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ABSTRACT
A flexible stochastic approach is described to model separation processes, in which
air-borne particles are separated via a setup of one or more aerodynamic lens ori-
fices. Varying the size of the orifices, the focusing pressure and the mass flow rate
through the lens, leads to focusing of particles with distinct aerodynamic proper-
ties on the central axis. In this modeling approach a bivariate transfer function is
used to describe the passage probability of particles depending on their size and
mass. The distribution of feed particles and the changes of the distribution due to
the separation process is described via probability densities. The modeling proce-
dure is applicable to various kinds of separation methods and allows optimization
of geometric and operation parameters. To this end, the model utilizes flexibly de-
fined separation performance measures which are illustrated in a case study that
considers the separation of Cu particles from SiO2 particles. The spherical particles
in the considered virtual mixtures are described by their log-normally distributed
diameters and their normally distributed mass densities. Furthermore, the cases are
selected in such a manner that the mean aerodynamic diameters of both Cu and
SiO2 particles are equal.

KEYWORDS
aerodynamic sizing; material separation; aerosol; stochastic modeling; classifying
aerodynamic lens

1. Introduction

The technique of aerodynamic focusing has applications in concentrating particles to a
focused beam in low pressure environments (Klimešová et al., 2019), in mass spectrom-
etry (Drewnick et al., 2005; Schreiner et al., 1999) and in synthesizing nanostructured
materials (Dong et al., 2004; Piseri et al., 2004). Early works on aerodynamic focusing
conclude that it might be the basis for new aerosol measurement techniques (de La
Mora and Riesco-Chueca, 1988). Furthermore, Rao et al. (1993) continued investigat-
ing the focusing of particles in viscous jets, showing that focusing is possible even when
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the flow conditions are not laminar. Focusing is often achieved by utilizing aerody-
namic lenses, consisting of radial symmetrical pipes with an orifice (Liu et al., 1995),
into which an aerosol is injected at the center of the pipe’s end. Then, the orifice
leads to a temporary flow contraction which results in a focused stream of aerosol.
Liu et al. (1995) characterized the focusing quality of aerodynamic lenses by a dimen-
sionless contraction factor which in detail describes the features that contribute to
the broadening of particle beams. Aerodynamic focusing of particles is the basis for
various characterization techniques. For example, Mallina et al. (1999) describe the
rapid single-particle mass spectrometry technique, for analyzing the chemical content
of ultrafine aerosols, including a particle inlet, which is able to transmit particles of
different sizes, by varying the nozzle pressure – a principle that is similar to the ap-
proach utilized in the present work. A thorough numerical investigation of particle
trajectories in aerodynamic lenses is performed by Zhang et al. (2002). They found
that the contraction of a focused particle is highest for Stokes numbers smaller, yet
close to one. On the other hand, for larger Stokes numbers, significant impact losses
occurred. Wang et al. (2005) propose a procedure for designing aerodynamic focusing
lenses for small particles, based on numerical simulations. In their algorithm, design
decisions are dictated by the minimum reachable pressure which is introduced by lim-
itations of the available equipment. Then, Wang and McMurry (2006) released a tool
for designing aerodynamic lenses for focusing nanoparticles. Therefore, they computed
optimal Stokes numbers beforehand via CFD simulations. Later on, as part of a project
on multiparameter characterization of aerosols, a new device, namely the Differential
Aerodynamic Particle Sizer (DAPS) was described. The DAPS allows to measure the
aerodynamic diameter of nanoparticles by focusing various particle sizes in order to
investigate specific, nearly monodisperse particle fractions (Babick et al., 2018).

The DAPS is based on the principle of classifying aerodynamic lenses. In contrast to
aerodynamic lenses a classifying aerodynamic lens (CAL), see Figure 1, behaves more
like a prism than a lens. More specifically, the aerosol is injected at a well-defined radial
region offside the center line of the pipe, which results in the separation of particles
when passing through the lens due to their distinct relaxation time τp. Before passing
through the lens the aerosol must follow the contracting streamlines which widen again
after the orifice to accommodate the available space. Inertial and drag forces play vital
roles here, because a particles path depends on its Stokes number: It either stays on its
original streamline, which is the direction determined while passing through the orifice,
or it adapts partially or fully to a new streamline. The consequence is that particles
possessing a specific relaxation time τL, as a result of the flowing conditions and the
design of the lens, will be focused on the centerline of the CAL. Lighter and smaller
particles will follow the new streamline, while larger, denser particles will not adapt to
the new streamline and move towards the walls of the pipe. The portion of the aerosol
which is focused on the centerline, however, is collected via an orifice, which we will
call the sampler. This separation process results in a transfer function which shows a
differential, classifying behavior which motivates the wording “classifying aerodynamic
lens”. Using this approach, it is possible to yield a “mono-aerodynamic” aerosol. More
precisely, a CAL separates particles whose relaxation times τp are approximately equal
to a characteristic value τL, called lens relaxation time, which depends on the CAL’s
operating parameters. Since a particle’s relaxation time τp depends on its size dp

and its mass density ρp, CALs can be used to achieve separation with respect to
multidimensional particle characteristics. Therefore, the present paper introduces a
stochastic model, which describes the separation processes of particle mixtures. For
any distribution of feed particle characteristics, which can be freely chosen, the model
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describes the distribution of product particle characteristics depending on operating
parameters. The general approach can be described by the following steps:

(i) Define the governing equations which describe the influence of particle charac-
teristics and operating parameters on the separation process (Section 2.1).

(ii) Describe these relationships stochastically in form of a transfer function which
describes the separation probability of a particle based on its physical charac-
teristics (Section 2.2).

(iii) Define the distribution of characteristics of the considered particle mixture (Sec-
tion 2.3).

(iv) Combine the last two steps into a stochastic model which describes the dis-
tribution of particle characteristics after separation in dependence of operating
parameters (Section 2.4).

(v) Define the operating parameters to be optimized and their respective physical
and technical limitations (Section 2.5).

(vi) Define performance measures suitable for the process which characterize separa-
tion process (Section 2.6).

(vii) Apply optimization algorithms to obtain operating parameters which lead to in
a reasonable separation in accordance with the performance measures defined in
the previous step (Section 3).

These steps can be used to virtually optimize any separation process for which the
particle systems and the relationships between particle characteristics, operating pa-
rameters and separation probabilities are known. In the present paper, we demonstrate
these steps in detail for the separation of particles from an aerosol based on their mass
density and size using CALs.

2. Methods

There are several challenges to overcome when setting up a separation experiment
based on a classifying aerodynamic lenses. The most important parameters are focusing
pressure p, which is the pressure before the orifice, mass flow Q̇m and the diameter
of the CAL orifice dL. Even when the importance of additional details, such as the
geometric shape of nozzles and sampler and the radial position of the aerosol inlet, is
neglected, the interdependence of pressure p, mass flow Q̇m and orifice diameter dL

creates a complex optimization problem for separation processes. Once a configuration
of lens geometry and operating parameters is chosen, the manufacturing and testing of
the prototype is costly in time and money. To minimize the risk it is good practice to
simulate the separation process, using numerical fluid dynamics and particle trajectory
analysis. However, CFD simulations of CALs are difficult, because they make use of
critical orifices1. These possess high aspect ratios and creating appropriate meshes is
an elaborate process. Therefore, there is a need for a fast, reliable prediction method.
The present paper utilizes stochastic models for predicting the most promising set-up.
For that purpose we propose a stochastic description of CALs, which decorates each
vector of particle characteristics with a realistic probability for passing through a lens.

Then, we describe the incoming particle mixtures stochastically with the help of
two-dimensional probability distributions for the random vector of particle size and
mass density. By combining such probability distributions with the stochastic descrip-

1Critical orifices are used to define the mass flow rate into the lens.
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tion of CALs we are able to determine the distribution of size and mass density for
outgoing particles. Moreover, this approach makes it possible to derive formulas for
performance measures, such that fast numerical computation of these performance
measures for arbitrary lens parameters and particle mixtures, represented by two-
dimensional probability distributions, is possible. Thus, the performance measures can
be maximized efficiently for any known particle mixture by finding optimal operating
parameters for the CAL.

2.1. Particle and lens relaxation times

A CAL focuses particles of a certain optimal Stokes number on the central axis, where
they are collected via a sampling orifice. The optimal Stokes number Stko is a function
of Mach and Reynolds number, but is usually close to unity, see Wang et al. (2005). In
the present paper we make the general assumption that Stko = 1. The Stokes number
of a particle is calculated by

Stk =
τpu

`
, (1)

where ` is the diameter of the lens2, u is the gas velocity and τp the particle relaxation
time, describing the time a spherical body needs to adapt to changing flow conditions.
The particle relaxation time τp depends on the particle mass density ρp and the volume
equivalent diameter dp, and is given by

τ(dp, ρp) =
ρpd

2
pCc(p, dp)

18η
, (2)

where η is the viscosity of the gas, p is the pressure and Cc is the Cunningham correc-
tion. Equation (2) is valid for spherical particles. The Cunningham correction describes
the quantity of slipping that occurs between particles and gas molecules as a dimen-
sionless factor greater than one. It depends on the particle size and the mean free
path of the gas molecules (Friedlander (2000); Willeke (2011)). The mean free path
is defined by pressure, thus the particle relaxation time τp is via the Cunningham
Correction a function of pressure p.

Assuming that the velocity field and the diameter of the orifice are constant, it is
deduced that a particle is focused, when its particle relaxation time τp equals a lens
specific specific relaxation time τL. This characteristic value of the lens is given by

τL(dL, Q̇m, p) =
Stko · dL

u
=
Stko · π4d

3
L · ρg(p)

Q̇m
, (3)

where dL is the diameter of the lens, Q̇m is the mass flow through it, ρg is the gas
density at a defined focusing pressure p. In order to focus particles with given size and
mass density the characteristic relaxation time of the particle τp must be equal to the
relaxation time τL of particles focused by the lens. Combining Equations (2) and (3)

2the length of the relevant dimension of the obstacle
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Figure 1. Working principle of a classifying aerodynamic lens (CAL) according to Babick et al. (2018): The

aerosol is injected into a stream of sheath gas at a defined radial region. After passing the lens, only particles
with Stokes numbers Stk close to Stko ≈ 1 are collected via the sampler (dash-dotted green or blue line).

the following formula is obtained:

dL =

(
2ρpd

2
pCC(p, dp)Q̇m

9πρgηStko

) 1

3

, (4)

where ρg is the gas density. Note that for every particle of volume equivalent diameter
dp and mass density ρp, there are infinitely many possible combinations of pressure

p, mass flow Q̇m and the lens diameter dL that focus the particle and thus allow to
separate it from particles with deviating diameter or mass density.

There is an additional ambiguity involved: Equation (2) is not bijective, such that
there will be cases where particles with distinguishable size and mass density possess
equal particle relaxation times and thus the same aerodynamic properties, described
by the aerodynamic diameter da given by

da = dp

√
ρp

ρ0
, (5)

where ρ0 is the unit mass density (Willeke, 2011).
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2.2. Transfer functions of CALs

As stated above particles are focused by a CAL if their relaxation time fulfills the
following equation:

τ̃(dp, ρp) =
τ(dp, ρp)

τL
= 1. (6)

We call τ̃(dp, ρp) the normalized relaxation time of the particle. The set of configura-
tions {(dp, ρp) ∈ R2

+ : τ̃(dp, ρp) = 1} form a curve in the two-dimensional parameter
space of particle sizes and mass densities. These so-called iso-τ lines are visualized in
Figure 2a for three different pressures p. The other two lens parameters Q̇m and dL

are kept constant in the visualized three scenarios. An “optimal” lens would solely
separate particles for which the tuples (dp, ρp) belong to the CAL’s iso-τ line, i.e.,
which fulfill Equation (6). However, particles with τ̃(dp, ρp) values close to 1 can be
separated with some probability. To model this, we define a trapezoidal transfer func-
tion Ω: (0,∞)→ [0, 1] by

Ω(τ̃) =
1

2β(1− δ)
(
|τ̃ − (1 + β)|+ |τ̃ − (1− β)| − |τ̃ − (1 + βδ)| − |τ̃ − (1− βδ)|

)
, (7)

where β, δ are model parameters. In general, the shape of the transfer function depends
on the separation process. The transfer function Ω given in Equation (7) is taken
from Stolzenburg and McMurry (2008), where it is used to describe the behavior
of differential mobility analyzers. In particular, the trapezoidal shape of Ω fits the
transfer function obtained by numerical simulations of particle trajectories through a
CAL reported by Babick et al. (2018). More details on the procedure of obtaining the
transfer behavior through numerical simulations are described in Kiesler et al. (2019).
Alternatively, it can be obtained experimentally, e.g., by measuring the concentration
of a mono-disperse aerosol before and after separation, while varying the particle size.
The transfer function Ω given by Equation (7) allows to mimic the general form of the
transfer behavior of CALs. Figure 2b shows such a transfer function Ω with parameters
β = 0.4 and δ = −0.25. The value of Ω(τ̃) describes the probability that a particle
with normalized relaxation time τ̃ passes through the CAL. Furthermore, the transfer
function Ω is symmetrical around τ̃ = 1, while the parameter β controls the width of
the trapezoid transfer function. For wider transfer functions particles with τ̃ values
different from 1 can pass through the lens more easily. The parameter δ influences
the height of the trapezoid, which influences how likely particles with normalized
relaxation times τ̃ = 1 pass through the lens.

In order to obtain a particle size and mass density dependent transfer function TL

of a CAL with relaxation time τL and particle relaxation time dependent transfer
function Ω, we combine Equations (6) and (7). This leads to the bivariate transfer
function TL : (0,∞)2 → [0, 1] of a CAL given by

TL (dp, ρp) = Ω (τ̃(dp, ρp)) = Ω

(
τ(dp, ρp)

τL

)
. (8)

The value of TL(dp, ρp) is the probability that a particle with size dp and mass density
ρp passes through the lens, see Figure 2c. It can be considered as a two-dimensional
transfer function which describes the separation behavior of a CAL with respect to
particle size and mass density.

6



0 10 20 30 40 50 60 70 80
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2
105

p = 10
p = 20
p = 30

particle size dp [nm]

p
a
rt

ic
le

m
a
ss

d
e
n
si

ty
ρ
p

[k
g
/
m

3
]

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

τ̃

p
ro

b
a
b
il
it

y
Ω

(τ̃
)

1−|δ|
1−δ

β
10 20 30 40 50 60 70 80

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2
105

0

0.1

0.2

0.3

0.4

0.5

particle size dp [nm]

p
a
rt

ic
le

m
a
ss

d
e
n
si

ty
ρ
p

[k
g
/
m

3
]

a) b) c)

Figure 2. a) Iso-τ lines in the (dp, ρp) plane for different pressures p with constant lens diameter dL = 0.008 m

and equivalent mass flow Q̇slm = 0.001 slm. b) Transfer function Ω for β = 0.4 and δ = −0.25. c) Bivariate
transfer function TL of the corresponding iso-τ line (red) of Figure 2a.

2.3. Distribution of particle characteristics

In the previous section we gave a stochastic description of CALs in the form of bivariate
transfer functions TL. On the other hand, particle mixtures themselves can be described
by two-dimensional probability distributions, i.e., the relevant particle descriptors size
dp and mass density ρp of a particle mixture can be described by means of their joint
probability distribution. More precisely, let (D,R) be a random vector consisting of size
D and mass density R of a random particle. In many applications the distribution of
the random vector (D,R) can be described by its two-dimensional probability density3

f : R2 → [0,∞) whose values have the unit m2/kg, i.e., we assume that (D,R) is
absolutely continuous. This allows us to derive various properties of particle mixtures,
like for example the number-based fraction of particles in the mixture with size dp ∈
[a, b] by computing

P(D ∈ [a, b]) = P((D,R) ∈ [a, b]× R) =

∫ ∞
0

∫ b

a
f(d, ρ) dddρ. (9)

The two-dimensional probability density f of mixtures of two types of dispersed par-
ticles, denoted by A and B, with number-based two-dimensional probability densities
fA and fB, respectively, can then be modeled by

f(d, ρ) = λfA(d, ρ) + (1− λ)fB(d, ρ), (10)

where the parameter λ ∈ [0, 1] describes the mixing ratio of particles of type A and
B4. We make the assumption that particle characteristics are not correlated. How-
ever, note that the stochastic description introduced in the present paper does not
require independence of particle size dp and mass density ρp for the considered parti-
cle systems. Figure 3a depicts the probability density of a particle mixture of Cu and

3 An absolutely continuous real-valued random variable X has a probability density fX : R → [0,∞) such

that the probability of the event that the values of X belong to some interval [a, b] ⊂ R is given by

P(X ∈ [a, b]) =
∫ b
a fX(x) dx. Analogously, an absolutely continuous random vector X = (X1, X2) has a

probability density fX : R2 → [0,∞) such that P(X1 ∈ [a1, b1], X2 ∈ [a2, b2]) =
∫ b1
a1

∫ b2
a2
fX(x1, x2) dx2dx1

holds (Jacod and Protter (2003); Karr (1993)). Note that the probability density fX is normalized, i.e.,∫∞
−∞

∫∞
−∞ fX(x1, x2) dx2 dx1 = 1 holds.

4The mixing ratio λ describes the mixture on the basis of particle numbers. Thus, the mass ratio of the

mixture is in favor of the heavier particle species.
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Figure 3. a) Two-dimensional probability density f of particle size-mass density vectors of an exemplary
Cu-SiO2 particle mixture. The red line is the iso-τ line of a CAL with lens parameters p = 10 Pa, dL = 0.07 m,

Q̇m = 0.02 slm. b) The two-dimensional probability density f̃ of size-mass density vectors of particles which

pass through the CAL.

SiO2 where the task of a CAL will be to separate the desired Cu particles from SiO2

particles. Note that Figure 3a shows a bimodal probability density, where the mode
centered at the mass density of 8900 kg/m3 originates from the Cu particles. The red
line depicts an iso-τ line of a CAL. Since the iso-τ line does not pass through the mode
of the probability density belonging to the SiO2 particles, it can be expected that the
separation task will be performed rather well.

2.4. Stochastic modeling of the separation process

We already mentioned that a CAL does not only separate particles whose size-mass
density configurations (dp, ρp) are located on the iso-τ line, but also particles whose
size-mass density configurations are in the vicinity of this line. The bivariate transfer
function TL of a CAL takes this effect into account.

Using the bivariate transfer function TL, we can compute the probability cL that a
particle, selected at random among all particles, with random size-mass density vector
(D,R) passes through a CAL. For this purpose, we introduce an additional random
variable U which is uniformly distributed on the unit interval [0, 1] and stochastically
independent of (D,R). Then, the probability of the event that the random particle
passes the CAL is equal to the probability of the event that the inequality

TL(D,R) ≥ U (11)

holds. Note that for deterministic D and R the probability cL of the event TL(D,R) ≥
U is the value of the transfer probability TL(D,R) itself. On the other hand, for a
random size-mass density vector (D,R) with joint density function f , this probability
is given by

cL = P(TL(D,R) ≥ U) =

∫ ∞
0

∫ ∞
0

f(d, ρ)TL(d, ρ) dρdd. (12)

Moreover, it is possible to determine the two-dimensional probability density f̃ of the
vector (D̃, R̃), which describes the random size D̃ and density R̃ of those particles
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which pass through the lens. The distribution of this random vector is equal to the
conditional distribution of (D,R) under the condition that the random particle de-
scribed by the vector (D,R) passes through the CAL. By computing the probability

that the value of (D̃, R̃) belongs to a rectangle C1 × C2 ⊂ R2, where C1, C2 ⊂ R2 are

some given intervals, it is possible to determine the probability density f̃ of (D̃, R̃).
Namely, it holds that

P(D̃ ∈ C1, R̃ ∈ C2) = P(D ∈ C1, R ∈ C2 | TL(D,R) ≥ U)

=
1

cL

∫
C1

∫
C2

f(d, ρ)TL(d, ρ) dddρ. (13)

Thus, the probability density f̃ of the random size-mass density vector (D̃, R̃) of
those particles which pass through the lens is given by

f̃(d, ρ) =
1

cL
f(d, ρ)TL(d, ρ). (14)

The conditional probability density f̃ is visualized in Figure 3b for the input proba-
bility density f shown in Figure 3a.

2.5. Constraints on lens geometry and operating parameters

In the previous section we described the relative amount cL of particles which pass
through the CAL by Equation (12) and the probability density f̃ of their particle
characteristics in dependence of the CAL’s bivariate transfer function TL, see Equa-
tions (12) and (14), respectively. Since the bivariate transfer function TL depends on
the lens parameters p, Q̇m, dL, see Equations (2), (3) and (8), we can modify the lens
geometry and operating to influence the separation results. However, there are certain
physical constraints on the lens parameters p, Q̇m, dL which we want to discuss in order
to describe the space of valid parameter configurations. To reduce the complexity of
the problem, the following deductions and assumptions are used:

(i) Particles do not affect the flow of the carrier gas.
(ii) The particle relaxation time is based on the pressure before passing the orifice5.

(iii) All particles start in the same region of the lens, such that they experience the
same velocity when going through the orifice.

(iv) Only subsonic and continuum flow conditions are considered.
(v) Particle mass load is small, to avoid coagulation which could change the size-

distribution in the lens setup.

As stated in Wang et al. (2005) focusing of submicron particles is not possible when
certain limits for Reynolds Re, Mach Ma and Knudsen Kn numbers are exceeded,
where the limits are denoted by Rec,Mac and Knc, respectively. Additionally, the
available pumping capacity is a further limiting factor. The equations for computing
Re, Ma, Kn and their respective critical values given in Wang et al. (2005) are provided

5For CALs in use, mass flow rate of the carrier gas is fixed via mass flow control devices or critical orifices,

thus the pressures in the CAL depend on the adjustable suction rate of the chosen pumping system. The
pressure drop over the lens is small (< 10 Pa ) in comparison to the pressure drop over the lens exits, and can

be calculated.
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below. The Reynolds number Re is calculated via the mass flow rate of the gas Q̇m by

Re =
ρg(p) · ū · dL

µg
=

4 · Q̇m

πµgdL
< 200 = Rec, (15)

where µg is the gas viscosity. The Mach number Ma, given by

Ma =
u

cg
< 1 = Mac, (16)

compares gas velocity u with the velocity of sound cg in the gas. The Knudsen number
Kn, which indicates whether a fluid flows as a continuum, is given by

Kn =
2 · λg(p)

dL
< 0.1 = Knc, (17)

where λg is the mean free path of the gas.
The pumping capacity mentioned above limits the volume flow rate that can be

pumped out of the system at a given pressure. There exists an optimal pressure for
which the pump evacuates at a maximum volume flow rate. In the present paper we
use measurements from a rotary vane pump (1001 Leybold) as exemplary data. More
precisely, the function we use to describe the pressure-dependent volume pump rate
Sslm in slm is given by

Sslm(p) = 60 · 10y(p) · ρg · (p/p0) · (T0/T ), (18)

where p0 = 101325 Pa is the standard pressure, T0 = 273.15 K is the standard temper-
ature and y denotes a polylogarithmic fit to the volume pump rate data provided in
Leybold GmbH (2018) which is given by

y(p) =

8∑
k=0

xk logk(p), (19)

with fitted regression parameters

(x0, x1, . . . , x8) = (2.908,−0.016,−0.082, 0.050, 0.010,−0.025,−0.002, 0.006,−0.001).

Furthermore, the available pressure range is constrained by the pumping capacity:

10Pa ≤ p ≤ 101325Pa. (20)

When we apply the constraints that result from the calculation of the critical values
for Rec, Mac , Knc and the pumping capacity, we can locate all feasible combinations
of pressure, flow rate and lens diameter. Using Equation (3) we can calculate the
values of τp belonging to the constrained parameter space. For every particle with
mass density ρp and diameter dp, there exists a surface, see Equation (4), in the 3D

parameter space of pressure p, lens diameter dL and mass flow Q̇m such that the
particle is optimally focused. Due to the constraints for the lens parameters given by
Inequalities (15)-(17) and (20) the surface can be empty, but in our application there
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are usually a multitude of combinations of p, dL and Q̇m which satisfy the constraints
and for which the particle is optimally focused.

2.6. Performance measures

In Section 2.4 we described how to obtain the probability density f̃ of size and mass
density for feed particles which pass through a CAL with bivariate transfer function
TL. Since TL depends on CAL operating parameters, the latter can be varied while
respecting the constraints discussed in Section 2.5 in order to modify separation results.
Therefore, we introduce quantities, which we refer to as performance measures, to
evaluate the quality of a separation process. Furthermore, we derive some formulas
which allow a quick numerical computation of performance measures. To do so, we
analyze mass fractions in the feed, product and waste and differentiate between value
and non-value materials. Figure 4 shows how these quantities are denoted: The mass
fractions of the feed are labeled with the subscript F. Value material is labeled with v,
while non-value material is labeled with nv. Thus, the mass mF of the feed material
consists of the mass mv,F of the value material in the feed and the mass mnv,F of the
non-value material. The feed is separated in product and waste fractions denoted by
P and W, respectively.

feed F

mF =

mv,F +mnv,F

-separation

product P

mP =

mv,P +mnv,P

waste W

mW =

mv,W +mnv,W

Figure 4. The feed F is separated into the product P and the waste W. Desired fractions are marked by v

and undesired fractions by nv. The terms “product” and “waste” are used only to better distinguish the two
separated fractions by name.

Furthermore, we consider the feed purity PF, product purity PP and product yield
YP which are defined as follows:

PF =
mv,F

mF
=

mv,F

mnv,F +mv,F
, (21)

PP =
mv,P

mP
=

mv,P

mnv,P +mv,P
, (22)

YP =
mP

mF
=
mnv,P +mv,P

mnv,F +mv,F
. (23)

The ratio of product purity PP divided by feed purity PF describes the gain in
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purity, or, in other words, the enrichment E of value material in the product P , i.e.,

E =
PP

PF
. (24)

Multiplying the enrichment E with the product yield YP gives a measure for the yield
of value material Yv, i.e.,

Yv = EYP =
mv,P

mv,F
. (25)

In the present paper, we will quantify the separation performance by mainly consid-
ering the product yield YP and the yield of value material Yv. These quantities are
normalized and take values in the interval [0, 1].

Having in mind the stochastic description of both the in-going particle mixtures
and the CAL introduced in Sections 2.2 and 2.4, it is possible to estimate per-
formance measures using Monte Carlo simulation (Asmussen and Glynn (2007);
Kroese et al. (2013)). Therefore, for some n > 1, we consider the random vectors
(D1, R1), (D2, R2), . . . , (Dn, Rn) with joint probability density f which represent n in-
going random spherical particles. Note that the mass m(Di, Ri) of the i-th random
particle described by the random size-mass density vector (Di, Ri) is given by

m(Di, Ri) =
π

6
D3
iRi (26)

for each i = 1, . . . , n and thus the (random) mass mF of the n in-going random particles
is given by

mF =

n∑
i=1

m(Di, Ri) =
π

6

n∑
i=1

D3
iRi. (27)

To decide whether the i-th random particle goes through the considered CAL with
bivariate transfer function TL, we consider an additional uniformly distributed random
variable Ui on the unit interval [0, 1]. Recall that the particle passes the CAL if Ui ≤
T (Di, Ri) holds, see Inequality (11). Thus, the (random) mass mP of particles in the
product is given by

mP =
π

6

n∑
i=1

D3
iRi1Ui≤T (Di,Ri), (28)

where 1 denotes the indicator function which is defined by

1Ui≤T (Di,Ri) =

{
1, if Ui ≤ T (Di, Ri),
0, if Ui > T (Di, Ri).

To measure the separation performance we have to distinguish between spherical par-
ticles comprised of value and non-value materials. Therefore, we consider a predefined
interval Cv ⊂ (0,∞), which describes the range of mass densities associated to the
value material. Therefore, a random particle with size and density (Di, Ri) is consid-
ered to be comprised of the value material if Ri ∈ Cv. With this definition of the value
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material, we can formulate the mass mv,F of value material in the feed as

mv,F =
π

6

n∑
i=1

D3
iRi1Ri∈Cv , (29)

and, analogously, the mass mv,P of value material in the product is given by

mv,P =
π

6

n∑
i=1

D3
iRi1Ri∈Cv, Ui≤T (Di,Ri). (30)

By inserting the formulas given in Equations (27) - (30) into the definitions considered
in Equations (21) - (25) of our performance measures, we can estimate the separation

performance. For instance, an estimator ŶP for the product yield YP is given by

ŶP =

∑n
i=1RiD

3
i 1Ui≤T (Di,Ri)∑n

i=1RiD
3
i

, (31)

which can be computed via Monte Carlo simulation of the random vectors
(D1, R1), . . . , (Dn, Rn). However, this approach can be relatively expensive, especially
if the lens parameters p, dL, Q̇m have to be optimized to maximize some performance
measure, like the enrichment E, for a given distribution f of size-mass density vectors
of incoming particles. To overcome this, we utilize the stochastic model of CALs de-
scribed in Section 2.4, in order to derive theoretical formulas for the computation of
performance measures in the case of an unboundedly increasing number n incoming
random particles. Due to the law of large numbers (Jacod and Protter (2003); Karr
(1993)) we have

1

n
mF =

1

n

n∑
i=1

m(Di, Ri) −→
n→∞

E [m(D,R)] =

∫ ∞
0

∫ ∞
0

m(d, ρ)f(d, ρ) dρ dd, (32)

and, analogously,

1

n
mP −→

n→∞
E
[
m(D,R)1TL(D,R)≥U

]
=

∫ ∞
0

∫ ∞
0

m(d, ρ)f(d, ρ)TL(d, ρ) dρ dd, (33)

1

n
mv,F −→

n→∞
E [m(D,R)1R∈Cv ] =

∫ ∞
0

∫
Cv

m(d, ρ)f(d, ρ) dρdd, (34)

1

n
mv,P −→

n→∞
E
[
m(D,R)1TL(D,R)≥U1R∈Cv

]
=

∫ ∞
0

∫
Cv

m(d, ρ)f(d, ρ)TL(d, ρ) dρdd,

(35)

where E denotes the expectation. Thus, the random variables considered in Equations
(32) - (35) converge to deterministic limits. The integral representations of the limits
in Equations (32) - (35) allow the numerical computation of the mass values of the feed
and the product. Similarly, we can represent the limits of the separation performance
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measures given in (21) - (25) via integrals. For example, the limit or, equivalently, the
expected value of the product purity PP for an unboundedly increasing number n of
particles is given by

PP =
mv,P

mP
=

1
nmv,P

1
nmP

→
∫∞

0

∫
Cv
m(d, ρ)f(d, ρ)TL(d, ρ) dρdd∫∞

0

∫∞
0 m(d, ρ)f(d, ρ)TL(d, ρ) dρ dd

= EPP, (36)

for n → ∞. The expected values for the remaining performance measures can be
derived analogously to (36). In the following, we will denote the expected values
EPF,EPP,EYP,EE,EYv simply by PF, PP, YP, E, Yv, respectively.

The formulas given in Equations (32) - (35) allow the numerical computation of
expected performance measures for feed particle mixtures. More precisely, for any two-
dimensional probability density f , which describes the number-based distribution of
size-mass density of feed particles going through a CAL with bivariate transfer function
TL, we can numerically compute the measures PF, PP, YP, E and Yv. By varying the
lens parameters we can find suitable choices of operating parameters p, d, Q̇m which
optimize the separation quality with respect to one or several performance measures.
In the following section we discuss this approach for various hypothetical separation
problems.

3. Optimization of performance measures: A case study

In Section 2.6, we defined several quantities for measuring the separation performance
of a CAL for mixtures having identical mean aerodynamic diameter and introduced
analytical representations of these measures for numerical evaluation. Furthermore,
in Section 2.5 we confined a reasonably sized space of viable operating parameters
of a CAL. Thus, we can now conduct a case study for various distributions of feed
particles, for which we search optimized initial parameters to be used later on in
physical laboratory experiments.

3.1. Description of considered cases & approaches

Therefore, we consider various cases of particle mixtures which will be described by
their joint probability density f : R2 → [0,∞) as a function of size and mass density.
For nanoparticles of one single type of material A with mean particle size dA and mean
mass density ρA such a joint probability density fA will be modeled by

fA(d, ρ) = f1(d)f2(ρ), (37)

where f1 is the probability density of a log-normal distribution with mean dA and
standard deviation6 of 200 nm, which is truncated at 3000 nm such that only parti-
cle sizes below that threshold can occur. The function f2 considered in (37) is the
probability density of a normally distributed random variable with mean ρA and stan-
dard deviation 0.1ρA, which is truncated such that only mass densities between 0

6The mean (or expectation) µ and standard deviation σ of a real-valued random variable X with probabil-

ity density f are given by µ = EX =
∫∞
−∞ xf(x) dx and σ =

√
E [(X − µ)2] =

(∫∞
−∞(x− µ)2f(x) dx

)0.5
,

respectively (Jacod and Protter (2003); Karr (1993)).
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Table 1. Feed properties of the considered cases including means of particle sizes and feed purities PF. In

each case both Cu and SiO2 have the same mean aerodynamic diameter da.

cases da [nm] dCu [nm] dSiO2
[nm] PF [ ]

C1 500 168 307 0.82
C2 1000 335 614 0.68
C3 1500 503 921 0.62
C4 2000 670 1230 0.79

Table 2. Overview of approaches conducted in the case study.

A1 target mode of value material
A2a optimize performance measure: Product purity
A2b optimize performance measure: Product yield
A2c optimize performance measure: Cost function
A3 second CAL for enhanced product yield

and 22 000 kg m−3 can occur. Note that without truncating these distributions, phys-
ically unrealistic particles could occur. Furthermore, truncating distributions limits
the range of integration in the formulas for the performance measures given in (27)
- (30) to bounded sets, which in return makes numerical integration more viable.
We also remark that in Equation (37) the particle size and mass density are mod-
eled by stochastically independent random variables. On the other hand, note that
it is possible to model such two-dimensional distributions for correlated particle size
and mass density. For example the components exp

(
X1

)
and X2 of the random vector

(exp
(
X1

)
, X2) are log-normally and normally distributed and are in general correlated

if (X1, X2) is a bivariate normally distributed random vector.
Recall that for mixtures of particles of type A and B with two-dimensional proba-

bility densities fA and fB, respectively, we can describe the joint density fA,B of such
particle systems using the mixing ratio introduced in Equation (10). In the present
paper we only consider the case λ = 0.5. Thus, the probability density fA,B models a
particle mixture with equal numbers of particles of type A and B. However, this does
not imply mass equality between particles of both types since their mass distributions
can differ quite significantly.

In the present paper, we consider mixtures of Cu and SiO2 particles as feed mate-
rial, where we assume that Cu has a mean mass density of ρCu = 8900 kg m−3 and
SiO2 has a mean mass density of ρSiO2

= 2190 kg m−3. In this case study we consider
four different constellations, denoted by C1-C4, of mean particle sizes dCu and dSiO2

which can be found in Table 1. Each case of volume equivalent diameters dCu and
dSiO2

corresponds, together with the mass densities ρCu, ρSiO2
, to a respective aero-

dynamic diameter da, see Equation (5). Table 1 indicates that, for each particle size
constellation C1-C4, the aerodynamic diameters da of Cu and SiO2 particles are equal,
which constitutes similar aerodynamic behavior of particles for a given constellation.
For each of the considered cases the probability densities fCu and fSiO2

of Cu and SiO2

particles are assumed to have the form given in Equation (37). The joint probability
densities fCu,SiO2

of characteristics of the mixtures are modeled by Equation (10),
see Figure 5 (left column), with an equal (number-based) mixing ratio λ = 0.5. The
corresponding resulting feed purities PF are given in Table 1. For each of the consid-
ered feed materials C1-C4 we optimize the lens parameters p, dL, Q̇m with respect to
performance measures introduced in Section 2.6, on the basis of several approaches,
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which will be denoted by A1, A2a, A2b, A2c and A3 in the following. For an overview
of these approaches, see Table 2.

3.2. Target mode of value material (A1)

For each case stated in Table 1, lens parameters p, dL, Q̇m are determined such that
the constraints given in (15) - (17) and (20) are satisfied and the corresponding iso-τ
line of the CAL goes through the mode of the probability density fCu. For each of the
cases C1-C4, Figure 5 (left column, red line) shows the iso-τ lines of the CALs based
on this approach. Heuristically speaking, this choice of the CAL parameters tries to
maximize the number of Cu particles in the product P. However, this approach ignores
the fact that larger particles carry more mass of value material which is reflected by
the relatively low product yield YP, since it considers the mass of particles, see Table 3
(constellation C1). Moreover, the approach A1 does not try to minimize SiO2 in the
product which can lead to a low product purity PP. Approach A1 serves as a reference
to which the other approaches are compared to.

3.3. Optimize performance measures (A2)

In order to remedy the low product purity obtained by approach A1, we now choose
CAL parameters, which maximize the product purity PP, for each probability distri-
bution fCu,SiO2

of feed material described by the cases C1-C4. This approach (denoted

by A2a) is equivalent to maximizing the enrichment E = PP

PF
, since the values of feed

purity PF, given in Table 1, do not depend on the CAL parameters.
To be more precise, for each feed material distribution fCu,SiO2

considered in C1-C4,
we define a cost function gA2a : D → R, where D ⊂ R3 is the set of valid lens parameter
constellations (p, dL, Q̇m), i.e., (p, dL, Q̇m) ∈ D if and only if (p, dL, Q̇m) satisfies the
constraints given by (15)-(17) and (20). The values of the cost function are given by

gA2a(p, dL, Q̇m) = −E(p, dL, Q̇m), (38)

where E(p, dL, Q̇m) is the enrichment E obtained by a CAL with parameters p, dL, Q̇m
for the feed material distribution fCu,SiO2

. Note that the performance measure

E(p, dL, Q̇m) can be computed numerically using the integral representation intro-
duced in Section 2.6. The optimal parameter constellation (popt, dL,opt, Q̇m,opt) of the
CAL minimizes the cost function gA2a (thus maximizes the enrichment E) and is given
by

(popt, dL,opt, Q̇m,opt) = argmin
(p,dL,Q̇m)∈D

gA2a(p, dL, Q̇m). (39)

This constrained optimization was performed using the particle swarm optimization
algorithm in Matlab, see Eberhart and Kennedy (1995) and Mezura-Montes and Coello
(2011), which, however, does not necessarily provide a global minimum. The CAL
parameters determined in this way are given in Table 3 and the corresponding values
of the performance measures YP, PP are listed in Table 3. In comparison to the results
obtained by approach A1, the product purity increased significantly. However, this
optimization can lead to a rather poor yield, see, for example, case C1. This is due to
the fact that the maximization of the enrichment would be achieved if the CAL would
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Figure 5. Left column: probability densities f of the Cu-SiO2 particle mixtures in feed of cases C1-C4. The
lines indicate the iso-τ lines of CALs optimized with the approaches A1, A2a, A2b and A2c, respectively. Right

column: probability density f̃ of the feed material considered in C1-C4 after passing through a CAL which was
optimized using approach A2c.

17



solely separate one single particle comprised of the value material.
On the other hand, if we chose the following cost function: gA2b(p, dL, Q̇m) =

−YP(p, dL, Q̇m), which optimizes the product yield PP (approach A2b), the product
purity can suffer, see case C4 in Table 3.

Therefore, neither the optimization of the product purity PP nor the product yield
YP seem to be suitable as possible goals. As an alternative approach (A2c) we thus pro-
pose the cost function gA2c(p, dL, Q̇m) = −Yv(p, dL, Q̇m)E(p, dL, Q̇m). This approach
tries to maximize both the yield of the value material Yv and the enrichment E. Note
that the best separation result would be achieved if the CAL would separate the entire
fraction of the value material (maximizes Yv), but moreover, if it only separates the
value material (maximizes E). In comparison to the previously described approaches
A1, A2a and A2b, the maximization of both the yield of value material Yv and the
enrichment E leads to a good compromise between purity and yield, see Table 3.
The probability densities corresponding to the products of cases C1-C4 obtained by
approach A2c are visualized in Figure 5 (right column).

The iso-τ lines obtained with the optimization approaches A2a, A2b and A2c are
also depicted depicted in Figure 5 (left column). It indicates that the iso-τ lines ob-
tained by the optimization approaches A2a and A2c avoid the mode of SiO2 particles
in the feed distributions. This is due to the fact that the cost functions in both ap-
proaches consider the enrichment E. However, as it can be seen for the cases C1 and
C2, the approach A2a sometimes provides iso-τ lines indicating a separation of rather
small Cu particles which leads to a poor product yield. Approach A2b, which solely
maximizes the product yield YP, often leads to iso-tau lines, see cases C2-C4, which
do not avoid the mode corresponding to the non-value SiO2 particles. On the other
hand, the iso-τ lines obtained by approach A2c avoid the mode corresponding to SiO2

particles and indicate separation of relatively large particles which leads to both a
good product purity PP and product yield YP.

3.4. Utilize a second CAL (A3)

Even though approach A2c leads to good results, Table 3 indicates a relatively low
product yield. Note that a high yield YP is not necessarily desired, since this could
mean that no separation at all took place. However, it is still possible to increase the
product yield while maintaining a good purity by introducing a second CAL, which
extracts value material from the waste of the first CAL.

Figure 6 visualizes this procedure, denoted by approach A3, for case C1. Note
that, similarly to a system of just one CAL, we can derive formulas for performance
measures of such a system with two CALs, which measure the quality of the two
separated fractions. Therefore, it is possible to optimize both the lens parameters of
the first and second lens, which improves the separation performance even further, see
Table 3. For example, for the case C1 the product yield improved from 0.12 to 0.21
while maintaining a purity of 0.96.

4. Results & conclusions

4.1. Results

The results given in Table 3 show some trends. For instance, when comparing the
product yield YP of the considered cases, it is found that a greater value of the aerody-
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Figure 6. Scheme for improving the product yield by introducing a second CAL which separates the waste
fraction of the first CAL (approach A3). Top left: probability density of a Cu and SiO2 particle mixture of

case C1 (logarithmic color scale). The red and brown lines indicate iso-τ lines of the first and second CAL,

respectively. Top right: probability density of the fraction separated by the first CAL. Bottom left: probability
density of the waste fraction of the first CAL (logarithmic color scale). The brown line indicates the iso-τ line
of the second CAL. Bottom right: probability density of the separated fraction after the waste of the first CAL

passed through the second CAL.

19



Table 3. Optimized CAL parameters and computed performance measures YP and PP for the feed materials

C1-C4 and the approaches A1-A3.

Case Approach p [Pa] dL [mm] Q̇m [slm] YP PP

C1: da = 500 nm

A1 10 100 3 0.004 0.025
A2a 10 24.3 3.25 6.6e-16 0.98
A2b 10 23.1 0.001 0.12 0.96
A2c 10 23.1 0.001 0.12 0.96
A3 10/375 25.0/10.0 0.001/0.153 0.22 0.96

C2: da = 1000 nm

A1 42.8 100 11.2 0.15 0.067
A2a 10 35.0 1.38 1.4e-19 0.98
A2b 10 56.2 0.110 0.15 0.065
A2c 11 18.4 0.0011 0.11 0.96
A3 10/183 17.4/21.1 0.001/0.396 0.2 0.95

C3: da = 1500 nm

A1 10 100 0.32 0.13 0.34
A2a 10 18.9 0.0011 0.13 0.96
A2b 10.6 70.0 0.185 0.22 0.031
A2c 10 18.2 0.001 0.13 0.96
A3 10/237 19.5/20.5 0.001/0.952 0.22 0.95

C4: da = 2000 nm

A1 10 17 0.001 0.11 0.72
A2a 10 19.0 0.001 0.15 0.96
A2b 10 14.9 0.0013 0.26 0.014
A2c 10.4 18.8 0.0011 0.15 0.96
A3 10/320 18.7/17.5 0.001/0.691 0.23 0.95

namic diameter is linked to a higher product yield. An explanation for this is that the
performance measure is biased towards mass, and particle mass is strongly influenced
by the particle size. This bias can be seen in the product purity PP as well, but it is
not nearly as pronounced as in the product yield YP. In general, the more complex
approaches A3/A2c lead to better performance than the approaches which target the
mode (A1) or optimize a single performance measure (A2a and A2b). Another obser-
vation is that the cost function introduced in approach A2c favors the product purity
over the product yield. An interesting quality emerges when comparing the optimized
parameter sets of different approaches: They display remarkable similarity and seem
to approach the boundary of the parameter space. Almost all of the optimized param-
eter combinations have values close to the lower constraint for the pressure which is
given by 10Pa, see Inequality (20). The tendency to low pressure values is no surprise
because for lower pressures the Cu and SiO2 particles become less similar aerodynam-
ically. This is due to the difference in the particle slip, which depends only on particle
size but not on the mass density. Due to limitations of pumping capacity, the low pres-
sure reduces the maximum mass flow rate which the system is able to handle. This is
problematic, because we intuitively expected that one optimized parameter set would
be found between pressure values from 100 to 1000 Pa, because this domain inhabits
the highest pumping capacities. Thus, making higher mass flow rates possible, which
should in turn lead to higher product yield, given that the mass load - the mass of
particles per volume of gas flow - stays equal. But surprisingly this expected trend is
not really found in the simulations.
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4.2. Conclusions

Classifying aerodynamic lenses offer an adjustable, differential transfer function which
enables them to separate particles by size and mass density. Stochastic modeling pro-
vides a highly adjustable tool for choosing the best preconditions in a design process.

For the goal of aerodynamic classification, it was possible to make reasonable pre-
dictions regarding the influence of various process parameters on the separation perfor-
mance. These predictions reduce the risks that can occur while making certain design
decisions. Therefore, we introduced different quantities for measuring the separation
performance, such that it was possible to analyze and optimize the performance of the
separation process. These performance measures are applicable for different forms of
separation processes and are based on practicability.

We selected a few interesting virtual particle mixtures for a case study, namely mix-
tures of Cu and SiO2, for which the valuable Cu particles should be extracted. For
these particle systems, the CAL geometry and the operating parameters were opti-
mized with respect to several performance measures in order to obtain large quantities
of pure separation products. We have seen that some particle mixtures are rather easy
to separate while others are more challenging in this regard. When the design param-
eters are carefully chosen, yield and purity are improved by two to three orders of
magnitude. Additionally, it is possible to further enhance the separation performance,
by repeating the separation process on the waste of the first CAL (in order to improve
the product yield).

The described methods can be easily transferred to different separation processes, for
which the influence of process parameters on the transfer functions are well understood.
Then, process parameters can be optimized with respect to performance measures for
arbitrary feed materials.

List of Symbols

Symbol Dimension Description

m [kg] mass
dp [m] volume equivalent particle diameter
τp [s] particle relaxation time
ρp [kg/m3] particle mass density
dL [m] orifice diameter
τL [s] lens relaxation time
l [m] length
ρg [kg/m3] gas density
ρ0 [kg/m3] unity density

λg [m] gas mean free path
ηg [Pa·s] dynamic gas viscosity
ug [m/s] mean gas velocity
CC Cunningham correction

Q̇m [kg/s] gas mass flow rate

Q̇v [m3/s] gas volume flow rate

Q̇slm [slm] volume flow rate in standard litre per minute
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S [m3/s] pumping speed
p [Pa] pressure
T [K] temperature

Stk Stokes number
Re Reynolds number
Ma Mach number
Kn Knudsen number

Y yield
P purity
E enrichment

1 indicator function
f probability density function
P probability measure
E expectation
D random volume equivalent particle diameter
R random mass density
λ mixing ratio of particle species

Index Description

a aerodynamic

p particle

L lens

g gas

c critical

o optimal

0 standard conditions

F feed

P product

W waste
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