Mukherjee, Microstructure evolution in lithium-ion battery
electrode processing, Journal of the Electrochemical Society 161 (8) (2014)
E3248–E3258.

[39] S. N. Chiu, D. Stoyan, W. S. Kendall, J. Mecke, Stochastic Geometry and
its Applications, 3rd Edition, J. Wiley & Sons, 2013.

[40] W. S. Kendall, I. S. Molchanov, New Perspectives in Stochastic Geometry,
Oxford University Press, 2010.

[41] S. Torquato, Random Heterogeneous Materials: Microstructure and Macro-
scopic Properties, Springer, 2002.

[42] J. Feinauer, A. Spettl, I. Manke, S. Strege, A. Kwade, A. Pott, V. Schmidt,
Structural characterization of particle systems using spherical harmonics,
Materials Characterization 106 (0) (2015) 123 – 133.

[43] G. Gaiselmann, M. Neumann, L. Holzer, T. Hocker, M. R. Prestat,
V. Schmidt, Stochastic 3D modeling of LSC cathodes based on struc-
tural segmentation of FIB-SEM images, Computational Materials Science
67 (2013) 48–62.

[44] G. B. Arfken, H. J. Weber, Mathematical Methods for Physicists, 5th Edi-
tion, Harcourt Academic Press, 2001.

[45] L. Shapiro, G. C. Stockman, Computer Vision, Prentice Hall, 2001.

[46] S. Beucher, Watershed, hierarchical segmentation and waterfall algorithm,
in: P. Soille, M. Pesaresi, G. Ouzounis (Eds.), Mathematical Morphology
and its Applications to Image Processing, Springer, 1994, pp. 69–76.

[47] J. Hoshen, R. Kopelman, Percolation and cluster distribution. I. Cluster
multiple labeling technique and critical concentration algorithm, Phys. Rev.
B 14 (1976) 3438–3445.

24



[48] T.-C. Lee, R. L. Kashyap, C.-N. Chu, Building skeleton models via 3-D
medial surface axis thinning algorithms, CVGIP: Graphical Models and
Image Processing 56 (6) (1994) 462–478.

[49] S. Beucher, C. Lantuéjoul, Use of watersheds in contour detection, in: Pro-
ceedings of the International Workshop on Image Processing, Real-Time
Edge and Motion Detection/Estimation, Rennes, France, 1979.

[50] S. Beucher, F. Meyer, The morphological approach to segmentation: the
watershed transformation, in: E. Dougherty (Ed.), Mathematical Morphol-
ogy in Image Processing, Marcel Dekker, 1993, pp. 433–481.

[51] A. Spettl, R. Wimmer, T. Werz, M. Heinze, S. Odenbach, C. E. Krill III,
V. Schmidt, Stochastic 3D modeling of Ostwald ripening at ultra-high vol-
ume fractions of the coarsening phase, Modelling and Simulation in Mate-
rials Science and Engineering (in print).

[52] C. Lautensack, Random laguerre tessellations, Ph.D. thesis, Universität
Karlsruhe (TH) (2007).

[53] J. Møller, Random tessellations in Rd, Advances in Applied Probability
21 (1) (1989) 37–73.

[54] R. Thiedmann, C. Hartnig, I. Manke, V. Schmidt, W. Lehnert, Local struc-
tural characteristics of pore space in GDLs of PEM fuel cells based on ge-
ometric 3D graphs, Journal of the Electrochemical Society 156 (11) (2009)
B1339–B1347.

[55] R. Thiedmann, I. Manke, W. Lehnert, V. Schmidt, Random geometric
graphs for modelling the pore space of fibre-based materials, Journal of
Materials Science 46 (24) (2011) 7745–7759.

[56] A. Lang, C. Schwab, Isotropic Gaussian random fields on the sphere: regu-
larity, fast simulation, and stochastic partial differential equations, Annals
of Applied Probability.

[57] D. Marquardt, An algorithm for least-squares estimation of nonlinear pa-
rameters, SIAM Journal on Applied Mathematics 11 (2) (1963) 431–441.

[58] E. Dougherty (Ed.), Mathematical Morphology in Image Processing, Op-
tical Science and Engineering, Taylor & Francis, 1992.

25


