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Abstract

The agglomeration of small poorly wetted alumina particles in a stirred tank is investigated. For different ex-
perimental conditions, two bivariate probability densities for the area-equivalent diameter and aspect ratio of
primary particles and agglomerates, respectively, are determined, using 2D image data from an inline camera
system. Throughout each experiment, these densities do not change since the geometries of primary particles are
unaffected by the experimental conditions, while large agglomerates fragment into multiple smaller ones, which
results in an equilibrium state regarding the distribution of agglomerate descriptors. Mixtures of these densities
are used to model the contents of the stirred tank at each time step of the experiments. Analytical functions,
whose parameters characterize the agglomeration dynamics, are fitted to the time-dependent weights of these
mixtures. This enables a quantitative comparison of agglomeration processes, highlighting the impact of mixing
intensity on the joint distribution of agglomerate descriptors.

Keywords: Hydrophobic agglomeration, Inline probe, Area-equivalent diameter, Aspect ratio, Bivariate proba-
bility density, Archimedean copula.

1 Introduction

The application case comes from liquid metal filtration, since undesired inclusion particles agglomerate through
turbulent collision, forming larger, multi-component particles that are easier to remove [1]. The increased size of
agglomerated inclusion particles leads to augmented particle deposition at the inner surface of ceramic depth fil-
ters, which are utilized for the cleaning of molten metal from inclusion particles [2]. This enables metallurgists to
optimize steelmaking for cleaner and more durable high-quality products. Since metal melts are opaque and high
temperatures are necessary for maintaining their molten state, it is impractical to study agglomeration processes in
melts. Therefore, aqueous sodium chloride (NaCl) solutions in combination with poorly wetted, i.e., hydrophobic,
particles often serve as a model [3]. In the present paper, we investigate the agglomeration of silanized alumina
particles within a stirring tank filled with 0.75 mol/l NaCl at the isoelectric point of pH 7.3. The silanization of
the solid surface configurates a wetting angle of 134◦, which results in a poor wettability of the alumina particles
by the electrolyte solution, similar to the poor wettability of non-metallic inclusion particles by molten metal [4].
Hydrophopic agglomerates are generally larger and more stable than hydrophilic ones, as nanobubbles on the surface
of hydrophobic particles form capillary bridges [2, 4, 5]. Besides the purification of metals, agglomeration processes
hold significance in the efficient separation of suspensions into liquid and particles [6]. Comprehending agglomer-
ation dynamics involves studying factors such as the turbulent flow field, particle size, wettability, viscosity, and
temperature.

The aim of the present paper is to complement the results which have been achieved in [4] for various agglomeration
experiments, where mixtures of normal distributions have been fitted to single particle descriptors, e.g. the aspect
ratio, of primary particles and agglomerates segmented from 2D image data measured in a stirred tank. More
precisely, the status of agglomeration processes has been investigated at 52 time steps over the course of 47 minutes
long batch agglomeration experiments. Specifically, the parameters of the underlying normal distributions of the
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particle descriptors of primary particles and agglomerates, respectively, as well as the mixing weights, i.e., the time-
dependent number/volume-based fractions of agglomerates (or primary particles) of all particles in the stirred tank,
have been estimated. One of the key observations made in [4] is that the parameters of the normal distributions
remain rather constant throughout the 52 time steps, whereas the mixing weights significantly change over time.
This indicates that the descriptors of primary particles as well as agglomerates follow fixed distributions, which do
not depend on the current stage of the agglomeration process, whereas the ratio of primary particles to agglomerates
changes along the process.

Building on the results obtained in [4], the present paper extends the probabilistic modeling approach of hydropho-
bic agglomeration based on bivariate data of two-dimensional particle descriptor vectors, simultaneously considering
the area-equivalent diameter and the aspect ratio of primary particles and agglomerates. In particular, instead of
focusing on one-dimensional normal distributions, a large variety of parametric probability distributions [7] is consid-
ered as candidates for the (marginal) distributions of single particle descriptors. Furthermore, the fact is taken into
account that size and shape descriptors of particles can be correlated. For example, in some cases, small particles can
be nearly spherical, whereas large particles are elongated. Thus, in general, the joint (bivariate) probability density
of area-equivalent diameter and aspect ratio is not simply the product of the corresponding marginal densities, but
a more sophisticated construction based on so-called copulas [8] is needed. By means of an iterative approach, we
then fit bivariate probability densities f∗

pp and f∗
agg of area-equivalent diameter and aspect ratio for both primary

particles and agglomerates. Subsequently, these time independent densities are used to determine the fractions m∗
t

of agglomerates for each time step t of the agglomeration process. Finally, linear combinations (1−m∗
t )f

∗
pp+m∗

t f
∗
agg

of f∗
pp and f∗

agg, so-called mixtures, are used to model the contents of the stirred tank at each time step t of the
experiments. Note that this mixture only depends on the fractions m∗

t , whereas the densities f∗
pp and f∗

agg remain
constant throughout the 52 time steps, which is based on a model assumption justified in Section 2.1.

The results obtained in the present paper offer opportunities for the optimization of hydrophobic agglomeration
processes. For example, for given energy inputs of the stirrer, various specifications of process parameters and feeded
primary particles can be considered in order to determine their impact on the output of the agglomeration process.
In particular, in future research quantitative relationships can be derived which map process parameters and model
parameters of size and shape descriptors of feeded primary particles onto model parameters as well as the fraction of
agglomerates obtained at the end of the agglomeration processes. A key advantage of our approach is that it allows
for the determination of the initial state of agglomeration, which is crucial for characterizing the entire agglomeration
process. By tracking how agglomeration evolves over time, the agglomeration process can be better understood. This
insight into the temporal behavior of agglomeration processes can enable targeted adjustments to process conditions,
such as stirring intensity or reactant concentrations, to achieve desired agglomerate properties. By means of these
relationships, the following inverse problem can be investigated. Namely, for given (desired) model parameters of size
and shape descriptors of agglomerates at the end of agglomeration processes, (optimal) values of feed and process
parameters can be determined which are mapped onto the predefined model parameters of agglomerates.

The rest of the present paper is organized as follows. First, in Section 2, some preliminaries are given regarding
the hydrophobic agglomeration process considered in this paper, followed by a short explanation of the methods
exploited for the acquisition and processing of image data. In Section 3, the data of one of the experiments (DV1)
are used as an example to explain the copula-based procedure which we apply to parametrically model the bivariate
probability distributions of particle descriptor vectors. The results obtained in this paper are presented in Section 4
and discussed in Section 5. Section 6 concludes.

2 Some preliminaries

2.1 Description of the hydrophobic agglomeration process

This section briefly describes the particle system and experimental setup of the hydrophobic agglomeration process
considered in [4]. Recall that agglomeration is the adherence of particles to each other after collision [9], where a
system of particles can be subdivided into so-called primary particles and agglomerates. Therefore, in the following
the term “particle” is used to refer to either a primary particle or an agglomerate. Note that the mentioned collision
of particles requires not only a minimum level of turbulence within the liquid where the particles are situated but
also a sufficient number/volume-based fraction of particles (i.e., number of particles divided by the volume of the
suspension). As agglomeration reaches saturation, the number/volume-based fraction of particles decreases, causing
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particles to become too sparsely distributed for further collisions. This results in a minimum number/volume-based
fraction of particles.

A primary particle is a single solid particle, which means that its size and shape do not change throughout
the course of the agglomeration process. An agglomerate, in contrast, is a particle consisting of multiple primary
particles that adhere to each other. Since the members of a set of adhering primary particles can change during an
agglomeration experiment, the size and shape of the agglomerate associated with such a set can also change over time.
However, a single agglomerate’s variability in size and shape does not necessarily contradict the assumption (made
in the present paper) that the agglomerates’ particle descriptors follow the same probability distribution during
the entire agglomeration process. This assumption is strengthened by the circumstance that besides the growth of
agglomerates, large agglomerates can be redispersed by turbulence into multiple smaller ones, which results in an
equilibrium state regarding the distribution of agglomerate descriptors.

2.1.1 Experimental setup

In [4] the agglomeration of hydrophobic fines in a stirred tank was investigated by inline probe imaging as illustrated
in Figure 1.

Figure 1: Experimental setup of the hydrophobic agglomeration process; taken from [4].

The experimental setup in Figure 1 shows a “feed-suspension”, which consists of silanized alumina particles
and ethanol. The silanization ensures the hydrophobicity of the particles, whereas the ethanol functions as an
organic solvent for dispersing the particles into almost exclusively primary particles. In Figure 2 a scanning electron
microscopy (SEM) image is displayed, which highlights the almost perfectly spherical shapes of the primary particles.
as well as a histogram of the number-based particle size distribution.

Figure 2: SEM image of silanized alumina particles (left), and histogram of the number-based particle size distribution
from inline probe data for primary particles dispersed in pure ethanol (right); taken from [4].

The tank shown in Figure 1 is equipped with four baffles and is, prior to the addition of the “feed-suspension”,
solely filled with 3.5 l of 0.75 mol/l NaCl solution with a pH-value adjusted to the isoelectric point of pH 7.3 for
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silanized alumina particles [4]. In the experiments analyzed in the present paper, two different stirrer designs, both
with 5 cm diameter, are considered.

The inclined blade (IB) stirrer uses four blades that are inclined by 45 degrees. This stirrer leads to the generation
of an axial flow of the liquid from the top towards the bottom and subsequently recirculates the liquid along the
walls of the tank. In contrast, the use of the Rushton-turbine, which is equipped with six upright blades, leads to
the generation of axial flows from both, below and above the stirrer, and forwards them in radial directions. For
reaching a constant stirrer speed of 450 rpm that is used across all experiments considered in this paper, the Rushton
turbine requires a three times higher power input than the IB stirrer. As a consequence, the flow induced by the
Rushton-turbine results in a three times higher (mass averaged) energy dissipation rate ε in comparison to the flow
induced by the IB stirrer [10], see Table 1. Note that ε is determined by dividing the power input of the stirrer
running at 450 rpm by the mass of the liquid in the tank, which is constant across all considered experiments in
Table 1 that describes the three different configurations of the experiments discussed in this paper.

experiment stirrer
ε in
W/kg

ultrasound

DV1/DV2 Rushton-turbine 0.3 yes
UDV1/UDV2 Rushton-turbine 0.3 no

IB3 inclined blade (IB) 0.1 yes

Table 1: Configuration of experiments, where DV2 and UDV2 are repetitions of DV1 and UDV1, respectively.

Specifically, the considered experiments are denoted by DV1, DV2, UDV1, UDV2 and IB3. Here, DV means
“dispersed version”, and UDV stands for “undispersed version”, indicating whether ultrasound was applied, i.e.,
whether the sonotrode was running in the dispersion loop, to further disperse the particles contained in the “feed-
suspension” that had already been dispersed to some extent by ethanol. By DV2 and UDV2, repetitions of DV1
and UDV1 are denoted. This means that the ratio of agglomerates to primary particles at the beginning of the
experiments without ultrasonic dispersion of preexisting agglomerates, namely UDV1 and UDV2, should be higher
than for the other experiments listed in Table 1.

2.1.2 Breakage behavior of agglomerates

The energy dissipation rate ε mentioned in Section 2.1.1 quantifies the amount of energy that is transferred from the
stirrer to the liquid inside the stirred tank and thus serves as a measure for the energy available for the generation
of turbulence. Therefore, the energy dissipation rate is positively correlated with the number of occurring particle
collisions. Furthermore, the energy dissipation rate ε is relevant because of its influence on the Kolmogorov microscale
η of the turbulence, which is given by

η =

(
ν3

ε

)1/4

, (1)

where ν is the kinematic viscosity. Particles that are larger than η are exposed to greater shear forces that can cause
agglomerates to redisperse into multiple smaller particles [2]. This means that for a larger ε smaller agglomerates can
break due to shear forces. Therefore, η represents the approximate maximum size of agglomerates under turbulence.

2.2 Acquisition and processing of image data

In this section we briefly recall the methods used in [4] for the acquisition and processing of image data.

2.2.1 Inline camera system

Primary particles and agglomerates in the stirred tank were captured with the inline camera probe SOPAT PL
(SOPAT GmbH, Germany). The probe’s immersible shaft of 12mm diameter reaches 3.5 cm into the stirred tank.
A built-in strobe allows for a good illumination of even the smallest particles. At the end of the probe a rhodium
reflector is positioned at a distance of 4mm to the camera lens. The large distance to the lens ensures that the
particles in the stirred tank are sampled representatively. The camera system captures 8-bit grayscale images with a
resolution of 2464×2056 square-shaped pixels, where each pixel has a side length of 0.2646 µm. Figure 3 (left) shows
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a typical captured image, where segmented particles are outlined in red. Note that pixels that belong to particles
tend to have larger grayscale values than pixels that belong to the background. In addition, Figure 3 (right) shows
the distribution of grayscale values of the pixels in a total of 52,000 images captured for the experiments listed in
Table 1.

Figure 3: Contrast enhanced image (left) captured with SOPAT PL with segmented particles outlined in red,
histogram (right) of grayscale values of the pixels in all images captured for the experiments listed in Table 1.

The following 47 minutes long procedure is performed for each experiment considered in this paper. First, the
suspension is added to the tank with the stirrer already running. After a mixing period of 30 seconds, the image
acquisition starts at time step t = 1. Then, within ten seconds, the camera system captures 200 images. After those
ten seconds and an additional waiting period of 45 seconds, i.e., 55 seconds after t = 1, time step t = 2 is reached.
For t = 2, the same imaging procedure as for t = 1 is performed. Overall, this procedure is repeated for 52 time
steps, where 200 images are acquired for each time step t ∈ T = {1, 2, . . . , 52}.

2.2.2 Segmentation algorithm

This section summarizes the image preprocessing and segmentation steps performed in [4], where as a first step, a
few undesirable effects occurring in the image data had to be removed. In some images, particles are observed that
deposit directly on the lens of the probe, which appear relatively large. Moreover, these particle depositions may
remain on the lens for multiple frames. Since considering these particles would lead to a non-representative particle
distribution, it is desirable to skip them in the segmentation algorithm. Furthermore, there are particles that appear
to be out of the focal plane. Similar as the depositions on the lens they show rather blurry edges, compare Figure 3
(left).

The initial step of the segmentation algorithm involves applying a bilateral Gaussian filter [11] to achieve image
smoothing. For each pixel, this filter computes a convex combination of neighboring pixel values within a predefined
window. The weights in these convex combinations depend on the distance between the pixels, taking into account
both their spatial positions and grayscale value differences. The inclusion of grayscale value differences in the filter
aims to preserve edges.

Even though particles appear to be brighter than the background, binarizing images with a single threshold is not
suitable for reliably segmenting the particles. This is due to significantly different grayscale values of pixels associated
with particles across different areas of the same image which is the result of variations in particle concentration, out-
of-focus particles, and particles being attached to the lens. To address this, a range filter is applied to the image. In
doing so, each pixel of the image is assigned the span of values of all neighboring pixels in a 17× 17 window around
the pixel. Thus, this filter enhances particle edges while disregarding out-of-focus particles. This aims to distinguish
particles in focus from out-of-focus particles and background. The resulting range-filtered image is then thresholded
by setting pixels below a threshold of 9 to zero, where the pixels of unprocessed 8-bit images have grayscale values
in {0, 1, . . . , 255}, see Figure 3. After thresholding, a morphological closing operation [12] aims to remove small
connected components of non-zero pixels with 50 pixels or fewer, where the structuring element has a circular shape
with a diameter of 119 pixels. The remaining connected components of non-zero pixels represent regions of interest
(ROIs) for further processing.
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To perform binarization, each identified ROI is processed separately. For a reliable segmentation of particles in
a ROI, a combination of two binarization techniques was used: global binarization with an image specific constant
threshold and a local binarization method, which computes local thresholds in the ROI based on local mean grayscale
values. The results from both methods are combined by setting a pixel value to one if it exceeds at least the lower
threshold of the two techniques. On the one hand, this combination is necessary due to the possibly large range in the
unobservable z-direction in which larger agglomerates extend resulting in a wide range of grayscale values. For such
particles, the local binarization method is inapt and a global binarization method is required. On the other hand,
the global binarization method’s identification of edges of blurry objects can be unprecise. Thus, neither method is
suitable to be utilized independently.

(a) (b)

Figure 4: (a) Number nt of particles segmented at time step t ∈ T for the experiments DV1, DV2, UDV1, UDV2
and IB3. (b) Mean number of particles of experiments DV1 and DV2 (green) as well as UDV1 and UDV2 (orange)
at time step t ∈ T .

For each of the five experiments listed in Table 1, Figure 4 shows the number of particles nt extracted from
the grayscale images from the corresponding time step t ∈ T . Note that the decreasing number of particles in all
experiments is not only caused by agglomeration where multiple primary particles are combined to a single multi-
component particle. There is a small quantity of particles, mostly the larger ones, that adhere to the baffles of the
tank or immobilize at the gas-liquid interface at the top of the suspension in the stirred tank, see Figure 1, where
they are not captured by the inline probe.

3 Stochastic modeling of particle descriptor vectors

This section uses the data of experiment DV1 as an example to explain the procedure which we apply to parametrically
model the probability distributions of particle descriptor vectors for each time step t ∈ T . First, in Section 3.1, we
introduce the geometrical particle descriptors considered in this paper. In Section 3.2, we provide some fundamentals
of the copula-based approach which we exploit to model the joint distribution of descriptor vectors, where we begin
with modeling the marginal distributions of individual components. More precisely, we fit univariate parametric
probability densities to the area-equivalent diameter and aspect ratio of the particles measured in experiment DV1
at time step t = 1, see Section 3.2.1. Then, in Section 3.2.2 the joint (bivariate) probability density of these two
particle descriptors is modeled by means of so-called Archimedean copulas. The use of this class of copulas has
the advantage that associated copulas typically have relatively few parameters to describe bivariate densities while
offering a broad range of different copula types to flexibly capture various dependency structures. A small number
of parameters has the advantage of preventing dependency structures from being overfitted, especially when only a
limited amount of data is available. In comparison, non-parametric methods for modeling bivariate densities, such
as kernel density estimation, can be deployed. However, since they are more flexible than copula-based approaches,
they also require more data for fitting purposes—in particular to avoid overfitting [13].

The copula-based fitting of an (initial) bivariate density for descriptor vectors of agglomerates is explained in
Section 3.3, whereas Section 3.4 deals with iterative adjustments of the fitted bivariate probability densities. Finally,
the model validation considered in Section 3.5 provides tools for evaluating the quality of the developed model.
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3.1 Geometrical particle descriptors

In the following, we will investigate the size and shape of particles extracted from grayscale images as described in
Section 2.2. For that purpose, we consider the area-equivalent diameter d(P ) and aspect ratio a(P ) of the planar
projection P ⊂ R2 of three-dimensional particles.1

Recall that the area-equivalent diameter d(P ) of P is given by

d(P ) = 2

√
area(P )

π
, (2)

where area(P ) > 0 denotes the area of P (in µm2). Furthermore, the aspect ratio a(P ) ∈ [0, 1] of P will be considered,
which may be interpreted as a measure of roundness. In particular, an aspect ratio close to one indicates that a
particle has similar width in all directions, whereas an aspect ratio close to zero corresponds to a particle with an
elongated shape in one direction compared to the others. To formally define the aspect ratio a(P ), we use the Feret
diameters of P , see [14]. For each pair of parallel tangents, which are touching opposite sides of a particle’s outline,
the Feret diameter is given by the perpendicular distance between these tangents. The aspect ratio is then given by

a(P ) =
feretmin(P )

feretmax(P )
, (3)

where feretmin(P ) and feretmax(P ) denote the the minimum and maximum Feret diameters of P , respectively.

3.2 Copula-based modeling approach

As already mentioned above, the first measurement at time step t = 1 shows a dominating share of primary particles.
In fact, histograms of the particle descriptors d(P ) and a(P ) obtained from this measurement indicate unimodal
probability densities, see Figure 5, whereas the presence of a larger fraction of agglomerates would lead to bi- or even
multi-modality. Therefore, as an initial approach for t = 1, it seems to be reasonable to model the distributions of
these descriptors by unimodal densities. However, beginning from Section 3.3 we will consider linear combinations
of two unimodal densities for the descriptors of mixtures of primary particles and agglomerates.

(a) (b)

Figure 5: Parametric fits (red curves) for the univariate probability densities of area-equivalent diameter (a) and
aspect ratio (b) at time step t = 1 for experiment DV1.

3.2.1 Univariate distribution of single particle descriptors

To get an initial model for the univariate distributions of d(P ) and a(P ) at time step t = 1, we consider parametric
families of probability distributions from an extensive list of candidates [7] that includes, for example, the normal

1From now on, for brevity, P is called a particle, instead of saying “planar projection” of a particle.
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distribution. Furthermore, in order to determine suitable parameter values of such distributions we use maximum
likelihood estimation [15]. As a result, for each parametric family we get a distribution that best fits, with a corre-
sponding likelihood. Then, we choose the parametric family with the largest likelihood as model for the distribution
of the descriptor under consideration.

Among the candidate distributions provided in [7], the so-called generalized hyperbolic distribution scored the
largest likelihood for both descriptors, d(P ) and a(P ), where the density fα,β,δ,λ,µ : R → R of the generalized
hyperbolic distribution is given by

fα,β,δ,λ,µ(x) =
eβ(x−µ)

αλ− 1
2 δλ

√
2π

(δ2 + (x− µ)2)λ−
1
2 (α2 − β2)λ/2

Bλ− 1
2
(α

√
δ2 + (x− µ)2)

Bλ(δ
√
α2 − β2)

, (4)

for each x ∈ R, see [16]. Here (β, λ, µ) ∈ R3, (α, δ) ∈ (0,∞)2 with |β| < α are model parameters. After fitting the
parameters α, β, δ, λ, µ to data and inserting them into the right-hand side of Eq. (4), the values of fα,β,δ,λ,µ(x) can
be computed, see the red curves in Figure 5, where two evaluations of the modified Bessel function Bq of the third
kind with index q [17] are required.

For the first time step t = 1 of experiment DV1, considered in this section as an example, we obtained the following
values for the model parameters α, β, δ, λ, µ. Namely, α = 0.7192, β = 0.6848, δ = 2.2314, λ = −1.0307, µ = 5.7799
for the area-equivalent diameter d(P ), and α = 81.5848, β = −72.0746, δ = 0.0301, λ = 0.5085, µ = 0.9208 for the
aspect ratio a(P ).

3.2.2 Bivariate distribution of two-dimensional particle descriptor vectors

If the particle descriptors d(P ) and a(P ) introduced in Section 3.1 could be considered to be independent random
variables, the bivariate probability density f : R2 → [0,∞) of the two-dimensional descriptor vector (d(P ), a(P ))
would be given by

f(x1, x2) = fd(x1)fa(x2) for any x1, x2 ∈ R, (5)

where fd and fa denote the univariate probability densities of d(P ) and a(P ), respectively. However, this approach is
not suitable for correlated descriptors, as it is the case for the descriptors d(P ) and a(P ) of experiment DV1 at time
step t = 1. Here, we obtained a Pearson correlation coefficient of −0.4 for d(P ) and a(P ), which is clearly distinct
from zero.

One way of modeling the joint distribution of correlated particle descriptors is through multivariate normal
distributions [18], with corresponding correlation matrices that capture the particle descriptors’ interdependencies,
like in [4]. However, the marginals of multivariate normal distributions are (univariate) normal distributions, which
are symmetric and therefore inadequate to model our datasets, whose histograms are skewed, see Figure 5. As shown
in Section 3.2.1, other families of parametric probability distributions, like generalized hyperbolic distributions, are
more suitable for modeling the distributions of d(P ) and a(P ). To come up with a parametric model for the joint
distribution of the two-dimensional descriptor vector (d(P ), a(P )), we consider so-called Archimedean copulas [8],
which have been successfully exploited in previous studies of data for particle descriptor vectors, see e.g. [13].
Specifically, copulas allow us to incorporate both flexibility in choosing the families of marginal distributions and
accurate modeling of correlations between particle descriptors into our model.

Sklar’s representation formula. Note that the product formula given in Eq. (5) is a special case of the following
representation formula for bivariate probability densities, which is a differential version of Sklar’s representation
formula for cumuluative distribution functions, see e.g. [8]. Namely, for the bivariate density f : R2 → [0,∞) of the
two-dimensional descriptor vector (d(P ), a(P )) it holds that

f(x1, x2) = c(Fd(x1), Fa(x2))fd(x1)fa(x2) for any x1, x2 ∈ R, (6)

where Fd : R → [0, 1] and Fa : R → [0, 1] are the cumulative distribution functions of d(P ) and a(P ), respectively,
and c : [0, 1]2 → [0,∞] is a so-called copula density, which is the bivariate probability density of a two-dimensional
random vector (U1, U2) such that its components U1 and U2 are uniformly distributed random variables with values
in the unit interval [0, 1]. In particular, in the independent case considered in Eq. (5) it holds that c(u1, u2) = 1 for
any u1, u2 ∈ [0, 1].
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Archimedean copulas. To parametrically model the copula density c : [0, 1]2 → [0,∞] appearing in Eq. (6), we
consider the cumulative distribution function C : [0, 1]2 → [0, 1] of (U1, U2) given by

C(u1, u2) =

∫ u1

0

∫ u2

0

c(v1, v2)dv2dv1 for any u1, u2 ∈ [0, 1]. (7)

Note that C is called the copula corresponding to the copula density c. In this paper we consider a special class
of copulas, so-called Archimedean copulas, whose definition is based on Archimedean generators φ : [0, 1] → [0,∞],
which are continuous, strictly decreasing and convex functions with φ(0) = ∞ and φ(1) = 0, see e.g. [8]. The copula
C : [0, 1]2 → [0, 1] is then given by

C(u1, u2) = φ−1(φ(u1) + φ(u2)) for any u1, u2 ∈ [0, 1]. (8)

Thus, to parametrically model the copula density c appearing in Eq. (6), we consider various parametric families
{φθ : θ ∈ Θ} of Archimedean generators, where Θ ⊂ R is some set of admissible parameters, see Table 2. Then, each
family of generators {φθ : θ ∈ Θ} induces a parametric family of copula densities {cθ : θ ∈ Θ}, where

cθ(u1, u2) =
∂2

∂u1 ∂u2
φ−1
θ (φθ(u1) + φθ(u2)) for any u1, u2 ∈ [0, 1] and θ ∈ Θ. (9)

copula Ali-Mikhail-Haq Clayton Frank Gumbel Joe
Θ [−1, 1) (0,∞) R \ {0} [1,∞) [1,∞)

φθ(u) ln 1−θ(1−u)
u

1
θ (u

−θ − 1) − ln e−θu−1
e−θ−1

(− lnu)θ − ln(1−(1−u)θ)

Table 2: Parametric families {φθ : θ ∈ Θ} of Archimedean generators.

Rotated Archimedean copulas. For each of the parametric families of copula densities {cθ : θ ∈ Θ} introduced in
Eq. (9), we additionally consider three rotated versions, which are obtained by rotations of cθ around the midpoint
(0.5, 0.5) of the square [0, 1]2 by multiples of 90 degrees. In this way, we obtain a two-parametric set of copula
densities {c(θ,r) : θ ∈ Θ, r ∈ R}, where R = {0, 90, 180, 270}. Inserting these copula densities into Eq. (6), we obtain
the parametric bivariate density f(θ,r) : R2 → [0,∞) of the two-dimensional descriptor vector (d(P ), a(P )) for each
(θ, r) ∈ Θ×R, where

f(θ,r)(x1, x2) = c(θ,r)(Fd(x1), Fa(x2))fd(x1)fa(x2) for any x1, x2 ∈ R. (10)

Figure 6 illustrates some effects, which can occur for differently rotated Clayton copula densities c(θ,r), where we
put θ = 1, and for the model parameters α, β, δ, λ, µ of the (generalized hyperbolic) marginal distributions we used
the values stated in Section 3.2.1.

Figure 6: Bivariate density f(θ,r) of (d(P ), a(P )) for differently rotated Clayton copula densities c(θ,r).
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Selection of the best fitting copula. In Section 3.2.1, we selected the best fitting univariate marginal distri-
butions for d(P ) and a(P ), respectively, by evaluating multiple parametric distribution families using maximum
likelihood estimation. Here, we follow a similar approach to select the best fitting combination of an Archimedean
copula type (with its corresponding parameter θ ∈ Θ) given in Table 2 along with a rotation angle r ∈ R, again
based on maximum likelihood estimation. More precisely, we consider the bivariate probability density f(θ,r) given
in Eq. (10), where the densities fd, fa (and their corresponding distribution functions Fd, Fa) on the right-hand
side have already been fitted, see Section 3.2.1. Then, the parameter θ can be determined by means of maximum
likelihood estimation, i.e., by

θ̂ = argmax
θ∈Θ

L(θ;D1), (11)

where the likelihood function L(θ;D1) is given by

L(θ;D1) =
∏

x∈D1

f(θ,r)(x) for each θ ∈ Θ, (12)

and D1 ⊂ [0,∞)× [0, 1] denotes the set of all values x = (x1, x2) available for the descriptor vector (d(P ), a(P )) at
time step t = 1 of the experiment under consideration (i.e., DV1 in this section). Then, we choose the parametric

copula type and the rotation angle, which lead to the largest likelihood L(θ̂;D1), as modeling component for the
bivariate distribution of (d(P ), a(P )).

For the experiment DV1, the Clayton copula with θ = 0.602 and r = 90 provided the best fit among the
Archimedean copula types given in Table 2, see also Figure 7.

Figure 7: Bivariate probability density of (d(P ), a(P )) obtained for time step t = 1 of experiment DV1 via kernel
density estimation (left) and the parametric copula-based fitting procedure described above (right).

3.3 Bivariate distribution of particle descriptor vectors for agglomerates

In Section 3.2 we fitted a bivariate probability density of the two-dimensional particle descriptor vector (d(P ), a(P ))
to data of the first measurement at time step t = 1. However, the goal of this paper is to develop a parametric model
for the joint density of (d(P ), a(P )) for each time step t ∈ T , where from now on we will use the notation ft for this
density, instead of f (= f1) used so far. More precisely, for each t ∈ T we want to represent the (time-dependent)
probability density ft : R2 → [0,∞) of (d(P ), a(P )) in the following form:

ft = (1−mt)fpp +mtfagg, (13)

where mt ∈ [0, 1] is the (number-weighted) fraction of agglomerates at time step t ∈ T , and fpp, fagg : R2 → [0,∞)
denote the bivariate probability densities of the descriptor vector (d(P ), a(P )) for primary particles and agglomerates,
respectively, which do not depend on t ∈ T .

To achieve this goal, we develop an iterative approach, where the bivariate density f determined in Section 3.2

serves as initial choice for fpp. It will be denoted by f
(0)
pp in the following. Furthermore, to get an initial choice

for the bivariate density fagg of agglomerates, denoted by f
(0)
agg from now on, we consider a dataset of values for
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the descriptor vector (d(P ), a(P )) observed at the end of the experiment under consideration, and split it into two
subsets. The reason for this is that we cannot simply assume that the particle system observed at the end of an
experiment consists almost exclusively of agglomerates. Note that such a split was not necessary when determining

the density f
(0)
pp ( = f), since the dataset D1 ⊂ [0,∞) × [0, 1] considered in Section 3.3, i.e., the set of all values

x = (x1, x2) available for (d(P ), a(P )) at time step t = 1, mainly consists of data pairs (x1, x2) corresponding to
primary particles.

To reliably determine a parametric (copula-based) model for the bivariate density f
(0)
agg, we need a sufficiently

large dataset with a high proportion of data pairs (x1, x2) corresponding to agglomerates. Therefore, we consider

the union Dend =
⋃52

t=tend
Dt of datasets associated with several time steps close to the end of an experiment, where

tend = min{t ∈ T : nt ≤ 1.05n52} and Dt denotes the set of all values x = (x1, x2) available for (d(P ), a(P )) at
time step t ∈ T . For experiment DV1 it turned out that tend = 46, which results in a number of particle descriptor
vectors |Dend| = 6128 in Dend, where the so-called cardinality |A| of a set A denotes the number of elements in A,
i.e., in our case, the number of particle descriptor vectors. In contrast, if A is a scalar, |A| more commonly denotes
the absolute value of A. As a consequence of Dend being the union of multiple sets Dt its cardinality |Dend| is much
larger than the number of particles |D52| = 853 observed at the last time step t = 52 of experiment DV1 as desired.

Moreover, to obtain a subset of Dend = {(x(1)
1 , x

(1)
2 ), . . . , (x

(|Dend|)
1 , x

(|Dend|)
2 )}, which mainly consists of particle

descriptor vectors corresponding to agglomerates, we determine an estimate for the (number-weighted) fraction
mend ∈ [0, 1] of agglomerates observed in Dend, see Figure 8.

Figure 8: The values of q25,d, kDend,d
(q25,d) and f

(0)
pp,d(q25,d), used for computing the estimate m̂end given in Eq. (16).

To get a formula for such an estimate, we assume that the dataset Dend is a sample drawn from the bivariate
density fend : R2 → [0,∞) which has the following form:

fend(x) = (1−mend)fpp(x) +mendfagg(x) for each x ∈ R2, (14)

where fpp and fagg are the same bivariate probability densities as in Eq. (13). Furthermore, we assume that the
minimum of the area-equivalent diameters of all agglomerates considered in the given experiment is larger than the

25 percent quantile q25,d of the marginal density fd representing the area-equivalent diameter in f
(0)
pp , which has been

fitted in Section 3.2. This means that fagg,d(q25,d) = 0 and, consequently, Eq. (14) gives that

mend = 1− fend,d(q25,d)

fpp,d(q25,d)
, (15)

where fend,d, fpp,d and fagg,d denote the marginal densities representing the area-equivalent diameter in fend, fpp
and fagg, respectively. Thus, substituting the density fend,d on the right-hand side of Eq. (15) by a Gaussian
kernel density estimate kDend,d

: R → [0,∞) with a bandwidth obtained by Scott’s rule [19] based on the dataset

Dend,d = {x(1)
1 , . . . , x

(|Dend|)
1 }, and replacing fpp,d by f

(0)
pp,d, we get the estimate

m̂end = 1−
kDend,d

(q25,d)

f
(0)
pp,d(q25,d)

. (16)
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Note that for the data obtained in experiment DV1, it turned out that m̂end = 0.764, see Figure 8.
As mentioned above, we can not assume that Dend consists exclusively of data corresponding to agglomerates.

Thus, a fraction of 1− m̂end of data corresponding to primary particles, which are encompassed within the set Dend,

will be disregarded in order to fit the initial choice f
(0)
agg for fagg to the remaining data. To be precise, we use the

bivariate density f
(0)
pp to remove

δ = ⌈(1− m̂end)|Dend|⌉ (17)

descriptor vectors from Dend that are likely to correspond to primary particles, where ⌈x⌉ denotes the smallest integer
which is larger than or equal to x > 0, and the remaining |Dend| − δ data vectors are considered to correspond to
agglomerates.

First, we draw a sample ∆ = {(di, ai) : i = 1, . . . , δ} ⊂ [0,∞) × [0, 1] of δ particle descriptor vectors from a

(slightly) truncated version of f
(0)
pp , using the accept-reject method [20]. Note that this method facilitates sampling

a so-called target density ftar : R2 → [0,∞), by sampling a so-called instrumental density fins : R2 → [0,∞) such
that ftar and fins must satisfy the inequality ftar(x) ≤ M fins(x) for each x ∈ {y ∈ R2 : ftar(y) > 0} of the support
of ftar, where M > 0 is some constant.

In our case, ftar is given by a truncation of f
(0)
pp whose support is restricted to the interval [0, q99.9]× [0, 1]. Here,

q99.9 < ∞ denotes the 99.9 percent quantile of the marginal probability density f
(0)
pp,d of f

(0)
pp , which represents the

area-equivalent diameter of primary particles. Using this truncated version of f
(0)
pp , which is is a bounded function

with bounded support, rules out values of area-equivalent diameter and aspect ratio outside their physically plausible
ranges. Furthermore, for the instrumental density fins, we select the probability density of the uniform distribution

on the rectangle [0, q99.9]× [0, 1], putting M = q99,9 max{f (0)
pp (x), x ∈ [0, q99.9]× [0, 1]}. Then, we can sample ftar by

sampling fins in the following way: We draw a realization x ∈ [0, q99.9) × [0, 1] from fins and a realization u ∈ [0, 1]
from the uniform distribution on the interval [0, 1]. If u ≤ ftar(x)/(M fins(x)), we “acccept” x and, otherwise, we
“reject” it. We repeat this procedure until we get “accepted” a total of δ sample values.

The dataset ∆ = {(di, ai) : i = 1, . . . , δ} ⊂ [0,∞)× [0, 1] obtained in this way is now used to remove δ descriptor
vectors from Dend. Since the values of area-equivalent diameter and aspect ratio are on different scales, we have to
normalize these quantities. For this we use the empirical standard deviations

σ1 =

√√√√ 1

|Dend| − 1

|Dend|∑
i=1

(x
(i)
1 − µ1)2, σ2 =

√√√√ 1

|Dend| − 1

|Dend|∑
i=1

(x
(i)
2 − µ2)2, (18)

where µ1 = |Dend|−1
∑

(d,a)∈Dend
d and µ2 = |Dend|−1

∑
(d,a)∈Dend

a. In the next step, we determine an injective

function p : {1, . . . , δ} → Dend such that the descriptor vectors (x
(p(1))
1 , x

(p(1))
2 ), . . . , (x

(p(δ))
1 , x

(p(δ))
2 ) ∈ Dend can be

considered to correspond to primary particles and, thus, be removed from Dend. To find a suitable function p, we
solve the following optimization problem:

min
p

δ∑
i=1

∥∥∥∥∥
(
di − x

(p(i))
1

σ1
,
ai − x

(p(i))
2

σ2

)∥∥∥∥∥ (19)

where ∥·∥ denotes the Euclidean norm in R2. Note that the minimization problem given in Eq. (19) can be easily
reformulated as a linear assignment problem [21]. Its solution, denoted by p∗ : {1, . . . , δ} → Dend, will be used to

remove the descriptor vectors (x
(p∗(1))
1 , x

(p∗(1))
2 ), . . . , (x

(p∗(δ))
1 , x

(p∗(δ))
2 ) from Dend, which leads to the reduced dataset

Dagg = Dend \
{
(x

(p∗(1))
1 , x

(p∗(1))
2 ), . . . , (x

(p∗(δ))
1 , x

(p∗(δ))
2 )

}
. (20)

Finally, using the methods stated in Section 3.2, we determine the bivariate probability density f
(0)
agg by fitting it to

the dataset Dagg given in Eq. (20).

3.4 Iterative adjustment of the bivariate probability densities f
(0)
pp and f

(0)
agg

In Sections 3.2 and 3.3 we showed how the initial fits f
(0)
pp and f

(0)
agg can be determined for the bivariate probability

densities fpp and fagg of particle descriptor vectors of primary particles and agglomerates, respectively. However,
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these fits are based on the assumption that the dataset D1, introduced in Section 3.2, consists almost exclusively of
desciptor vectors corresponding to primary particles. Thus, possible agglomerates encompassed within this dataset

are erroneously considered for fitting f
(0)
pp . Furthermore, since we used f

(0)
pp to obtain the dataset Dagg given in

Eq. (20), our assumption made on D1 also affects the fit of f
(0)
agg.

We now describe a procedure for adjusting f
(0)
pp and f

(0)
agg iteratively with the goal to successively improve their

goodness-of-fit, which results in a sequence of pairs of probability densities (f
(j)
pp , f

(j)
agg), for j = 1, . . . , J with J ≥ 2

being the number of iteration steps in which we each adjust exactly one of the two probability densities. More

precisely, in each odd iteration step j ∈ {1, . . . , J}, we determine a new probability density f
(j)
pp of primary particles,

leaving the probability density f
(j−1)
agg of agglomerates unchanged. Vice versa, in each even iteration step j ∈

{1, . . . , J}, we determine a new probability density f
(j)
agg of agglomerates and leave the probability density f

(j−1)
pp of

primary particles unchanged. Pseudocode for the iterative fitting procedure is provided in Algorithm 1.

Algorithm 1: Iterative adjustments and selection of best fits

Input: initially fitted densities f
(0)
pp and f

(0)
agg, sets of particle descriptor vectors D1 and Dend.

Output: final fits f∗
pp and f∗

agg

· Compute m̂
(1)
1 using Eq. (22).

· Create D
(1)
pp using Eqs. (24) and (25).

· Fit f (1)
pp to D

(1)
pp and put f

(1)
agg equal to f

(0)
agg.

for j ∈ {2, . . . , 50} do
for z ∈ {1, end} do

· Compute m̂
(j)
z and l

(j)
z using Eqs. (28) and (31).

end
if j ≥ 3 then

if |m̂(j)
1 − m̂

(j−1)
1 | < 0.001 and |m̂(j)

end − m̂
(j−1)
end | < 0.001 then

· J = j
break

end

end
if j odd then

· Compute pp1(x) for all x ∈ D1 using Eq. (30).

· Create D
(j)
pp .

· Fit f (j)
pp to D

(j)
pp and put f

(j)
agg equal to f

(j−1)
agg .

end
else if j even then

· Compute ppend(x) for all x ∈ Dend using Eq. (30).

· Create D
(j)
agg.

· Fit f (j)
agg to D

(j)
agg and put f

(j)
pp equal to f

(j−1)
pp .

end

end
· Determine function ρ using Eq. (32).
· j∗ = argmin

j∈{2,...,J}
ρ(j)− 1

· f∗
pp = f

(j∗)
pp , f∗

agg = f
(j∗)
agg

3.4.1 Algorithm for the computation of f
(1)
pp

As stated in Section 3.2, the probability density f
(0)
pp was fitted to the complete set D1. In the fist iteration step j = 1

we now replace f
(0)
pp by f

(1)
pp , where we fit f

(1)
pp to a subset D

(1)
pp ⊆ D1 which ideally consists of the particle descriptor

13



vectors of all primary particles observed at time t = 1, excluding those of agglomerates. For this, we first determine
an estimate of the fraction m1 ∈ [0, 1] of agglomerates in D1. Similar to Section 3.3, where we determined a 25

percent quantile, we now consider the 75 percent quantile q75,d of the marginal density of f
(0)
agg,d, which represents

the area-equivalent diameters of agglomerates, and assume that q75,d is larger than the maximum of the area-
equivalent diameters of all primary particles considered in the given experiment. This means that fpp,d(q75,d) = 0
and, consequently, Eq. (13) gives that

m1 =
f1,d(q75,d)

fagg,d(q75,d)
, (21)

where f1,d denotes the marginal density representing the area-equivalent diameter in f1. Thus, like in Section 3.3,
substituting the density f1,d on the right-hand side of Eq. (21) by a Gaussian kernel density estimate kD1,d

: R →
[0,∞) based on the first components of the two-dimensional vectors in the dataset D1, and replacing fagg,d by the

marginal density f
(0)
agg,d representing the area-equivalent diameter in f

(0)
agg, we get the estimate

m̂
(1)
1 =

kD1,d
(q75,d)

f
(0)
agg,d(q75,d)

, (22)

where the superscript in m̂
(1)
1 indicates the number of the current (first) iteration step. Note that for the data

obtained in experiment DV1, it turned out that m̂
(1)
1 = 0.079, see Figure 9.

Figure 9: The values of q75,d, kD1,d
(q75,d) and f

(0)
agg,d(q75,d), used for computing the estimate m̂

(1)
1 given in Eq. (22).

We now show how the estimate m̂
(1)
1 given in Eq. (22) can be used for getting a subset D

(1)
pp ⊆ D1. In principle,

we could proceed as in Section 3.3, where we determined the subset Dagg ⊆ Dend using the initial fit f
(0)
pp of fpp.

Analogously to this, we could exploit the initial fit f
(0)
agg of fagg, derived in Section 3.3, in order to get a suitable

subset D
(1)
pp ⊆ D1. Instead, we will use another approach that includes both initial fits f

(0)
pp and f

(0)
agg of fpp and

fagg, respectively. Using fits of the probability densities fpp and fagg of both particle types, primary particles and

agglomerates, we expect to get a subset D
(1)
pp ⊆ D1 that is more representative for particle descriptor vectors of

primary particles than just using a variant of the approach stated in Section 3.3.

More precisely, we consider the estimate f
(1)
1 : R2 → [0,∞) of the bivariate probability density f1 given in Eq. (13),

where
f
(1)
1 (x) = (1− m̂

(1)
1 )f (0)

pp (x) + m̂
(1)
1 f (0)

agg(x) for each x ∈ R2. (23)

The estimate f
(1)
1 of f1 given in Eq. (23) will be used to determine the estimate

pp(1)(x) = (1− m̂
(1)
1 )

f
(0)
pp (x)

f
(1)
1 (x)

(24)
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of the conditional probability pp(x) = (1−m1)fpp(x)/f1(x) that a particle observed at time step t = 1 is a primary
particle, under the condition that this particle has the descriptor vector x, for any given x ∈ [0,∞) × [0, 1]. This
leads to the subset

D(1)
pp =

{
x ∈ D1 : pp

(1)(x) ≥ U (1)
x

}
(25)

of D1, where {U (1)
x , x ∈ D1} is a family of independent random variables, which are uniformly distributed on the

interval [0, 1]. Thus, by means of the methods stated in Section 3.2, we can determine the bivariate probability

density f
(1)
pp by fitting it to the dataset D

(1)
pp given in Eq. (25). Afterwards, f

(1)
agg is put equal to f

(0)
agg as indicated in

the beginning of Section 3.4, where we stated that we only adjust one of the two densities in each iteration step.

3.4.2 Procedure for subsequent adjustment of f
(1)
pp and f

(1)
agg

Recall that we fitted the bivariate probability densities f
(1)
pp and f

(1)
agg (= f

(0)
agg) to suitably chosen subsets of D1 and

Dend, respectively. For constructing these subsets, we estimated the fractions m1 and mend of agglomerates in D1

and Dend by considering the 25 and 75 percent quantiles q25,d and q75,d, where we assumed that fagg,d(q25,d) =
fpp,d(q75,d) = 0. From now on, for each iteration step j ∈ {2, . . . , J}, we consider a different approach in order

to determine estimates m̂
(j)
1 and m̂

(j)
end of m1 and mend, respectively, which will be used for constructing subsets

D
(j)
pp ⊆ D1 and D

(j)
agg ⊆ Dend, to successively improve the fits for fpp and fagg. As indicated at the beginning of

Section 3.4, we then fit f
(j)
pp to D

(j)
pp if j is odd, and fit f

(j)
agg to D

(j)
agg if j is even. We iterate this procedure for

iteratively increasing iteration steps until the following termination condition is met for some iteration step j′ ≥ 3:

if |m̂(j′)
1 − m̂

(j′−1)
1 | < 0.001 and |m̂(j′)

end − m̂
(j′−1)
end | < 0.001, i.e., the estimates for m1 and mend have not changed much

compared to the estimates from the previous iteration, we stop iterating. In order to guarantee termination of this
procedure, the procedure automatically is stopped after iteration step 50. Thus, the number of iterations J is given
by

J = min{j′, 50}. (26)

Note that, in our experiments this condition was never met, i.e., the number of iterations J was always below 50.
More details on the convergence of the iterative fitting procedure can be found in Section 4.3.2 and in Figure 15.

To facilitate the explanation of the following steps, we introduce the variable z ∈ {1, end}. Specifically, for any
j ∈ {2, . . . , J} and z ∈ {1, end}, we consider the likelihood function

L(j)
z (m;Dz) =

∏
x∈Dz

(
(1−m)f (j−1)

pp (x) +mf (j−1)
agg (x)

)
(27)

with some fraction m ∈ [0, 1] of agglomerates. The (maximum likelihood) estimate m̂
(j)
z for the fraction of agglom-

erates in Dz is then given by
m̂(j)

z = argmax
m∈[0,1]

L(j)
z (m;Dz). (28)

Note that in the definitions of the estimators m̂
(1)
end(= m̂end) and m̂

(1)
1 given in Eqs. (16) and (22) only the

area-equivalent diameters of primary particles and agglomerates are taken into account, but not their aspect ratios.

However, after having determined the bivariate probability densities f
(1)
pp and f

(1)
agg in the first step, we now use the

recursive definition of the likelihood function given in Eq. (27) in order to compute the estimate m̂
(j)
z based on

descriptor vectors x ∈ Dz for any j ∈ {2, . . . , J} and z ∈ {1, end}, i.e., in this manner we determine an estimate m̂
(j)
z

of the fraction mz of agglomerates, which provides a good fit with respect to both the area-equivalent diameter and
aspect ratio of particles.

Recall that in Eq. (23) we estimated f1 by f
(1)
1 using the previously determined estimates f

(0)
pp , f

(0)
agg and m̂

(1)
1 .

For each j ∈ {2, . . . , J}, in order to further improve the fit of the bivariate probability densities f1 and fend given

in Eqs. (13) and (14), we now use the estimates f
(j−1)
pp , f

(j−1)
agg of fpp, fagg obtained in the previous iteration step,

as well as the estimate m̂
(j)
z given in Eq. (28) for z ∈ {1, end}. More precisely, for z ∈ {1, end}, we estimate fz by

f
(j)
z : R2 → [0,∞), where

f (j)
z (x) = (1− m̂(j)

z )f (j−1)
pp (x) + m̂(j)

z f (j−1)
agg (x) for each x ∈ R2. (29)
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Furthermore, similar to Eq. (24), the estimate f
(j)
z of fz given in Eq. (29) will be used to determine the estimate

pp(j)z (x) = (1− m̂(j)
z )

f
(j−1)
pp (x)

f
(j)
z (x)

(30)

of the conditional probability ppz(x) = (1 −mz)fpp(x)/fz(x) that a particle observed in Dz is a primary particle,
under the condition that it has the descriptor vector x, for any given x ∈ [0,∞) × [0, 1]. This leads to the subsets

D
(j)
pp =

{
x ∈ D1 : pp

(j)
1 (x) ≥ U

(j)
1,x

}
and D

(j)
agg = Dend \

{
x ∈ Dend : pp

(j)
end(x) ≥ U

(j)
end,x

}
of D1 and Dend, respectively.

Here, {U (j)
1,x, x ∈ D1} and {U (j)

end,x, x ∈ Dend} are families of independent random variables, which are uniformly

distributed on the interval [0, 1]. Finally, by means of the methods stated in Section 3.2, we determine either f
(j)
pp or

f
(j)
agg, depending on whether j is odd or even, fitting the bivariate probability densities f

(j)
pp and f

(j)
agg to the datasets

D
(j)
pp and D

(j)
agg, respectively.

3.4.3 Determining the best fitting pair (f∗
pp, f

∗
agg)

In the previous section we determined a sequence of fits (f
(1)
pp , f

(1)
agg), . . . , (f

(J)
pp , f

(J)
agg) for the bivariate probability

densities fpp and fagg introduced in Eq. (13). However, in general, it is not clear if the goodness-of-fit of (f
(j)
pp , f

(j)
agg)

improves with increasing j. Therefore, in the following, a rule is defined which measures the suitability of (f
(j)
pp , f

(j)
agg).

Recall that by means of Eqs. (27) and (28) we determined the maximum likelihood estimates m̂
(j)
1 and m̂

(j)
end for the

fractions of agglomerates in D1 and Dend, respectively, based on the knowledge of f
(j−1)
pp and f

(j−1)
agg . We now employ

the likelihoods
l(j)z = L(j)

z (m̂(j)
z ;Dz), where j ∈ {2, . . . , J} and z ∈ {1, end}, (31)

as measures for the the suitability of (f
(j)
pp , f

(j)
agg) for each j ∈ {1, . . . , J − 1}. More precisely, we consider the function

ρ : {2, . . . , J} → {2, . . . , 2(J − 1)} which is given by

ρ(j) =
∑

z∈{1,end}

|{l(i)z ; i ∈ {2, . . . , J}, l(i)z ≥ l(j)z }|, (32)

for each iteration step j ∈ {2, . . . , J}. Subsequently, j∗ = argminj∈{2,...,J} ρ(j) − 1 ∈ {1, . . . , J − 1} indicates the

iteration step of our final fits f∗
pp(= f

(j∗)
pp ) and f∗

agg(= f
(j∗)
agg ) for fpp and fagg, respectively, where the corresponding

sum ρ(j∗) of ranks of the likelihoods l
(j∗+1)
1 and l

(j∗+1)
end is the smallest.

Although we fitted f∗
pp and f∗

agg to the sets D1 and Dend, respectively, we assume from now on that f∗
pp and f∗

agg

are well-suited for modeling the mixing components fpp and fagg of the bivariate probability density ft, given in
Eq. (13), for each time step t ∈ T .

3.4.4 Estimating the fraction of agglomerates mt for all t ∈ T

After determining the fits f∗
pp and f∗

agg for the bivariate probability densities fpp and fagg of area-equivalent diameter
and aspect ratio of primary particles and agglomerates, respectively, we can now estimate the fraction of agglomerates
mt for each time step t ∈ T . For that purpose, we consider the probability density f∗

m = (1−m)f∗
pp+mf∗

agg and the
likelihood L∗(m;Dt) =

∏
x∈Dt

f∗
m(x) for any m ∈ [0, 1] and t ∈ T . This leads to the maximum-likelihood estimate

m̂t = argmax
m∈[0,1]

L∗(m;Dt) (33)

of the fraction of agglomerates mt for each t ∈ T . Furthermore, we assume that the estimates {m̂t, t ∈ T} follow an
underlying trend that is described by some parametric function γa,b,λ : T → [a, b] such that

γa,b,λ(t) = a+ (b− a)Fλ

(
t− 1

|T | − 1

)
for each t ∈ T , (34)

i.e., we assume that m̂t ≈ γa,b,λ(t) for each t ∈ T , with parameters a ∈ [0, 1], b ∈ [a, 1] and λ ∈ (0, 1). Note that the
input t−1

|T |−1 = t−1
52−1 of the function Fλ : [0, 1] → [0, 1] in Eq. (34) is in [0, 1], for each t ∈ T , where Fλ denotes the
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cumulative distribution function of the continuous Bernoulli distribution [22], which is given by

Fλ(x) =

x, if λ = 1/2,
λx(1− λ)1−x + λ− 1

2λ− 1
, otherwise,

(35)

for each x ∈ [0, 1]. Note that the parameters a, b, λ in Eq. (34) are closely related with the dynamics of the
agglomeration experiments considered in this paper. Specifically, a and b represent the estimated fractions m̂1 and
m̂52 of agglomerates at the beginning and end of the experiment, i.e., m̂1 ≈ γa,b,λ(1) = a and m̂52 ≈ γa,b,λ(52) = b.
Moreover, the function γa,b,λ given in Eq. (34) increases monotonously in t ∈ T , where λ < 0.5 indicates fast
agglomeration at the beginning and slower agglomeration at the end of the experiment, whereas λ > 0.5 indicates
slow agglomeration at the beginning and faster agglomeration at the end of the experiment. The closer λ is to 0 or
1, the more apparent the respective behaviors become. For λ = 0.5, the fraction of agglomerates increases linearly,
see Figure 10.

Figure 10: Visualization of γa,b,λ with a = 0.1 and b = 0.7, for different values of λ ∈ (0, 1).

Finally, we determine the (optimal) parameter vector (a∗, b∗, λ∗) ∈ [0, 1]2 × (0, 1) by solving the non-linear least
squares problem

(a∗, b∗, λ∗) = argmin
a∈[0,1],b∈[a,1],λ∈(0,1)

∑
t∈T

(m̂t − γa,b,λ(t))
2. (36)

This gives the estimate
f∗
m∗

t
= (1−m∗

t )f
∗
pp +m∗

t f
∗
agg, (37)

of the bivariate probability density ft for each time step t ∈ T , where m∗
t = γa∗,b∗,λ∗(t).

3.5 Model validation

We now present some methods which we use to check how well the probabilistic modeling approach developed in
this paper fits the underlying image data. Recall that in the previous sections we utilized the sets D1 and Dend to fit
the probability densities f∗

pp and f∗
agg for primary particles and agglomerates, respectively. Since we used the same

kind of primary particles in all five experiments DV1,DV2,UDV1,UDV2 and IB3, a first aspect of model validation
is to check if the fitted densities f∗

pp are similar to each other for each of these experiments, see Section 3.5.1.
Furthermore, for those experiments which utilized ultrasound treatment to disperse particles into almost exclusively
primary particles, the fitted values of a∗ should be similar to each other, because they represent the (small) fractions
of agglomerates, which are observed at the beginning of these experiments, see Section 3.5.2. Finally, we check if
the probability densities f∗

m∗
t
fit sufficiently well to their corresponding datasets Dt, for each t ∈ T , see Section 3.5.3.

Note that for most time steps t ∈ T , the sets Dt were not used for fitting the components f∗
pp and f∗

agg of the mixtures
f∗
m∗

t
= (1−m∗

t )f
∗
pp +m∗

t f
∗
agg.
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3.5.1 The densities f∗
pp and f∗

agg

Since the same type of particles is used in each of the five experiments DV1,DV2,UDV1,UDV2 and IB3, the
probability densities f∗

pp, which represent the joint distributions of area-equivalent diameter and aspect ratio of
primary particles, should be similar for all experiments listed in Table 1. On the other hand, the densities f∗

agg for
agglomerates may depend on the specificities of the respective experimental conditions as, for example, the used
energy dissipation rate generated by different types of stirrers. However, similar densities f∗

agg should be fitted for
DV1 and DV2 (as well as for UDV1 and UDV2), since these two experiments are repetitions of each other. It turned
out that in all cases a quite good fit has been achieved, see Figure 16 in Section 4.

3.5.2 The model parameters a∗, b∗ and λ∗

In Section 3.4.4, see Eq. (34), we introduced the function γa,b,λ : T → [a, b] as a parametric approximation of the
estimated fractions m̂t of agglomerates for each time step t ∈ T , where we solved the non-linear least squares problem
given in Eq. (36) in order to determine the optimal parameter values a∗, b∗ and λ∗. To check whether the function
γa,b,λ given in Eq. (34) is an appropriate choice for a parametric model, we will investigate the mean squared error
MSE = 1

|T |
∑

t∈T (m̂t − γa∗,b∗,λ∗(t))2.

Similar to the situation explained in Section 3.5.1, where we highlighted some necessary consistencies between
the probability densities f∗

pp and f∗
agg for the different agglomeration experiments, some consistencies of a∗, b∗ and λ∗

must be met. This is justified by the fact that the same type of particles is used as feed in each of the five experiments
DV1,DV2,UDV1,UDV2 and IB3. Moreover, we know how the particles are inserted into the stirring tank, where
in addition to ethanol, ultrasound is used (except for UDV1 and UDV2) to further disperse the “feed-suspension”,
see Table 1. Therefore, the fraction of agglomerates at the beginning of the experiments, which is represented by a∗,
should be similar for the experiments UDV1 and UDV2, as well as for DV1,DV2 and IB3. Furthermore, the value
of a∗ should be larger for UDV1 and UDV2 than for the other experiments, as there should be more agglomerates
in the tank at the beginning of UDV1 and UDV2.

However, the similarities and dissimilarities of a∗ mentioned above should be viewed with some caution as a∗

represents the fraction of agglomerates at time step t = 1, which is not the actual beginning of an experiment. In
fact, as stated in Section 2.2, the time step t = 1 covers the period of 30-40 seconds after the “feed-suspension” is
added to the tank. During this time period, agglomerates can already form and break, which can change the initial
fraction of agglomerates. This is particularly relevant when comparing a∗ for experiments DV1, DV2, and IB3, as less
agglomeration in the initial 30-40 seconds is expected for IB3 since it uses a lower energy dissipation rate compared
to DV1 and DV2.

Lastly, we check the similarity of the values of a∗, b∗ and λ∗ which are obtained for the repeated experiments
DV1 and DV2, as well as for UDV1 and UDV2.

3.5.3 The probability densities f∗
m∗

t

Finally, we check if the probability densities f∗
m∗

t
introduced in Section 3.4.4, see Eq. (37), fit sufficiently well to their

corresponding datasets Dt, for each t ∈ T . To accomplish this we draw a sample of 10,000 realizations from f∗
m∗

t
, for

each t ∈ T , utilizing the accept-reject method. In particular, to get the probability densities ftar and fins required

for this, we proceed in the same way as explained in Section 3.3. However, we now use f∗
m∗

t
instead of f

(0)
pp and,

as a consequence, the 99.9 percent quantile q99.9 is determined for the marginal probability density f∗
m∗

t ,d
of f∗

m∗
t
,

which represents the area-equivalent diameter of particles at time step t. Subsequently, for each time step t ∈ T ,
we compute various characteristics, such as mean values, standard deviations, correlation coefficients and quantiles,
of the sampled two-dimensional vector data and compare them with corresponding characteristics computed for the
dataset Dt.

4 Results

In Section 3 we presented the methods for fitting the mixture f∗
m∗

t
= (1 − m∗

t )f
∗
pp + m∗

t f
∗
agg to the dataset Dt, for

each time step t ∈ T , where we illustrated the application of these methods by means of data from experiment DV1.
We now systematically present the results which we obtained for all experiments listed in Table 1.
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4.1 Descriptive statistical analysis of measured image data

Recall that in Section 3.2, as an initial step for estimating fpp, we fitted a bivariate probability density f
(0)
pp to the

complete set D1, whereas we fitted f
(j)
pp to a subset of D1, for each j ∈ {1, . . . , J}. In fact, we initially assumed

that D1 consists exclusively of primary particles. This assumption was reasonable since the univariate distributions
of both the area-equivalent diameter and the aspect ratio of particles measured at time step t = 1 appear to be
unimodal, as shown in Figure 11. Note that this is also the case for experiments UDV1 and UDV2, where no
additional ultrasound was used to disperse the particles in the “feed-suspension”.

Figure 11: Histograms of area-equivalent diameter (top row) and aspect ratio (bottom row) of the descriptor vectors
in D1 of the experiments DV1, DV2, UDV1, UDV2 and IB3 (from left to right).

For estimating the bivariate probability densities fpp and fagg we first fitted univariate parametric probability
densities for the respective components, see Section 3.2.1. If the particle descriptors d(P ) and a(P ) represented by
these univariate densities can be considered to be independent random variables with Pearson correlation coefficient
equal to zero, then their joint probability density is simply given by the product of the two marginal densities, see
Eq. (5). However, the empirical Pearson correlation coefficients of d(P ) and a(P ) shown in Figure 12 are clearly
distinct from zero for all time steps t ∈ T and all experiments considered in this paper. Thus, we used the copula
approach stated in Section 3.2.2 in order to model the joint distribution of the particle descriptors d(P ) and a(P ).

Figure 12: Empirical Pearson correlation coefficients of d(P ) and a(P ) for all time steps t ∈ T and the experiments
DV1, DV2, UDV1, UDV2 and IB3. Additionally, for visualization purposes, fitted polynomials of degree 3 are shown.
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4.2 Initial datasets associated with agglomerates

4.2.1 Cardinality of points in Dend

Recall that in Section 3.3, for estimating the probability density fagg associated with agglomerates, we required a

sufficiently large union Dend =
⋃52

t=tend
Dt, where tend = min{t ∈ T : nt ≤ 1.05n52}. Specifically, we expected the

highest fraction of agglomerates at time steps close to the end of an experiment. The results stated in Table 3 show
that the factor 1.05 in the definition of tend is a reasonable choice. It leads to cardinalities |Dend|, i.e., numbers of
particle descriptor vectors in the union sets Dend, which are close to the cardinalities |D1| of D1, see Figure 4a, and,
in particular, much larger than the number of particles |D52| in D52, observed at the last time step t = 52 of the
experiments.

experiment DV1 DV2 UDV1 UDV2 IB3
tend 46 48 46 47 48

|Dend| 6128 5719 7110 3654 9739
|D52| 853 1110 1018 608 1904

Table 3: Cardinalities of Dend =
⋃52

t=tend
Dt and D52 for the experiments DV1, DV2, UDV1, UDV2 and IB3.

4.2.2 Spatial arrangement of points in Dagg

In the next step, after fitting f
(0)
pp to the entire set D1, we needed to find a subset of Dend that ideally consists of all

descriptor vectors in Dend associated with agglomerates. Since no initial fit f
(0)
agg for the bivariate probability density

fagg of agglomerates was yet available, we had to determine such a subset Dagg ⊂ Dend by solving the optimization
problem stated in Eq. (19). The bottom row of Figure 13 shows bivariate probability densities corresponding to the
subsets Dagg for the experiments DV1, DV2, UDV1, UDV2 and IB3.

Note that in Figure 13 kernel density estimation has been used for visualizing the datasets Dend, ∆ and Dagg. It
turned out that in all experiments except for DV2, the largest mode of the bivariate probability density corresponding
to Dagg is close to the largest mode of the bivariate probability density corresponding to ∆. This is likely due to
the continued presence of primary particles in Dagg, which becomes rather obvious in experiment IB3, where Dagg

consists of two clearly distinct clusters of particle descriptor vectors, see Figure 13. Here, the cluster of descriptor
vectors with an area-equivalent diameter of approx. 8 µm and an aspect ratio of approx. 0.85 likely corresponds
mostly to primary particles, whereas the cluster of descriptor vectors with an area-equivalent diameter of larger than
20 µm and an aspect ratio between 0.5 and 0.85 corresponds mostly to agglomerates.

Figure 13: Bivariate probability densities corresponding to the union sets Dend for the experiments DV1, DV2,

UDV1, UDV2 and IB3 (top row), together with densities corresponding to the sets ∆ of samples drawn from f
(0)
pp

(middle row), which are used to get the subsets Dagg ⊂ Dend defined in Eq. (20) (bottom row).
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4.3 Iterative adjustments and resulting fits of f ∗
pp and f ∗

agg

4.3.1 Spatial arrangement of points in the iteratively computed datasets D
(j)
pp and D

(j)
agg

The spatial arrangement of data points in Dagg, visualized in Figure 13, suggests that in most experiments the

bivariate probability density f
(0)
agg was likely fitted to a set with a non-negligible fraction of descriptor vectors associated

with primary particles. However, the subsequent iterative adjustments discussed in Section 3.4 were designed to
partition D1 as well as Dend more reliably into sets of descriptor vectors associated with either primary particles

or agglomerates, requiring initial estimates f
(0)
pp and f

(0)
agg for these adjustments. Throughout the iteration steps

j ∈ {1, . . . , J}, where different values of J have been chosen for each of the experiments DV1, DV2, UDV1, UDV2
and IB3 according to the rule given in Eq. (26), see Table 4, the kernel density estimates for the bivariate probability

density of D
(j)
pp exhibited rather small changes.

experiment DV1 DV2 UDV1 UDV2 IB3
J 4 7 14 18 30

Table 4: Number of iterations J performed for the experiments DV1, DV2, UDV1, UDV2 and IB3.

On the other hand, the experiments DV1, DV2 and IB3 showed pronounced changes in the kernel density

estimates applied to D
(j)
agg. We attribute this behavior to the presumed low fraction of descriptor vectors associated

with agglomerates in D1 and the higher fraction of descriptor vectors associated with primary particles in the initial
subset Dagg of Dend. Thus, there is larger potential for finding subsets of Dend with increased representativeness of

agglomerates and, accordingly, the fits f
(j)
agg also change more. As a result of this, the consecutive adjustments lead

to subsets D
(j)
agg that likely contain a reduced fraction of descriptor vectors associated with primary particles as can

be seen in Figure 14 for experiment IB3, where with an increasing value of j, the kernel density estimates of the

bivariate probability densities corresponding to D
(j)
agg tend to have lower values for descriptor vectors (d(P ), a(P ))

close to the mode at approximately (8, 0.85) that we discussed above.

Note that there are different scales of the color bars in Figure 14. Interestingly, the subset D
(28)
agg in the last

even iteration step j = 28 of experiment IB3 contains hardly any descriptor vectors close to (8, 0.85). Moreover, for

each subset D
(j)
agg, Figure 14 shows the corresponding fit f

(j)
agg, where the quality of a fit f

(j)
agg in terms of fitting the

corresponding data in D
(j)
agg seems to improve in the course of iterations. For the first iterations, the main obstacle

for a good fit is the bimodal distribution of the area-equivalent diameter in D
(j)
agg that is not well fitted by f

(j)
agg,d.

However, during these first iterations, for values of x = (d(P ), a(P )) close to (8, 0.85), i.e., descriptor vectors likely

associated with primary particles, the values of f
(j)
agg(x) tend to be smaller than the respective kernel density estimate

of D
(j)
agg evaluated at x suggests. This, in turn, leads to a higher estimated probability pp

(j+1)
z (x) of a descriptor

vector x ∈ Dend close to (8, 0.85) being associated with a primary particle, see Eqs. (29) and (30). Finally, this leads

to the subsequent subset D
(j+1)
agg having a lower density for descriptor vectors close to (8, 0.85) than D

(j)
agg.

4.3.2 Estimates m̂
(j)
1 and m̂

(j)
end with corresponding rank sum ρ(j) as measure of goodness of fit

For the construction of the subsets D
(j)
pp and D

(j)
agg, explained in Section 3.4.2, not only the bivariate probability

densities f
(j)
pp and f

(j)
agg were used, but also the estimates m̂

(j)
1 and m̂

(j)
end for m1 and mend of the current iteration step

j ∈ {1, . . . , J}. Furthermore, the stochasticity introduced by sampling from uniformly distributed random variables

on the interval [0, 1] adds another layer of complexity to the computation of D
(j)
pp and D

(j)
agg.

This complexity makes it challenging to fully grasp the interplay of these factors when constructing D
(j)
pp and

D
(j)
agg. However, Figure 15 attempts to shed some light on this matter, where for each experiment the estimates m

(j)
1

and m
(j)
end as well as the rank sum ρ(j) in each iteration step j ∈ {2, . . . , J} is shown. Moreover, the mixing ratios

m̂
(1)
1 and m̂end estimated by means of quantiles are included in gray boxes, whereas the mixing ratios m

(j)
1 and m

(j)
end,

which are obtained by maximum-likelihood estimation as stated in Eq. (28), are visualized on the white background.
Recall that the number of iterations J is always less than 50, see Eq. (26). Furthermore, in each experiment the

termination condition introduced in Section 3.4.2 is met. This means that at some iteration step the adjustment
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Figure 14: Kernel density estimate of Dagg and corresponding bivariate probability density f
(0)
agg for experiment IB3

(top left), followed by the result obtained for D
(j)
agg and f

(j)
agg for all even iteration steps j ∈ {2, . . . , 28}.

Figure 15: Estimates m̂
(1)
1 and m̂end (dots), together with subsequent estimates m̂

(j)
1 (green) and m̂

(j)
end (black) of the

fraction of agglomerates in D1 and Dend, for each iteration step j ∈ {2, . . . , J}. The corresponding rank sum ρ(j) is
shown in blue, where an additional y-axis on the right-hand side of each plot is given.

of the estimates m̂
(j−1)
1 and m̂

(j−1)
end from the previous iteration becomes marginal. For experiments DV1 and DV2

this happens at early iteration steps j = 4 and j = 7, respectively. In all iteration steps of both experiments, the
estimates for the mixing ratios hardly change, both in absolute and relative terms. On the other hand, the numbers
of adjustments J in experiments UDV1 and UDV2 are higher with J = 14 and J = 18, respectively. Moreover, in
comparison to experiments DV1 and DV2, the mixing ratios change only slightly more. However, the adjustments

of m̂end to m̂
(2)
end and m̂

(1)
1 to m̂

(2)
1 are quite considerable. Finally, in experiment IB3, the number of adjustments

J = 30 is the highest and the changes of mixing ratios are most significant in the first iteration steps, whereas the

changes become smaller in later iterations. Overall, the large differences between m̂end and m̂
(j∗)
end or between m̂

(1)
1

and m̂
(j∗)
1 , occurring in some cases, highlight the necessity of these iterative adjustments.

Since neither the mixing ratios m̂
(j)
1 and m̂

(j)
end nor the rank sum ρ(j) behave monotonously in j, it is difficult to

evaluate the quality of each of the changes. In experiment UDV2, for example, after iteration argminj∈{2,...,J} ρ(j) =
7 many iterations follow, in which ρ(j) tends to increase. Although, as we discussed above in the context of Figure 14,

the subsets D
(j)
agg in experiment IB3 seem to drastically improve over the course of iterations, the rank sum ρ(j) is

clearly not monotonously decreasing. Therefore, we directly check whether j∗, i.e., the argument of the minimum of

ρ(j) minus 1, was nonetheless a good choice for determining f∗
pp(= f

(j∗)
pp ) and f∗

agg(= f
(j∗)
agg ).
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4.3.3 Final parametric fits f∗
pp and f∗

agg for primary particles and agglomerates

In Figure 16, the bivariate probability densities f∗
pp and f∗

agg are illustrated for each experiment given in Table 1. As
detailed in Section 3.5.1, these densities are subject to certain consistency conditions across the experiments DV1,
DV2, UDV1, UDV2 and IB3, which we can now verify. First, the probability densities f∗

pp across these experiments
appear notably similar, confirming our expectation based on the use of the same particle type in each experiment.
However, while the modes of all densities f∗

pp are located around (8, 0.85), the value of f∗
pp evaluated at its mode

is significantly higher for experiment DV1. At the same time, the values of f∗
pp for experiment DV1 are smaller for

descriptor vectors with a large area-equivalent diameter and a small aspect ratio. Nevertheless, overall the probability
densities appear to be very similar as desired. Moreover, the probability densities f∗

agg for experiments DV1 and DV2
are almost identical, as expected, given that these experiments are repetitions of each other. However, for the other
pair of repeated experiments, UDV1 and UDV2, while the modes of their respective fits f∗

agg are located similarly,
the variance of the area-equivalent diameter is smaller and the variance of the aspect ratio is larger for f∗

agg of UDV1,
compared to f∗

agg of UDV2. Notably, the bivariate density f∗
agg of IB3 is most different from the fits of the other

experiments, since it exhibits agglomerates that are larger.

Figure 16: Visualization of the fitted bivariate probability densities f∗
pp (top row) and f∗

agg (bottom row) for the
experiments DV1, DV2, UDV1, UDV2 and IB3.

For the bivariate probability densities depicted in Figure 16, the parametric families of both, the two marginal
densities of area-equivalent diameter and aspect ratio, and the copula, along with the values of their respective fitted
parameters, are listed in Table 5. Except for the probability density of the generalized hyperbolic distribution, which
is given in Eq. (4), the probability densities of the other parametric families of univariate distributions appearing in
Table 5 are given in Table 6.

4.4 Model parameters for the time-dependent fraction of agglomerates

In Section 3.4.4 we fitted a parametric function γa,b,λ : T → [a, b], see Eq. (34), to the estimated fractions m̂t of
agglomerates for each time step t ∈ T by solving the non-linear least squares problem stated in Eq. (36). The small
values of MSE given in Table 7 show that the parametric function γa,b,λ : T → [a, b] introduced in Eq. (34) fits the
estimated fractions m̂t of agglomerates for all t ∈ T quite well.

Recall that the optimal parameter values a∗, b∗, λ∗ provided in Table 7 are closely related with the dynamics of the
agglomeration experiments. For example, a∗ and b∗ represent the estimated fractions m̂1 and m̂52 of agglomerates
at the beginning and end of the experiment, i.e., m̂1 ≈ γa∗,b∗,λ∗(1) = a∗ and m̂52 ≈ γa∗,b∗,λ∗(52) = b∗. Moreover, in
Section 3.5.2 we discussed some consistencies between a∗, b∗ and λ∗ which we verify in the following. Namely, the
fraction of agglomerates at the beginning of the experiments, represented by a∗, should be similar for the experiments
UDV1 and UDV2, as well as for DV1,DV2 and IB3. Furthermore, the value of a∗ should be larger for UDV1 and
UDV2 than for the remaining experiments. Remarkably, the mean value of a∗ for experiments DV1,DV2 and IB3
is only slightly above 0 (with a very small mean agglomerate fraction of 1.23%), whereas the mean value of a∗ for
experiments UDV1 and UDV2, in which no ultrasound was used, is significantly higher (with a mean agglomerate
fraction of 11.35%). The use or non-use of ultrasound is the only difference between the pairs of repeated experiments
DV1,DV2 and UDV1,UDV2, which not only leads to lower values of a∗ in DV1 and DV2, but also to higher values
of b∗ than in the experiments UDV1 and UDV2.
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density/
experiment

particle
descriptor

marg. distrib./
copula type

fitted parameter values

f∗
pp,DV1

area-eq. dia. gen. hyperbolic α = 0.9047, β = 0.8932, δ = 2.7427, λ = −1.8455, µ = 5.4743
aspect ratio gen. hyperbolic α = 93.8323, β = −84.3239, δ = 0.0373, λ = 0.0805, µ = 0.9255

Clayton θ = 0.4894, r = 90

f∗
pp,DV2

area-eq. dia. gen. hyperbolic α = 1.0632, β = 1.0439, δ = 2.7612, λ = −1.6566, µ = 4.9977
aspect ratio gen. hyperbolic α = 71.3184, β = −60.9841, δ = 0.0254, λ = 0.8117, µ = 0.9154

Ali-Mikhail-Haq θ = 0.8626, r = 90

f∗
pp,UDV1

area-eq. dia. gen. hyperbolic α = 0.6736, β = 0.6212, δ = 1.8247, λ = −0.3727, µ = 6.0196
aspect ratio exp. Weibull α = 39.0851, θ = 0.2351, σ = 1.0722, µ = −0.1818

Ali-Mikhail-Haq θ = 0.9154, r = 90

f∗
pp,UDV2

area-eq. dia. gen. hyperbolic α = 0.8722, β = 0.8147, δ = 1.5869, λ = −0.3266, µ = 5.7841
aspect ratio exp. Weibull α = 44.1723, θ = 0.1915, σ = 0.9934, µ = −0.0934

Ali-Mikhail-Haq θ = 0.9458, r = 90

f∗
pp, IB3

area-eq. dia. gen. hyperbolic α = 0.8009, β = 0.7421, δ = 1.7527, λ = −0.4319, µ = 5.6903
aspect ratio exp. Weibull α = 99.3528, θ = 0.2888, σ = 2.7903, µ = −1.8971

Ali-Mikhail-Haq θ = 0.9249, r = 90

f∗
agg,DV1

area-eq. dia. Burr Type XII c = 2.2112, k = 30.0675, σ = 90.1895, µ = 1.9944
aspect ratio beta α = 4.4876, β = 3.0262, σ = 0.6849, µ = 0.2693

Ali-Mikhail-Haq θ = −0.8795, r = 180

f∗
agg,DV2

area-eq. dia. Burr Type XII c = 2.4661, k = 14.7549, σ = 60.9572, µ = 1.9904
aspect ratio beta α = 4.3865, β = 2.9258, σ = 0.6719, µ = 0.2724

Ali-Mikhail-Haq θ = −0.7788, r = 180

f∗
agg,UDV1

area-eq. dia. power normal α = 0.1236, σ = 2.924, µ = 11.5114
aspect ratio beta α = 3.7349, β = 2.7293, σ = 0.6281, µ = 0.3343

Ali-Mikhail-Haq θ = −0.9584, r = 180

f∗
agg,UDV2

area-eq. dia. rice λ = 1.6661, σ = 8.7099, µ = 1.0592
aspect ratio Johnson Sb γ = −0.3208, δ = 1.3273, σ = 0.6877, µ = 0.3009

Frank θ = −1.1435, r = 0

f∗
agg, IB3

area-eq. dia. Johnson SU α = −0.5473, β = 1.7638, σ = 11.6947, µ = 25.2372
aspect ratio beta α = 2.9333, β = 2.3599, σ = 0.5718, µ = 0.372

Clayton θ = 0.2155, r = 90

Table 5: Parametric families of marginal distributions and copula types of f∗
pp and f∗

agg, for the experiments DV1,
DV2, UDV1, UDV2 and IB3, together with the fitted parameter values (gen. = generalized, exp. = exponentiated).

parametric family probability density support parameters

exp. Weibull [7, 23] σ−1αθ(1− e−( x−µ
σ )α)θ−1e−( x−µ

σ )α(x−µ
σ )α−1 [µ,∞) µ ∈ R and α, θ, σ ∈ (0,∞)

Burr Type XII [7, 24] σ−1ck(x−µ
σ )c−1(1 + (x−µ

σ )c)−(k+1) [µ,∞) µ ∈ R and c, k, σ ∈ (0,∞)

beta [7, 25]
( x−µ

σ )α−1(1− x−µ
σ )β−1

σB(α,β) [µ, µ+ 1] µ ∈ R and α, β, σ ∈ (0,∞)

power normal [7, 26] σ−1αϕ(x−µ
σ )Φα−1(−x−µ

σ ) R µ ∈ R and α, σ ∈ (0,∞)

Rice [7, 27] x−µ
σ2 e−

1
2 ((x−µ)2/σ2+λ2)B0(

x−µ
σ λ) (µ,∞) µ ∈ R and λ, σ ∈ (0,∞)

Johnson Sb [7, 28] δσ
(x−µ)(σ−x+µ)ϕ(γ + δ log x−µ

σ−x+µ ) (µ, µ+ 1) γ, µ ∈ R and δ, σ ∈ (0,∞)

Johnson SU [7, 29] β√
(x−µ)2+σ2

ϕ(α+ β sinh−1 x−µ
σ ) R α, µ ∈ R and β, σ ∈ (0,∞)

Table 6: Parametric families of univariate distributions with corresponding density, support and parameter space.
The symbols B,B0, sinh

−1 denote the beta function [17], modified Bessel function of the first kind with index 0 [17]
and the inverse of the hyperbolic sine function, whereas ϕ and Φ denote the probability density and cumulative
distribution function of the standard normal distribution.

As stated above, we checked the similarity of the values of a∗, b∗ and λ∗ for the repeated experiments DV1 and
DV2, as well as for UDV1 and UDV2. For DV1 and DV2 these values are quite similar to each other, whereas the
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experiment a∗ b∗ λ∗ MSE

DV1 0.0129 0.8074 0.0810 5.217 · 10−4

DV2 0.0163 0.8217 0.1105 7.211 · 10−4

UDV1 0.1027 0.5978 0.0146 3.029 · 10−4

UDV2 0.1243 0.6749 0.1190 3.820 · 10−4

IB3 0.0078 0.2543 0.3013 8.091 · 10−5

Table 7: Optimal parameter values a∗, b∗ and λ∗ of the function γa,b,λ : T → [a, b] introduced in Eq. (34), together
with the correspnoding MSE, for the experiments DV1, DV2, UDV1, UDV2 and IB3.

values of a∗, b∗ and λ∗ behave differently for UDV1 and UDV2, see Table 7. While the difference between the two
values of a∗ is also small for UDV1 and UDV2, the differences for b∗ and λ∗ are larger. Recall that in Figure 10 we
discussed the influence of the parameter λ on the shape of the function γa,b,λ : T → [a, b]. In particular, the value of
λ∗ = 0.1190 ≈ 0.1 obtained for UDV2 indicates a slower increase of the fraction of agglomerates at the beginning and
a stronger increase towards the end of the agglomeration experiment compared to the value of λ∗ = 0.0146 ≈ 0.01
obtained for UDV1. Finally, note that the largest value of λ∗ = 0.3013 has been obtained for experiment IB3, which
differs clearly from the values of λ∗ for the remaining experiments. For λ∗ = 0.3013, there is still a non-negligible
gradient at t = 52, in contrast to the situation observed for the remaining experiments at a higher energy dissipation
rate, see Figure 10. This suggests the possibility that the increase in the fraction of agglomerates has not yet reached
saturation at the end of experiment IB3, which is a consequence of the lower energy dissipation rate for IB3, and the
therewith associated lower probability of collision between the particles.

4.5 Distribution of the time-dependent content in the stirred tank

For each time step t ∈ T , we modeled the bivariate probability density f∗
m∗

t
of particle descriptor vectors in Dt as a

mixture of f∗
pp and f∗

agg, see Eq. (37) in Section 3.4.4. Figure 17 shows the fitted density f∗
m∗

t
of experiment DV1 at

time steps t ∈ {1, 26, 52} or in other words, approximately 0.5, 23.5 and 47 minutes after the “feed-suspension” is
added to the stirred tank.

Figure 17: Fitted bivariate probability densities f∗
m∗

1
(left), f∗

m∗
26

(middle) and f∗
m∗

52
(right) of experiment DV1.

So far, we evaluated the goodness-of-fit of the components f∗
pp, f

∗
agg and m∗

t∗(= γa∗,b∗,λ∗(t)) of the mixture f∗
m∗

t
.

However, in general, we can not conclude from this, whether f∗
m∗

t
itself fits sufficiently well to its corresponding

dataset Dt. Therefore, as explained in Section 3.5.3, we generate (artificial) two-dimensional vector data sampled
from f∗

m∗
t
and compare various characteristics of them with the corresponding characteristics computed for the dataset

Dt. First, we examine the empirical correlation coefficient between area-equivalent diameter and aspect ratio. For
experiments DV1, DV2, and UDV2, the values of this characteristic computed from measured and simulated data,
respectively, are quite close to each other, while the differences for experiments UDV1 and IB3 are somewhat larger,
see Figure 18.

In Figure 19, mean value functions along with corresponding standard deviation bands are visualized for area-
equivalent diameter and aspect ratio across all time steps t ∈ T for the experiments DV1, DV2, UDV1, UDV2 and
IB3, where the purple areas highlight the intersections of the standard deviation bands computed for values of the
respective descriptor in Dt (green) and in the simulated dataset drawn from f∗

m∗
t
(orange). Remarkably, the curves

representing the mean values are nearly identical across all instances. Moreover, the standard deviation bands for the
aspect ratio computed for the measured datasets Dt and the simulated data drawn from f∗

m∗
t
, respectively, coincide

nicely, whereas the standard deviation bands for the area-equivalent diameter differ slightly from each other in some
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Figure 18: Empirical Pearson correlation coefficients of the particle descriptors d(P ) and a(P ) in Dt (green dots)
and in samples of 10,000 realizations drawn from f∗

m∗
t
(orange dots), for each t ∈ T . Additionally, like in Figure 12,

fitted polynomials of degree 3 are shown in the respective colors.

cases. However, overall Figure 19 shows a very good match between the mean value functions and standard deviation
bands computed for measured and simulated values of particle descriptors, respectively.

Figure 19: Time-dependent statistics of area-equivalent diameter (top row) and aspect-ratio (bottom row). Specifi-
cally, the dashed lines represent the means of the respective descriptor in Dt (green) and in the 10,000 realizations
drawn from f∗

m∗
t
(orange), for each time step t ∈ T . Corresponding standard deviation bands are plotted in the

respective colors, where intersections of green and orange bands are visualized in purple.

Finally, we investigate the 5 percent, 50 percent (median), and 95 percent quantiles of the values of area-equivalent
diameter and aspect-ratio computed from Dt and simulated data, respectively, for each time step t ∈ T . The obtained
results are shown in Figure 20. Here, one can see that the quantiles of aspect ratio computed from from measured
and simulated data are almost identical for each time step t ∈ T and for each experiment. In addition, 5 percent
quantile and median of area-equivalent diameter coincide nicely for each time step t ∈ T and for each experiment
except for IB3, where for increasing t the discrepancy between the medians of area-equivalent diameter computed
from Dt and simulated data, respectively, tends to monotonously increase to approximately 3.3 µm. The 95 percent
quantiles of area-equivalent diameter computed from measured data in Dt are slightly larger than those computed
from simulated data, especially for time steps t ∈ T in the middle of the experiments, see Figure 20.

5 Discussion

The present paper introduces a probabilistic modeling approach for hydrophobic agglomeration processes, where the
bivariate probability densities f∗

pp and f∗
agg of the descriptor vectors (of area-equivalent diameter and aspect ratio)

of primary particles and agglomerates, respectively, do not depend on the particular time step t ∈ T . For primary
particles, this can be justified by the assumption that primary particles, i.e., single solid particles, do not change
their sizes and shapes throughout the agglomeration experiments. On the other hand, the assumption that the joint
density f∗

agg of area-equivalent diameter and aspect ratio of agglomerates does not change over time requires the
presence of certain specific circumstances as, for example, the breaking of large agglomerates due to shear forces.
This prevents agglomerates from growing unboundedly large, which in turn is necessary for an equilibrium in the
size distribution of agglomerates.
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Figure 20: Median, as well as 5 and 95 percent quantiles of area-equivalent diameter (top) and aspect ratio (bottom)
computed for Dt (green) and simulated data drawn from f∗

m∗
t
(orange), respectively, for each time step t ∈ T .

The results obtained in this paper show that the fitted mixtures f∗
m∗

t
= (1 − m∗

t )f
∗
pp + m∗

t f
∗
agg of the densities

f∗
pp and f∗

agg, with appropriately chosen (time-dependent) mixing ratios m∗
t , manage to accurately describe the

underlying data in Dt at each of the 52 time steps t ∈ T . Specifically, for the statistics considered in Section 4.5, i.e.,
for correlation coefficients, quantiles, mean values and standard deviations, only small discrepancies were observed
between the respective quantities computed for data from Dt and simulated data drawn from f∗

m∗
t
, for each time step

t ∈ T , see Figures 18, 19 and 20. Besides this, our modeling approach satisfies some necessary consistencies across
the experiments, e.g., the fitted probability densities f∗

pp being similar to each other, which is caused by the fact
that all experiments use the same type of primary particles, see Figure 16, irrespective of the initial state of particle
dispersion.

It should be emphasized that for the following two reasons the model is most likely not overfitted to measured
data: on the one hand, the probability densities f∗

pp and f∗
agg are parametric and were only fitted by means of

data from the first and a few time steps at the end of the agglomeration experiments. Consequently, they were not
explicitly fitted for all time steps. Nevertheless, the evaluation results show good agreement across all time steps,
indicating that the fits capture the distribution underlying the data quite well. A similar validation approach is also
commonly used in neural networks to investigate overfitting, as these models are often trained iteratively and—due
to their even larger number of parameters—tend to exhibit overfitting more strongly. On the other hand, the time-
dependent mixing ratios m∗

t are modeled by a parametric function γa,b,λ : T → [a, b] with merely three parameters
which are closely related with the dynamics of the agglomeration experiments. Specifically, the parameters a and
b represent the fractions of agglomerates at the beginning and the end of the experiment, respectively. The third
parameter λ indicates whether the monotonous increase from a to b is linear over the course of the experiments,
or whether the increase of the fraction of agglomerates is stronger at the beginning and weaker at the end of the
experiment, or vice versa. Beyond their role in modeling the agglomeration process, the parameters a, b, λ can be
utilized to guide process optimization. For instance, the low-parametric description of the agglomeration behavior
by a, b, λ facilitates correlation with relevant process parameters, such as temperature, mixing speed or reactant
concentrations, for example, by means of regression. This enables a systematic identification of dependencies between
process parameters and the model parameters a, b, λ. Once these quantitative relationships are established, they can
be leveraged for model-based process control and optimization, see, e.g., [30].

Recall that some agglomeration experiments considered in this paper dispersed the “feed-suspension” by ethanol
and ultrasound, namely DV1,DV2 and IB3, whereas in experiments UDV1 and UDV2 no ultrasound was used. This
leads to the assumption that the fitted fraction of agglomerates a∗ at time step t = 1, i.e., 30-40 seconds after the
“feed-suspension” is added to the tank, should be higher for UDV1 and UDV2 than for DV1, DV2 and IB3. This
assumption is confirmed by the fact that the value obtained for a∗ is approximately equal to 0.01 for experiments,
where ultrasound was applied, and approximately equal to 0.11 for experiments, where no ultrasound was applied,
see Table 7. Note that the smallest value for a∗ is 0.0078 and has been obtained for experiment IB3.

Comparing the results obtained for the pairs of repeated experiments DV1/DV2 and UDV1/UDV2, it is expected
that approximately the same fraction of agglomerates b∗ is present at the ends of each pair of experiments at time step
t = 52, as these experiments use the same energy dissipation rate associated with the Rushton turbine. One could
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also expect that the value of b∗ could be slightly higher for UDV1/UDV2, since a∗ is larger for these experiments as
mentioned above. Surprisingly, it is the other way around: the mean value of b∗ is smaller for UDV1/UDV2, being
equal to 0.64, than for DV1/DV2, where the mean value of b∗ is equal to 0.81, see Table 7. Since the experiments
DV1/DV2 and UDV1/UDV2 do not differ from each other except for the use or non-use of ultrasound, and because
their fitted probability densities f∗

pp and f∗
agg are similar, one can argue that a more dispersed “feed-suspension”

leads to a higher fraction of agglomerates at the end of the experiment.
This is likely a consequence of more agglomerates, i.e., large particles, being present at the beginning of exper-

iments UDV1 and UDV2. Recall that large particles are more likely to immobilize at the gas-liquid interface, see
Section 2.2.2. As a result, a higher number of primary particles, mostly part of an agglomerate, immobilize over the
course of an experiment, where no ultrasound was used. Given that the same quantity of primary particles was used
in each of the considered experiments in Table 1, this indicates a lower number of primary particles (including those
in agglomerates) remaining under turbulence, i.e., not being immobilized, at the end of the experiments UDV1 and
UDV2 compared to DV1 and DV2. Recall that agglomeration saturates when a certain minimum number/volume-
based fraction of particles is reached, see Section 2.1. This fraction is consistent across the experiments DV1, DV2,
UDV1 and UDV2 due to the uniform energy dissipation rate of 0.3 and the same volume of the suspension in the
stirred tank, see Table 1. Since the probability densities f∗

pp and f∗
agg of size and shape descriptors for primary

particles and agglomerates, respectively, are similar, the expected number of primary particles in an agglomerate
is also similar across the experiments DV1, DV2, UDV1 and UDV2. Consequently, the higher number of primary
particles (including those in agglomerates) remaining under turbulence at the end of the experiments DV1 and DV2
in comparison to the experiments UDV1 and UDV2, necessitates a higher fraction b∗ of agglomerates at the respec-
tive end. This is required to reach the minimum number/volume-based fraction of particles for which agglomeration
saturates.

Furthermore, one can compare the results obtained for experiment IB3 with those of DV1 and DV2, which differ
in their energy dissipation rates that are associated with the two different stirrer types. Specifically, IB3 used an IB
stirrer, whereas the experiments DV1 and DV2 both used a Rushton-turbine. As already mentioned above, the value
of a∗ is similar in each case due to the use of ultrasound. However, as we pointed out earlier a∗ is slightly smaller
for IB3 than for DV1 and DV2, as expected in Section 3.5.2, confirming that the higher energy dissipation rate in
DV1 and DV2 results in a higher fraction of agglomerates within just 30-40 seconds after the “feed-suspension” is
added to the tank. Moreover, for experiment IB3 the fitted value of b∗ is equal to 0.25 and thus significantly smaller
than the values of b∗ obtained for experiments DV1 and DV2. However, the fitted value of λ∗ for IB3 is equal to 0.3,
which results in a function γa∗,b∗,λ∗ of mixing ratios that does not seem to be saturating towards a value close to
b∗, but a value that is larger than b∗ by a non-negligible amount of (non-available) time steps t > 52 as mentioned
at the end of Section 4.4. This suggests extrapolating the mixing ratios m̂t for t > 52 by means of those fitted from
Eq. (33), or running an experiment under the same conditions for a longer time horizon, which could be realized in
future research. By this, one could check if higher fractions of agglomerates are achievable when using an IB stirrer.
For the remaining experiments DV1,DV2,UDV1 and UDV2 the fitted values of λ∗ are smaller than 0.12, which in
each case indicates a strong increase of the fraction of agglomerates at early time steps and a weak increase at later
time steps, with saturation towards the end of the respective experiment.

Regarding the optimization of agglomeration processes, like those investigated in the present paper, not only the
maximization of the fraction b∗ of agglomerates is of interest, but also ways to design the process such that the
resulting agglomerates possess desired size and shape characteristics. Figure 16 shows that the bivariate density f∗

agg

of area-equivalent diameter and aspect ratio of agglomerates depends heavily on the energy dissipation rate generated
by different stirrer types, but much less on the use or non-use of ultrasound. Specifically, flows induced by a Rushton-
turbine or an IB stirrer lead to different bivariate densities f∗

agg of agglomerates, where two main distinctions can
be identified. First, the mode of the area-equivalent diameter is at about 28 µm for agglomerates resulting from the
usage of an IB stirrer, whereas the modes of the area-equivalent diameter for agglomerates resulting from experiments
employing a Rushton-turbine range from 16.5 to 18.5 µm. Furthermore, the (negative) correlation of area-equivalent
diameter and aspect ratio of agglomerates resulting from the usage of an IB stirrer is slightly stronger than for
agglomerates resulting from using a Rushton-turbine, see Figure 12. However, the marginal distribution of aspect
ratio shows minimal sensitivity to the choice of stirrer type and the associated energy dissipation rate, see the
bottom row of Figure 16. On the other hand, the use of an IB stirrer, instead of a Rushton-turbine, results in larger
agglomerates, but likely a lower fraction of agglomerates at the end of the experiment.

As indicated in the beginning of this section, our modeling approach can also be applied to other agglomeration
processes, where particles can be partitioned into primary particles and agglomerates. However, note that for the
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experiments considered in the present paper we assumed that no agglomerates are present in the set D1 of descriptor
vectors obtained for the first time step t = 1. Therefore, it is important that the fraction of agglomerates at the
beginning of an experiment that is intended to be modeled is not too large, i.e., particles are well dispersed initially.
Table 7 shows that the fractions of agglomerates a∗ at the beginning of experiments DV1, DV2, UDV1, UDV2 and
IB3 are slightly larger than zero, which is contrary to our initial assumption that no agglomerates are present at time
step t = 1. Thus, the small fractions a∗ of agglomerates encompassed within the dataset D1 observed at time step

t = 1 are erroneously considered for fitting f
(0)
pp . Since we used f

(0)
pp to obtain the dataset Dagg given in Eq. (20),

our assumption made regarding time step t = 1 also affects the fit of f
(0)
agg. However, as we have shown, e.g., in

Figure 14, the iterative adjustments explained in Section 3.4.2 can make up for a non-ideal initial fit f
(0)
pp created

under the slightly perturbated circumstances mentioned above. Specifically, Figure 14 indicates that in the course of
iterations subsets of Dend are found that are more representative for particle descriptor vectors of agglomerates than
Dagg. This leads to better fits of the bivariate probability density fagg of agglomerates which in turn leads to better

fits of the corresponding density fpp of primary particles. Nevertheless, f
(0)
pp should be somewhat close to the actual

distribution of primary particles, i.e., the fraction of agglomerates at the beginning of an experiment must not be
too large.

A key question is whether the methodology presented in this paper can be adapted to more complex particle
systems beyond. A relevant extension could be to move from a monodisperse to a polydisperse particle feed, where
the descriptors of primary particles follow multimodal distributions. In this case, the parametric model for the
primary particles must be adjusted. Instead of a unimodal bivariate probability distribution, a mixture of multiple
unimodal bivariate distributions may be required. If such a model can be established, all other steps of the algorithm,
including the iterative procedure for distinguishing between primary particles and agglomerates, remain applicable
without modification. This suggests that the presented methodology is adaptable to polydisperse particle feeds and
potentially to other complex particle systems.

Building up on the methodology developed in this paper, future research may extend the current set of process
parameters, namely the energy dissipation rate and the use or non-use of ultrasound, for investigating how various
combinations of process parameters impact the effectiveness of hydrophobic agglomeration processes. This would
entail establishing quantitative relationships that connect process parameters with characteristics of the resulting
agglomerates, such as the mean value or variance of size and shape descriptors as well as the finally achieved fraction of
agglomerates. By means of these relationships, the following inverse problem can be studied: for desired specifications
of agglomerate characteristics the values of process parameters which are most likely to result in agglomerates
exhibiting these predefined characteristics need to be determined. In this way, one can identify promising process
parameters without having to carry out a large number of real laboratory experiments.

6 Conclusion

This study has introduced a suitable probabilistic modeling approach for hydrophobic agglomeration processes, where
size and shape descriptors of primary particles and agglomerates follow fixed densities f∗

pp and f∗
agg, which do not

depend on the particular stage of the agglomeration process. The stability of these densities throughout the agglom-
eration process confirms certain assumptions about process behavior, such as the breaking of large agglomerates due
to shear forces, which prevents agglomerates from growing unboundedly large and thus contributes to an equilibrium
in the size distribution of particles.

The obtained results demonstrate that the fitted mixtures f∗
m∗

t
= (1 −m∗

t )f
∗
pp +m∗

t f
∗
agg of these densities, with

suitably chosen time-dependent mixing ratiosm∗
t , accurately capture the underlying data on area-equivalent diameter

and aspect ratio of particles at each time step. While minor discrepancies were observed for certain statistics, overall,
our model performed well in capturing the dynamics of agglomeration processes across various kinds of experiments.

Moreover, the discussion conducted in the previous section highlighted insights into the impact of process pa-
rameters, such as the use or non-use of ultrasound and the energy dissipation rate, on the agglomeration process.
Specifically, experiments employing a more dispersed “feed-suspension” resulted in higher fractions of agglomerates
at the end of the experiments. Furthermore, the energy dissipation rate associated with a specific stirrer type signif-
icantly affected the resulting agglomerate characteristics. Flows induced by an IB stirrer led to larger agglomerates
with a slightly stronger negative correlation of area-equivalent diameter and aspect ratio compared to those obtained
for a Rushton-turbine. On the other hand, the experiment which used an IB stirrer led to a lower fraction of agglom-
erates at the end of the experiment, confirming distinct agglomeration dynamics induced by the stirrer type with a
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corresponding energy dissipation rate.
In view of these findings, future research could focus on extending the set of process parameters and establishing

quantitative relationships between process parameters and characteristics of resulting agglomerates. By address-
ing the inverse problem of agglomeration process optimization, promising specifications of process parameters for
achieving desired agglomerate characteristics can be identified without the need for extensive laboratory experiments.
Thus, the present paper not only deepens our understanding of agglomeration dynamics, but also paves the way for
practical advancements in industrial agglomeration processes, ultimately leading to cleaner, higher-quality products
and more efficient suspension separation methods based on tailored agglomerates.
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