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Abstract 15 

Trait-based models have improved the understanding and prediction of soil organic matter dynamics 16 

in terrestrial ecosystems. Microscopic observations and pore scale models are now increasingly used 17 

to quantify and elucidate the effects of soil heterogeneity on microbial processes. Combining both 18 

approaches provides a promising way to accurately capture spatial microbial-physicochemical 19 

interactions and to predict overall system behavior. The present study aims to quantify controls on 20 

carbon (C) turnover in soil due to the mm-scale spatial distribution of microbial decomposer 21 

communities in soil. A new spatially explicit trait-based model (SpatC) has been developed that 22 

captures the combined dynamics of microbes and soil organic matter (SOM) by taking into account 23 

microbial life-history traits and SOM accessibility. We performed Monte-Carlo simulations with 24 

microbial distributions that differ in mm-scale spatial heterogeneity and functional community 25 

composition (oligotrophs, copiotrophs and copiotrophic cheaters). Samples of spatial distributions of 26 

microbes were generated using a spatial statistical model based on Log Gaussian Cox Processes 27 

which was originally used to analyze distributions of bacterial cells in soil thin sections. Our 28 

modelling approach revealed that the spatial distribution of soil microorganisms triggers 29 

spatiotemporal patterns of C utilization and microbial succession. Only strong spatial clustering of 30 

decomposer communities induces a diffusion limitation of the substrate supply on the microhabitat 31 

scale, which significantly reduces the total decomposition of C compounds and the overall microbial 32 

growth. However, decomposer communities act as functionally redundant microbial guilds with only 33 

slight changes in C utilization. The combined statistical and process-based modelling approach 34 

bridges microbial biogeography at the microhabitat scale (µm) with emergent macroscopic (cm) 35 

microbial and C dynamics. Our study points out the importance of parameterizing functional 36 

characteristics of decomposer communities and highlights a powerful approach that can provide 37 

further insights into the biological control of soil organic matter turnover. 38 
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1 Introduction 39 

Microorganisms drive biochemical processes such as C cycling in soil (Falkowski et al., 2008). There 40 

is growing consensus that soil organic matter dynamics and stability are strongly controlled by 41 

microbial processing and associated bioenergetics constraints (Schmidt et al., 2011; Lehmann and 42 

Kleber, 2015; Williams and Plante, 2018). Yet, understanding how microbial community 43 

characteristics affect rates of biogeochemical processes remains a major research challenge. Further 44 

progress to quantitatively describe spatial arrangements between microorganisms in their micro-45 

environment and their corresponding substrate is needed (Graham et al., 2016; Baveye et al., 2018). 46 

Categorizing microbial communities based on life-history strategies (e.g. copiotrophs/ oligotrophs, r-/ 47 

K-stategists, autochtonous/ zymogenous microorganisms, or competitors/ stress tolerators/ ruderals) 48 

is useful to link microbial community characteristics to biogeochemical processes (Fierer et al., 2007; 49 

Kuzyakov et al., 2009; Martiny et al., 2015; Fierer, 2017; Blankinship et al., 2018; Hall et al., 2018). 50 

These frameworks are based on the transfer of macroscale ecology concepts to microbial ecology. A 51 

recent study refined the competitor-stress tolerator-ruderal concept from plant ecology and suggested 52 

to define three microbial life history strategies: resource acquisition, stress tolerance, and high yield 53 

(Malik et al., 2019). Life-history strategies embrace combinations and trade-offs of microbial 54 

community traits related to maximum growth rate, dormancy, substrate affinity, production of 55 

specific enzymes, or stress tolerance mechanisms (Webb et al., 2010; Fierer et al., 2014; Trivedi et 56 

al., 2016; Alster et al., 2018; Malik et al., 2019; Rath et al., 2019). Mineralization of soil C could be 57 

seen as an emergent process that is regulated by functional traits of soil microorganisms and 58 

microbiological interactions (Addiscott, 2010). Therefore, decomposition of C compounds is 59 

controlled by dynamics of assemblages of somewhat functionally redundant organisms organized in 60 

microbial guilds with characteristic life-history strategies (Schimel and Schaeffer, 2012).  61 

Including measured functional traits of plants as well as soil microorganisms and fauna in 62 

biogeochemical modelling is a promising approach to improve predictions of biogeochemical cycling 63 

in soil (Fry et al., 2019). Biogeochemical C models increasingly include metabolic and physiological 64 

traits as well as life-history strategies to account for microbial regulation of decomposition processes 65 

(Garnier et al., 2001; Ingwersen et al., 2008; Neill and Guenet, 2010; Allison, 2012; Bouskill et al., 66 

2012; Pagel et al., 2014, 2016; Perveen et al., 2014; Wang et al., 2014; Le Roux et al., 2016). 67 

Including microbial dormancy of microbes in models has been shown to improve the prediction of 68 

soil organic C dynamics (He et al., 2015) as did accounting for copiotrophic and oligotrophic 69 

microorganisms as physiologically distinct functional groups (Wieder et al., 2015). A model-based 70 

analysis demonstrated that adaptive microbial responses to C limitation and water stress might 71 

emerge from microbial traits related to dormancy and production of extracellular polymeric 72 

substances (Brangarí et al., 2018). The importance of community-level regulation and microbial trait 73 

trade-offs was highlighted by trait-based modelling of litter decomposition (Kaiser et al., 2015; 74 

Allison and Goulden, 2017). 75 

Further integration of trait-based and spatial explicit approaches is, however, essential to advance the 76 

quantitative description of microbial C utilization, because microbial activity is controlled by spatial 77 

characteristics. Physical accessibility of organic compounds to microorganisms strongly affects 78 

substrate supply and microbial community functioning (Brookes et al., 2017; Nunan et al., 2017; 79 

Schimel, 2018). It has been conjectured that at the pore-scale, which is relevant for microbial 80 

processes, the supply of assimilable C (low molecular weight compounds < 600 Da) to 81 

microorganisms is mainly regulated by i) physical accessibility of soil organic matter, ii) 82 

exoenzymatic decomposition of C compounds that are not directly assimilable (high molecular 83 
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weight compounds  600 Da), and iii) diffusive transport of assimilable C in the soil solution from 84 

locations of exoenzymatic action to microbial cells (Lehmann and Kleber, 2015; Schimel et al., 2017; 85 

Blankinship et al., 2018; Sokol et al., 2019).  86 

Quantitative measurements of microbial distribution and processes at the pore-scale are extremely 87 

challenging. Though there is limited, albeit growing, experimental data on the spatial organization 88 

and activity of microorganisms in soils, a number of mechanistic models have been applied to 89 

understand and predict the impact of spatial heterogeneity in soil on microbial and physico-chemical 90 

processes (Baveye et al., 2018). Raynaud and Nunan (2014) analysed the spatial distribution of 91 

bacterial cells in soil thin sections and described the spatial structure of observed bacterial 92 

distributions as aggregated point patterns using a Log Gaussian Cox process as spatial statistical 93 

model. Their analysis indicated that distributions of bacterial cells in soils are clustered and non-94 

random at the µm-scale, most probably as a result of heterogeneity in soil structure and pore network 95 

architecture. Recent experimental evidence from combined X-ray microtomography and fluorescence 96 

microscopy at different spatial scales (0.1 - 5 mm) suggests that pore characteristics effectively 97 

influence the distribution of bacteria in soil mainly at a spatial scale of 5 mm (Juyal et al., 2019). 98 

Most rapid decomposition rates were associated with pores of neck diameters of 15-90 µm. This was 99 

attributed to optimal microbial habitat conditions with respect to nutrient and oxygen supply and 100 

organism motility (Strong et al., 2004; Kravchenko and Guber, 2017). There is some experimental 101 

evidence that pore characteristics and microenvironmental conditions control the relative 102 

contributions of specific functional microbial groups to decomposition of C compounds and the 103 

extent of their functional redundancy (Ruamps et al., 2013; Negassa et al., 2015; Kravchenko and 104 

Guber, 2017; Nunan et al., 2017).  105 

A few recent models linked mechanistic descriptions of a soil’s pore structure with trait-based 106 

microbial dynamics. Experimental work using artificial micrometric pore networks etched in glass 107 

combined with modelling has demonstrated that oxygen-carbon counter-gradients (as commonly 108 

found in microbial hotspots like the rhizosphere or detritusphere) induce the spatial organization of 109 

aerobic and anaerobic bacteria and promote their stable coexistence (Borer et al., 2018). Scenario 110 

simulations using a multi-species 3D pore-scale soil C model have indicated microscale (µm) control 111 

of bacterial diversity driven by the degree of heterogeneity in the spatial distribution of organic 112 

matter (Portell et al., 2018). In these simulations, the spatial heterogeneity of organic matter affected 113 

the succession of functional bacterial types differing in growth rates and substrate affinities. 114 

Irrespective of the spatial SOM distribution, however, the small-scale (mm) C turnover was similar. 115 

This indicates functional redundancy with respect to C cycling. While there are some first successful 116 

attempts to derive mechanistic effective rate laws for specific biogeochemical processes at pedon to 117 

landscape scale from pore-scale modelling (e.g., Ebrahimi and Or, 2018; Schmidt et al., 2018), the 118 

upscaling of microbial processes and their control from pore scale to macroscopic scales (pedon to 119 

landscape), which are practically relevant and accessible to direct observation, remains a largely 120 

unresolved research challenge (Baveye et al., 2018).  121 

This theoretical study aims to elucidate the control of emerging C dynamics in soil at the macroscale 122 

(cm) by the pore-scale (µm) distribution of decomposer communities consisting of microorganisms 123 

with differing life-history traits. A new trait-based soil C model was utilized in combination with a 124 

spatial statistical model of microbial biogeography (Raynaud and Nunan, 2014) to test two 125 

hypotheses: i) increasing spatial heterogeneity in the distribution of microbial decomposers results in 126 

an increase in diffusion-limited C availability and lower C turnover and ii) with increasing spatial 127 

heterogeneity, the composition of decomposer communities shifts to a higher proportion of 128 

oligotrophic organisms that can outcompete copiotrophs at low C availability. 129 
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2 Material and methods 130 

2.1 Model rationale and main assumptions 131 

The 2D spatially explicit trait-based soil C model (SpatC) has been developed to study the effects of 132 

mm-scale heterogeneous distribution of functionally diverse microbial communities on C cycling in 133 

soil. Following the conceptual soil continuum model of soil organic matter cycling (Lehmann and 134 

Kleber, 2015), SpatC distinguishes three conceptual carbon pools with respect to their assimilability 135 

by microorganisms (Fig. 1). Microbial communities are grouped into three functional types that 136 

distinguish different life-history strategies according to ecological categorizations, a technique used 137 

similarly in other models (e.g., Allison, 2012; Kaiser et al., 2015). This structure reflects 138 

fundamentally different life-history strategies according to functional-ecological frameworks such as 139 

the copiotrophy–oligotrophy continuum or Grime’s competitor–stress tolerator–ruderal concept 140 

(Fierer et al., 2007; Krause et al., 2014; Fierer, 2017; Ho et al., 2017; Huang et al., 2018; Fry et al., 141 

2019; Maynard et al., 2019). The biomass of all microbial groups is regulated by growth of predators 142 

that utilize microbial pools as C and energy sources. SpatC thereby explicitly considers exploitative 143 

competition (interception of a common resource), interference competition (direct interactions 144 

between microorganisms), and predator-mediated competition (top-down control of microorganisms 145 

by selective predation) between the three functional microbial groups (see Buchkowski et al., 2017). 146 

2.2 Governing equations and fluxes 147 

SpatC is formulated as a set of coupled partial and ordinary differential equations. All C pools are 148 

based on the C mass balance in soil and expressed in mg g-1. We assumed 0





SC

n
 and 0






MC

n
at 149 

all boundaries (with n  denoting the outward facing normal vector), i.e., there was no flux of 
SC and 150 

MC  out of the considered domain. Asterisks (*) indicate model parameters whose meaning and 151 

values are given in Tables 1 and 2. Fluxes and functions are specified in section 2.3. A concise 152 

description of all model equations is given in the supplementary material. 153 

2.2.1 Non-microbial carbon 154 

Large biopolymers ( LC , Eq. 1) are not directly assimilable by microorganisms, but need to be first 155 

depolymerized by extracellular enzymes to dissolved small biopolymers ( SC , Eq. 2) and monomers (156 

MC , Eq. 3). Small biopolymers are similarly prone to extracellular depolymerisation. This enzymatic 157 

process is simulated using Michaelis-Menten kinetics without explicitly considering enzyme 158 

dynamics. The depolymerization rate of large and small polymers is instead directly controlled by 159 

microbial biomass (Eq. 21). Small polymers and monomers are directly consumed by 160 

microorganisms. The decay of microorganisms and predators leads to C input of non-microbial C to161 

LC , SC  and MC . While large biopolymers are not transported, SpatC accounts for transport of small 162 

polymers and monomers by diffusion. Diffusion coefficients (Table 2) were set to values which 163 

reflect a higher molecular weight of SC than of MC  (Worch, 1993; Hendry et al., 2003). Using the 164 

approach of Streck et al. (1995), the bioavailability of SC and MC  is further constrained by rate‐165 

limited, two‐stage, nonlinear sorption (Eqs. 4-6). 166 
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Equilibrium sorption is considered using a Freundlich isotherm. Sorbed phase concentrations of small 170 

biopolymers and monomers at sorption sites in region 1 are accordingly expressed as: 171 

*
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*
*
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 (4) 172 

Kinetic sorption is expressed as mass transfer between sorption sites in region 1 and region 2: 173 

 

 
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 (5) 174 

Total sorbed phase concentrations are given by the sum of sorbed phase concentrations in region 1 and 175 

2, each weighted by the fraction of sorption sites in both regions:. 176 
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2.2.2 Functional microbial groups 178 

SpatC accounts for three functional microbial types: oligotrophs (
OB ), copiotrophs (

CB ) and 179 

copiotrophic cheaters (
CCB ) (Eqs. 7-11). All microbial groups are considered to be able to switch 180 

from an active to a dormant physiological state (Lennon and Jones, 2011; Blagodatskaya and 181 

Kuzyakov, 2013; Joergensen and Wichern, 2018) with different parameterizations for different 182 

functional types (Table 1, Fig. 2). Active microorganisms use dissolved small biopolymers and 183 

monomers for growth, while dormant microorganisms do not grow. Maintenance energy 184 

requirements of microorganisms are assumed to be fulfilled through the uptake of monomers at 185 

sufficient substrate supply and are met from biomass when monomers become limiting (Wang and 186 

Post, 2012). That is, microorganisms switch from exogenous to endogenous maintenance (see Eq. 187 

18) leading to microbial decay at low substrate availability. We consider that endogenous 188 

maintenance proportionally results in the formation of dead microbial biomass and CO2 (Eqs, 1-3 and 189 

14). Additionally, microbial biomass decays due to predation. Thereby, microbial C is used for 190 

growth of predators (Eq. 13), reallocated to non-microbial C pools in soil (Eqs. 1-3) and lost to CO2 191 

(Eq. 14). 192 

Dynamics of active microorganisms are expressed as follows: 193 

 , ,

, , , , , , , ,*

deactivation + reactivationgrowth

microbial decay by predationmicrobial decay
due to maintenance

*

1
(1 )

1
    


       



a
S M a B a M a aO

µ O µ O d O r O m O m O P O P O

m

P P

P

f f
B

r r r r r r r r
t YY

  (7) 194 

 , ,

, , , , , , , ,*

deactivation + reactivationgrowth

microbial decay by predationmicrobial decay
due to maintenance

*

1
(1

1
)    


       



a
S M a B a M a aC

µ C µ C d C r C m C m C P C P C

m

P P

P

B
r r r r r r r ff

Y
r

t Y
 (8) 195 

 , ,

, , , , , , , ,*

deactivation + reactivationgrowth

microbial decay by predationmicrobial decay
due to

*

 maintenance

1
(1

1
)


       


  

a
S M a B a M a aCC

µ CC µ CC d CC r CC m CC m CC P CC P CCP

Pm

P

B
r r r r r r r f r

t
f

YY
 (9) 196 

Dynamics of dormant microorganisms are given by: 197 
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Dynamics of predators are modeled using first-order growth and decay. It is considered that only part 201 

of the killed microbial biomass is actually taken up by predators. A fraction of C from killed 202 

microorganisms (fP) is directly released to the soil solution and reallocated to non-microbial soil 203 

pools: 204 

growt

,

decah y

1(1 )

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

P P d P

P
f

t
r r  (13) 205 

Formation of carbon dioxide (CO2) results from energy metabolism by aerobic respiration during 206 

microbial growth and maintenance as well as growth of predators: 207 
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2.3 Fluxes and functions 209 

The following flux equations define the C flows between soil organic matter pools and soil biota. All 210 

fluxes are expressed in mg g-1d-1. 211 

Predation and maintenance fluxes were combined into column vectors. These were then used in the 212 

governing equations (Eqs. 1-14) as a scalar product with a row vector of ones for an effective 213 

description of the model: 214 
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 1 1,1,1,1,1,1  216 

A multi-substrate Monod kinetic (Lendenmann and Egli, 1998) is used to simulate grow of functional 217 

microbial types on small polymers and monomers (Eq. 15). Following the proposed application of 218 

Grime’s competitor–stress tolerator–ruderal concept to soil bacterial heterotrophs (Fierer, 2017), 219 

copiotrophs are parameterized as competitors. They are assumed to be most competitive by inhibiting 220 

the growth of oligotrophs and copitrophic cheaters. This is implemented using a first-order inhibition 221 

term (Buchkowski et al., 2017): 222 
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Switching between dormant and active state was modelled as first-order process (Eq. 16) based on 224 

the approach of Mellage et al. (2015). Deactivation and reactivation rates are triggered by the 225 

concentration of dissolved monomers using a switching function (Eq. 17). This function approaches 226 

zero if the monomer concentration is below a trait-specific threshold value and takes a value of one 227 

above the threshold. The shape parameter   controls the sharpness of the transition. It was fixed to a 228 

value of 0.1 to reflect a relatively sharp switching from and to dormancy. 229 
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  (17) 231 

Total required maintenance uptake is given by the product of the trait-specific maximum maintenance 232 

rate coefficient and microbial biomass. Reduced maintenance needs of dormant microorganisms are 233 

considered using a reduction factor (  ) of maximum maintenance rate coefficients. The relative C 234 

flux needed for maintenance that can be fulfilled from dissolved monomers (exogenous maintenance) 235 

is calculated using a Michealis-Menten type rate law (Lendenmann and Egli, 1998).  236 
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Predation of microorganisms and the associated growth of predators as well as the decay of predators 238 

is reflected by first-order expressions. Decreased predation of dormant microorganisms is considered 239 

by reduction factors ( ) of predation rate coefficients: 240 
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 (19) 241 

The proportion of C lost to non-microbial C pools by predation is given by: 242 

* * *

, , ,  P L P S P MPf f f f  (20) 243 

Enzymatic breakdown of large and small biopolymers is modeled using Michalis-Menten kinetics. 244 

Oligotrophs control the depolymerisation of large and small polymers, while copiotrophs only affect 245 

the depolymerisation of small polymers (Eq. 21). This was done to implicitly reflect a higher metabolic 246 

versatility of oligotrops than copiotrophs. Copiotrophic cheaters fully rely on the direct uptake of small 247 

polymers and monomers and do not affect extracellular depolymerization of polymers: 248 
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Retardation factors of dissolved small polymers and monomers to consider non-linear equilibrium 250 

sorption are calculated as follows (see Jury and Horton, 2004): 251 
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 (22) 252 

Effective diffusion coefficients of small polymers and monomers in soil are derived from 253 

corresponding aqueous diffusion coefficients by accounting for unsaturated porous media 254 

permeability (after Millington and Quirk, 1961): 255 
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 (23) 256 

2.4 Parameterization of functional microbial groups 257 

Parameter values of functional microbial groups were chosen to reflect ecological trade-offs between 258 

growth, dormancy and maintenance traits (Fig. 2, Table 1). Oligotrophs were parameterized as 259 

slowest growers with most efficient substrate uptake and usage. In contrast, copiotrophic cheaters can 260 

grow fastest, but are characterized by least efficient substrate uptake and usage. Copiotrophs grow 261 

slower than cheaters and have higher maintenance requirements, but are more competitive due to 262 

their more efficient substrate uptake in combination with their ability to depolymerize small 263 

polymers and inhibit other microorganisms. Oligotrophs were considered to stay active at low 264 

substrate supply with lowest maintenance requirements in active state, but highest in dormant state. 265 

Copiotrophic cheaters can switch fastest from and to dormancy and switching is triggered already at a 266 

low monomer threshold, i.e. they respond fastest to monomer supply. Copiotrophs reactivate and 267 

deactivate at a relatively high monomer threshold concentration, but respond much more slowly to 268 

insufficient substrate supply than cheaters. 269 

2.5 Parameters, initialization and scenario simulations 270 

Parameters of SpatC, default values used in all simulations, and uniformly distributed initial 271 

concentrations of SOM pools and predators are given in Tables 1 and 2. Parameter values were 272 

derived from available data if possible and based on logical consideration elsewhere. All 273 

microorganisms were assumed to be initially in a dormant state, i.e., initial values of active 274 

microorganisms were set to zero. We set a low initial abundance of dormant microbial biomass in the 275 

order of 10-4 mg g-1 (C soil-1) to assure the detection of emerging behavior of microbial groups due to 276 

growth in the simulation. Uniform initial SOM pools and a homogeneous medium with isotropic 277 

transport and sorption properties were assumed in order to clearly derive effects of spatial 278 

distribution of functional microbial groups on C dynamics. Spatial heterogeneity was restricted to 279 

microbial distributions. 280 

Initial pool sizes of dormant functional microbial types were set up in two steps based on a spatial 281 

statistical model of microbial biogeography. A Log Gaussian Cox process (LGCP) (Moller et al., 282 

1998) was used as a spatial stochastic model to generate point patterns of microbial cells in a 100 x 283 

100 mm2 soil domain. The LGCP model is characterized by three parameters; the mean (μ), the 284 

variance (σ2) and the scale (β) of the Gaussian random measure. Following Raynaud and Nunan 285 

(2014), an isotropic exponential covariance function 
2 /( )   rC r e  with distance variable r was 286 

used to model the Gaussian process. All parameters were related to the µm-scale. The mean initial 287 

density of microbial cells was set to 20 cells mm-2 (close to the lower limit observed by Raynaud and 288 
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Nunan, 2014; and Juyal et al., 2019). This is equivalent to an average intensity of the LGCP 289 
2

62 20 10







  e  points µm-2. The spatial heterogeneity of microbial cell distributions was 290 

determined by σ2 values. Point patterns of increasing spatial heterogeneity and clustering were 291 

simulated using four different σ2 values: 0.1, 0.5, 2, 6. Corresponding µ values were calculated as 292 

 
2

ln
2


    to: -10.82, -10.94, -12.82, -28.82. The scale parameter β was fixed to 25 µm in all 293 

simulations corresponding to average estimates of Raynaud and Nunan (2014). 294 

The generated point patterns of total microbial cells were then aggregated to 1 mm2 resolution by 295 

discretizing the 100 x 100 mm2 soil domain into 10000 squares of 1 mm2. The total number of cells 296 

at 1 mm2 resolution was then randomly split into three subsets to derive average cell densities (cells 297 

mm-2) for the three functional microbial groups (BO, BC, BCC). Initial pool sizes of dormant functional 298 

microbial types in mg g-1 (C soil-1) were calculated from these cell densities by assuming a soil bulk 299 

density (S) of 1.2 g cm-3, a bacterial cell mass of 10-11 mg (Mcmahon and Parnell, 2014), and a 300 

representative layer thickness of 10-3 mm (see also Raynaud and Nunan, 2014). Thus, the average 301 

total initial microbial biomass was 1.67  10-4 mg g-1 (C soil-1). 302 

In total, 400 simulations comprising 100 realizations per σ2 value were performed. All simulations 303 

were run for 100 days. This simulation time was chosen as an adequate trade-off between 304 

computational effort and process insight. Preliminary simulations with homogenously distributed 305 

microorganisms indicated that strong depletion of monomers and small polymers after 100 days. 306 

2.6 Technical implementation 307 

Simulations of the described LGCPs and the aggregation of the generated point patterns were 308 

performed using the package spatstat (Baddeley, 2015) and the statistical computing environment R 309 

(R Core Team, 2018). The coupled system of partial and ordinary differential equations was 310 

implemented and solved using the multipurpose finite element code COMSOL Multiphysics ® in 311 

combination with the COMSOL® module LiveLinkTM for MATLAB®.  312 

Continuous spatial distributions of all state variables were discretised using finite elements. The 313 

computational mesh was constructed by converting and refining a regular quadrilateral mesh with 314 

10000 elements of 1 mm edge length such that every 1 mm square is further discretised by 16 315 

tetrahedral elements (Supplementary fig. 1). As a result the 100 x 100 mm2 domain was represented 316 

by 160000 tetrahedral finite elements with an area of 62.5 µm2 each. Test simulations using finer and 317 

coarser meshes showed that the chosen mesh resolution provided accurate results at a reasonable 318 

computation time. 319 

The equations were solved numerically using an adaptive implicit time-stepping scheme with a 320 

backward differentiation formula of varying order from 1 to 5. Newton’s method was used to 321 

linearize the system of equations. A flexible generalized minimum residual iterative method (Saad, 322 

1993) was used in combination with a geometric multigrid solver (Hackbusch, 1985) to solve the 323 

final system of linear equations. The multigrid solver utilized successive over-relaxation for pre- and 324 

postsmoothing and a parallel sparse direct method as coarse solver. MATLAB® was used to set the 325 

initial distribution patterns of dormant functional microbial pools, to control the model runs and for 326 

post-processing of simulation results.  327 



 
13 

The derived discrete initial pool sizes of functional microbial groups at 1 mm2 resolution could not be 328 

directly used for initializing the simulation, because strong differences between individual 1 mm2 329 

squares would have required a highly resolved computational mesh for numerical accuracy. 330 

Therefore, the initial discrete spatial bacterial distributions were slightly smoothed by running a 331 

reduced version of the full model that only simulated slight diffusion of bacterial cells. By this 332 

procedure, sharp fronts were removed by an initializing COMSOL model run. The resulting smooth 333 

bacterial density fields were then used to initialize the functional microbial types for running the 334 

actual SpatC COMSOL® model. 335 

We explored the effect of biokinetic parameterization by varying some key biokinetic parameters 336 

within reasonable bounds by running SpatC with one stochastic realization in a 1x10 mm2 soil 337 

domain (Supplementary figs. 2 and 25-27). 338 

3 Results 339 

3.1 Spatiotemporal dynamics 340 

Spatial clustering of initial microbial communities resulted in the emergence of coupled spatial 341 

patterns of C pools and microbial succession (Fig. 3, see also supplementary figs. 4-24 for spatial 342 

distributions of soil pools at all degrees of heterogeneity). The spatial distribution of large polymers 343 

(Supplementary figs. 6 and 7), however, was largely unaffected by microbial distribution. Largely 344 

homogenously distributed initial microbial communities (σ2 = 0.1) led to a uniform decline of 345 

monomers and small polymers. Strong spatial clustering (σ2 = 6) induced local depletion zones of 346 

monomers and small polymers after 20 and 40 days at spots of high abundance of microbial biomass. 347 

Higher diffusive transport of monomers compared to small polymers resulted in sharper spatial 348 

concentration gradients at certain local spots. 349 

Spatial clustering of initial microbial communities (σ2 = 6) resulted in distinct spots of high microbial 350 

abundance. At these spots, also predators became highly abundant (Supplementary fig. 24). The 351 

distribution of oligotrophs was characterized by relatively large and more uniformly distributed spots 352 

in comparison to the other microbial functional groups (Fig. 3). Spots of high abundant copiotrophs 353 

were most segregated and associated with low abundances of the other two functional groups. This 354 

pattern emerged as a direct consequence of the simulated interference competition of copiotrophs’ 355 

inhibition of microbial growth. 356 

3.2 Aggregated C turnover 357 

Heterogeneity in the initial distribution of microbial communities affected aggregated C turnover in 358 

soil, but microbial distribution triggered only slight changes in C utilization (Fig. 4). For all initial 359 

spatial distributions of microorganisms (σ2 = 0.1, 0.5, 2, 6), decomposition of small polymers 360 

coincided with microbial growth. The concentration of large polymers remained close to the initial 361 

value of 10 mg g-1. As a result of microbial death, it showed only a slight increase of < 0.015 mg g-1. 362 

Monomers showed a concentration peak after about 50 days as a result of enzymatic breakdown of 363 

small polymers triggered by the activity of copiotrophs and oligotrophs. While the maximum 364 

monomer concentration decreased from homogenous (σ2 = 0.1, 0.5) to heterogeneous (σ2 = 2, 6) 365 

microbial distributions, the monomer concentration peak became broader with increasing spatial 366 

clustering. The variability of all C pools increased with increasing spatial heterogeneity of 367 

decomposer communities. 368 
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Moderate spatial clustering (σ2 = 2) led to fastest monomer production, degradation of small 369 

polymers, and microbial growth. Strong spatial clustering (σ2 = 6) resulted in slowest decomposition 370 

of small polymers and monomers in combination with the slowest increase in total microbial 371 

biomass. As a consequence, final aggregated concentrations of monomers and small polymers were 372 

higher and final microbial biomass was lower at σ2 = 6 compared to the other scenarios. 373 

3.3 Microbial succession 374 

The aggregated SpatC simulation results revealed a characteristic succession of microbial functional 375 

groups in response to available substrates (Fig. 5). Copiotrophic cheaters reacted first and grew most 376 

rapidly on the available monomers and small polymers. They were then outcompeted by copiotrophs 377 

and oligotrophs as monomers and small polymers became limiting. Copiotrophs switched from active 378 

to dormant and maintained the largest portion of their biomass in a dormant state at the end of the 379 

simulation. In contrast, active oligotrophs and copiotrophic cheaters showed net growth until the end 380 

of the simulation.  381 

The top-down control by predators played only a minor role. While the median abundance of 382 

predators was only slightly affected by microbial distribution, strong spatial clustering of 383 

microorganisms resulted in relatively high variability in simulated predator biomass (data not 384 

shown). 385 

Moderate spatial clustering (σ2 = 2) promoted the growth of copiotrophs and triggered the fastest 386 

growth response of copiotrophic cheaters. Strong spatial clustering (σ2 = 6) delayed and reduced 387 

growth for all microbial functional groups. The variability of all microbial functional groups 388 

increased proportional to the initial degree of spatial heterogeneity. Copiotrophs showed the highest 389 

sensitivity to spatial heterogeneity of their initial localization. This was evident by the highest 390 

variability of the stochastic simulation output compared to oligotrophic and copiotrophic cheaters 391 

(Fig. 5). 392 

Spatial clustering of microbial communities only slightly affected the relative contribution of 393 

functional groups to total biomass (Fig. 6, first row). Oligotrophs clearly dominated and were 394 

similarly competitive independent of spatial clustering. While copiotrophs reached maximum 395 

contribution to total biomass at moderate spatial clustering (σ2 = 2), copiotrophic cheaters gained 396 

highest maximum contributions at low spatial clustering (σ2 = 0.1, 0.5). 397 

The relative contributions of microbial functional groups with respect to dissolved monomer and 398 

small polymer concentrations (Fig. 6, second and third row) highlights that spatial clustering of 399 

microorganisms differently affects the access of microbial functional groups to substrate. Oligotrophs 400 

were relatively more competitive at monomer concentrations > 0.1 mg g-1 with decreasing spatial 401 

clustering and at concentration of small polymers < 0.6 mg g-1 with strong spatial clustering (σ2 = 6). 402 

Copiotrophs benefited most from moderate spatial clustering (σ2 = 2) with monomers > 0.1 mg g-1 403 

and small polymers < 0.75 mg g-1. Copiotrophic cheaters performed best at low spatial clustering (σ2 404 

= 0.1, 0.5), independent of substrate concentration. 405 

4 Discussion 406 

Simulation results indicate that low and moderate initial spatial clustering of microbial decomposers 407 

exert some control over the functional composition of microbial communities, whereas the overall C 408 

turnover is only slightly affected. Oligotrophs, copiotrophs and copiotrophic cheaters predominantly 409 

act as functionally redundant microbial guilds with respect to decomposition of C compounds. This 410 
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fits well with conceptual view that C turnover is a “broad” soil process that is carried out by 411 

phylogenetically diverse but functionally redundant organisms (Schimel and Schaeffer, 2012; Nunan 412 

et al., 2017). Strong spatial clustering of microbial communities, however, induces diffusion-limited 413 

C availability at the microhabitat scale which translates into lower decomposition of C compounds 414 

and microbial growth at the cm scale. This finding corroborates previous results indicating that the 415 

spatial separation of substrates and decomposers can be compensated to a certain degree by shifts in 416 

the functional composition of the microbial community (Kaiser et al., 2015), but that if critical 417 

diffusion lengths are reached, diffusive transport strongly controls C turnover at the microhabitat 418 

scale (Folse III and Allison, 2012; Manzoni et al., 2014; Portell et al., 2018). 419 

Oligotrophs are observed to be most competitive regardless of spatial organization. Their competitive 420 

advantage results from higher substrate affinities to small polymers and monomers in combination 421 

with lower maintenance costs and predation than copiotrophs and copiotrophic cheaters. 422 

Copiotrophic cheaters successfully compete with oligotrophs for monomers and small polymers as 423 

long as substrate availability remains high enough. They can only sustain relatively low total biomass 424 

under unfavourable conditions by switching to dormancy. Interestingly, our results suggest that 425 

moderate spatial heterogeneity (σ2 = 2) is beneficial for copiotrophs. Moderate spatial clustering 426 

induces the formation of large areas of high monomer concentration by extracellular decomposition 427 

of small polymers. Copiotrophs become active and grow rapidly under relatively high concentrations 428 

of monomers while inhibiting the growth of other microorganisms. Thus, relatively more micro-429 

environments of competitive advantage to copiotrophs against oligotrophs and copiotrophic cheaters 430 

are created in comparison to lower and higher spatial clustering. In addition, copiotrophs sustain 431 

themselves under less beneficial conditions by quickly switching to a dormant state, which drastically 432 

reduces maintenance costs and biomass decay by predation.  433 

The simulated behaviour of microbial functional groups supports experimental evidence of the 434 

importance of metabolic activation/ deactivation strategies by microbial functional groups for 435 

regulating C turnover in soil (Placella et al., 2012; Joergensen and Wichern, 2018; Salazar et al., 436 

2019). Our finding that interactions between microbial functional groups are controlled by the spatial 437 

localization of microorganisms is in agreement with previous results from individual-based 438 

modelling (Allison, 2005; Kaiser et al., 2015; Portell et al., 2018). SpatC model results, however, 439 

suggest a less severe impact of cheaters on microbial functioning and C turnover. In addition, our 440 

approach is able to considerably extend the total spatial dimension typically covered by individual-441 

based modelling approaches (Allison, 2005; Folse III and Allison, 2012; Kaiser et al., 2015) by 442 

several orders of magnitude, from ≤ 1 mm2 to 100 cm2. The INDISIM-SOM model (Gras et al., 2010, 443 

2011; Banitz et al., 2015) is conceptually similar to SpatC. INDISIM-SOM simulates SOM turnover 444 

in 1 g of soil and splits the spatial domain into 30 x 30 grid cells of 310 µm, each containing two 445 

functional groups of “superindividuals”. Each superindividual reflects a homogenous microbial 446 

community of 50000 (heterotrophs) and 5000 (autotrophs). In comparison to their approach, SpatC 447 

provides a higher temporal resolution, considers three functional types of heterotrophic 448 

microorganisms, and covers a larger spatial extend than can be achieved with such individual-based 449 

modelling approaches. 450 

SpatC scenario simulations provide predictions of the emergent macroscopic (cm) microbial and C 451 

dynamics resulting from small-scale (mm) distribution characteristics of microbial functional 452 

decomposer communities. Microbial biogeography at the microhabitat scale (µm) is thereby 453 

considered by using a spatial stochastic model to derive microbial distribution patterns at the µm-454 

scale, which are aggregated to mm-scale distributions of microbial communities. SpatC predictions 455 

of microbial and C dynamics are, however, dependent on the assumed biokinetic rate laws at the mm-456 
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scale, which have been shown to differ from rate laws at µm-scale (Chakrawal et al.; Wang and 457 

Allison, 2019). Similarly, an exploratory analysis of the effects of changing key biokinetic 458 

parameters on model dynamics revealed parameters related to enzyme dynamics and growth of 459 

oligotrophs have severe impact on the modeled microbial and C dynamics and can potentially 460 

increase the observed mild effect of spatial heterogeneity (Supplementary figs. 25-27). The 461 

combination of statistical and process-based modelling applied with SpatC provides an upscaling 462 

approach that can consider feedbacks between microhabitats, microbial communities and soil 463 

microbial and physical processes up to the pedon scale. Hence, our study contributes to resolving the 464 

challenge of upscaling microbial regulation mechanisms from the microhabitat scale to larger scales 465 

relevant for soil management and global environmental change (Baveye et al., 2018).  466 

The developed SpatC model considers the control of C turnover by spatial heterogeneity of 467 

functional microbial groups. However, SpatC currently simplifies the micro-scale distribution of 468 

organic C, which probably has a strong impact on C dynamics at larger scales. The simulated spatial 469 

patterns C decomposition are in alignment with experimentally observed patterns of extracellular 470 

enzyme activity (Kravchenko et al., 2019). Experimental evidence further suggests that C turnover is 471 

strongly determined by pore characteristics (Kravchenko and Guber, 2017; Juyal et al., 2019) and 472 

microbial activity is highest in pores between 10-300 µm (Kravchenko et al., 2019). Thus, an 473 

improved description of microbial C turnover could be gained by integrating realistic descriptions of 474 

soil pore structure based on X-ray computed tomography data (see e.g., Portell et al., 2018) in 475 

combination with a meaningful correlation structure of substrate and microbial group distribution 476 

using evidence-based spatial statistical modelling. In addition, the representation of biological 477 

community interactions remains limited. Crucial extensions could include the explicit representation 478 

of enzyme dynamics (Burns et al., 2013; Moyano et al., 2018; Wang and Allison, 2019) and the 479 

implementation specific fungal traits (Yang and van Elsas, 2018). Similarly, microbial dispersal and 480 

chemotactic behaviour (Valdés-Parada et al., 2009; see e.g., Gharasoo et al., 2014; Locey et al., 2017; 481 

König et al., 2018) should be included in future. Other promising extensions are quorum sensing 482 

(Williams et al., 2007; Melke et al., 2010; Mund et al., 2016; McBride and Strickland, 2019; Schmidt 483 

et al., 2019) as regulator of biological interactions, as well as to improve the modelling of top-down 484 

control of microbial communities by predators and viruses (Pratama and van Elsas, 2018; Thakur and 485 

Geisen, 2019). Extensions along these lines will provide further insights into the biological controls 486 

on soil organic matter turnover by generating model-based hypotheses that can be tested against 487 

experimental evidence. 488 

Soil organic matter formation is an emergent process. It cannot be directly predicted from community 489 

composition, but arises from non-linear feedbacks and interactions between microbial community 490 

members. To understand and predict these biogeochemical feedbacks it is crucial to combine 491 

microbial traits with the spatial arrangements between microorganisms in their micro-environment 492 

and their corresponding substrate. A key finding of our work is that the degree of spatial 493 

heterogeneity of microbial communities may control the relative contribution of functional microbial 494 

groups to biogeochemical processes and the degree of functional redundancy within microbial 495 

communities. Our simulation results suggest that metabolic activation/ deactivation strategies of 496 

microbial functional groups may be a key control of C turnover in soil. These model-based 497 

implications could be tested with targeted experiments that enable spatially resolved measurements 498 

of microbial community composition and C fluxes at the microhabitat scale by extending existing 499 

approaches (e.g., Poll et al., 2006) and using novel techniques such as flow cells (Krueger et al., 500 

2018) in combination with functional multilayered omics approaches (Jansson and Hofmockel, 2018; 501 

Sergaki et al., 2018). 502 
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Table 1 Parameterization of functional microbial traits 841 

1 according to ranges estimated by Pagel et al. (2016) 842 

Parameter Interpretation Functional group Units 

  O C CC  

Growth 

,max i
1 maximum growth rate coefficient 0.1 2 10 d-1 

,i Sk 1 specific substrate affinity to small 

polymers 

10 1 0.5 g mg-1 d-1 

,i Mk 1 specific substrate affinity to monomers 50 20 10 g mg-1 d-1 

,S iY 2 growth yield on small polymers 0.2 0.2 0.2 1 

,M iY 2 growth yield on monomers 0.6 0.3 0.3 1 

Maintenance 

,max im 1 maximum maintenance rate coefficient 0.02 0.1 0.05 d-1 

mY 2 maintenance yield 0.2 0.2 0.2 1 

i
3 reduction factor of maintenance 

requirements in dormant state 

0.1 0.001 0.001 1 

Dormancy 

,d ik 3 deactivation rate coefficient 0.1 1 5 d-1 

,r ik 3 reactivation rate coefficient 0.1 0.1 5 d-1 

,thres iC 3 monomer threshold concentration for 

deactivation and reactivation 

0.001 0.01 0.001 mg g-1 
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2 based on reported ranges of carbon use efficiencies (Manzoni et al., 2012, 2018; Geyer et al., 2019). 843 

Low maintenance yields are assumed to reflect that maintenance-induced microbial decay only partly 844 

covers the maintenance requirements 845 

3 based on Stolpovsky et al. (2011, 2016) and Mellage (2015) 846 

 847 

  848 



 
29 

Table 2 Other parameters and initial values of SpatC model simulations 849 

Parameter Value Units Interpretation 

Inhibition and maintenance 

Ik 1 1 g mg-1 (soil C-1) d-1 inhibition coefficient of active copiotrophs 

on oligotrophs and copiotrophic cheaters 

,m Lf 2 0.6 1 proportion of large polymers formed from 

dead microbial biomass due to 

maintenance 

,m Sf 2 0.3 1 proportion of small polymers formed from 

dead microbial biomass due to 

maintenance 

,m Mf 2 0.1 1 proportion of monomers formed from 

dead microbial biomass due to 

maintenance 

Enzyme kinetics 

,max Lv 3 0.01 d-1 maximum reaction rate of enzymes 

targeting large polymers 

,max Sv 3 10 d-1 maximum reaction rate of enzymes 

targeting small polymers 

LK 3 10 mg g-1 (C soil-1) half-saturation coefficients of enzymes 

targeting large polymers 

SK 3 1 mg g-1 (C soil-1) half-saturation coefficients of enzymes 

targeting small polymers 

Sf 2 0.2 1 proportion of small polymers produced 

from enzymatic decomposition of large 

polymers 

Predation 

,P Ok 4 0.1 d-1 maximum predation rate on oligotrophs 
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,P Ck 4 0.5 d-1 maximum predation rate on copiotrophs 

,P CCk 4 0.5 d-1 maximum predation rate on copiotrophic 

cheaters 

Pk 4 5 10-6 d-1 decay rate coefficient of predators 

O
2 0.05 1 reduction factor of predation on dormant 

oligotrophs 

C
2 0.2 1 reduction factor of predation on dormant 

copiotrophs 

CC
2 0.2 1 reduction factor of predation on dormant 

copiotrophic cheaters 

,P Lf 2 0.15 1 proportion of released microbial biomass 

transferred to large polymers by predation 

,P Sf 2 0.12 1 proportion of released microbial biomass 

transferred to small polymers by predation 

,P Mf 2 0.03 1 proportion of released microbial biomass 

transferred to monomers by predation 

PY 4 0.2 1 growth yield of predators 

Sorption5 

,F SK  5 S Sm m
ml g  Freundlich sorption coefficient of small 

polymers 

,F MK  0.5 M Mm m
ml g  Freundlich sorption coefficient of 

monomers 

Sm  0.7 1 Freundlich sorption exponent of small 

polymers 

Mm  0.4 1 Freundlich sorption exponent of 

monomers 
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S  0.05 d-1 rate coefficient of small polymer mass 

transfer between the sorbent regions 

M  1 d-1 rate coefficient of monomer mass transfer 

between the sorbent regions 

,S Sf  0.5 1 fraction of small polymer region 1 

sorption sites 

,M Sf  0.9 1 fraction of monomer region 1 sorption 

sites 

Transport and soil characteristics6 

SD  10 mm2 d-1 diffusion coefficient of small polymers in 

water 

MD  50 mm2 d-1 diffusion coefficient of monomers in 

water 

B  1.2 g cm-3 bulk density of soil 

S  2.65 g cm-3 density of solid phase 

  0.3 1 volumetric water content 

Initial values 

 0LC t  10 mg g-1 (C soil-1) initial concentration of large polymers 

 0SC t  0.1 mg g-1 (C soil-1) initial concentration of small polymers 

 0MC t  0.01 mg g-1 (C soil-1) initial concentration of monomers 

 0P t 4 1 10-5 mg g-1 (C soil-1) initial concentration of predators 

1 fixed to a value that ensures significant inhibition at high abundances of copiotrophs 850 

2 no data available, based on logical consideration about the composition of microorganisms 851 
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3 coefficients of Michaelis-Menten kinetics were set based on ranges given in (Wang et al., 2013; 852 

Sinsabaugh et al., 2014) 853 

4 predation parameters are poorly constrained, values were set based on reported ranges (Coleman et 854 

al., 2017, 218; Komarov et al., 2017), initial values were set to lower limits of experimental estimates 855 

of soil faunal C budgets (Pausch et al., 2018) 856 

5 values of sorption parameters were based on sorption characteristics of small polymers and 857 

monomers (Kaiser and Zech, 1997; Vandenbruwane et al., 2007; Fischer et al., 2010; Oren and 858 

Chefetz, 2012; Pagel et al., 2014, 2016) 859 

6 Pagel et al. (2014, 2016) 860 

  861 



 
33 

 862 

Figure 1 Conceptual scheme of coupled carbon turnover and biochemical interactions implemented 863 

in the 2D spatially explicit trait-based soil C model (SpatC). Solid arrows indicate carbon fluxes. 864 

Dashed green arrows depict the controls on extracellular depolymerisation reactions. CM, CS, and CL 865 

stands for monomers, small polymers and large polymers, respectively. Superscript ‘S’ indicates 866 

sorbed phase concentration of CM and CS. Monomers and small polymers may be transported by 2D 867 

diffusion (not shown). Microbial communities consist of active (superscript ‘a’) and dormant 868 

(superscript ‘d’) oligotrophs (BO), copiotrophs (BC) and copiotophic cheaters (BCC). P stands for 869 

predators.   870 
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 871 

Figure 2 Schematic illustration of trade-off in functional microbial traits as implemented in SpatC 872 

(see also Table 1).  873 



 
35 

 874 

Figure 3 Microbial biogeography triggers the emergence of spatiotemporal patterns of carbon 875 

utilization and microbial succession. Each square exemplifies the spatial distribution of C pools (left) 876 

and the fraction of microbial functional groups of the total microbial biomass (right) for low (σ2=0.1) 877 

and strong (σ2=6) initial spatial clustering of microbial communities within a 100 x 100 mm2 soil 878 

domain for one stochastic realization.  879 
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 880 

Figure 4 Microbial biogeography triggers only small changes in carbon utilization. Plots show C 881 

turnover dynamics (left) and final values (right) of dissolved monomers and small polymers as well 882 

as total microbial biomass C in response to spatial heterogeneity of the initial distribution of 883 

microorganisms (σ2 = 0.1, 0.5, 2, 6). Values are aggregated over the 100 x 100 mm2 soil domain. 884 

Lines indicate the medians of 100 realizations and shaded areas show minimum and maximum values 885 

(left). Violin plots (right) are scaled to the same width and show the relative distribution of final 886 

values. In the inserted box plots, horizontal lines indicate median values, boxes show interquartile 887 

ranges (IQR) and whiskers reflect values within maximum 1.5  IQR.  888 
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 889 

Figure 5 Microbial biogeography most strongly affects dynamics of fast-growing copiothrophs. Plots 890 

show the succession (left) and final values (right) of microbial functional groups (total biomass) in 891 

response to spatial heterogeneity of the initial distribution of microorganisms (σ2 = 0.1, 0.5, 2, 6). 892 

Values are aggregated over the 100 x 100 mm2 soil domain. Lines indicate the medians of 100 893 

realizations and shaded areas show minimum and maximum values (left). Violin plots (right) are 894 

scaled to the same width and show the relative distribution of final values. In the inserted box plots, 895 

horizontal lines indicate median values, boxes show interquartile ranges (IQR) and whiskers reflect 896 

values within maximum 1.5  IQR.  897 
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 898 

Figure 6 Spatial clustering of microbial decomposers limits activity and access to monomers by 899 

copiotrophic cheaters. Moderate clustering facilitates the access to monomers of copiotrophs and 900 

their contribution to total biomass. The first row shows the contribution of microbial functional 901 

groups (active and dormant biomass) to total microbial biomass with respect to time. The second and 902 

the third row show a phase-space plot of microbial functional group fractions against dissolved 903 

monomers (second row) and dissolved small polymers (third row). Each model output is shown in 904 

response to the spatial heterogeneity of the initial distribution of microorganisms (σ2 = 0.1, 0.5, 2, 6). 905 

Lines indicate medians of 100 realizations (aggregated over the 100 x 100 mm2 soil domain). Shaded 906 

areas (first row) show minimum and maximum values. 907 


