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Abstra
tWe 
onsider modulated Poisson-Voronoi tessellations, intended as models for tele
ommu-ni
ation networks on a nationwide s
ale. By introdu
ing an algorithm for the simulationof the typi
al 
ell of the latter tessellation, we lay the mathemati
al foundation for su
ha global analysis. A modulated Poisson-Voronoi tessellation has an intensity whi
h isspatially variable and, hen
e, is able to provide a broad spe
trum of model s
enarios.Nevertheless, the 
onsidered tessellation model is stationary and we 
onsider the 
asewhere the modulation is generated by a Boolean germ-grain model with 
ir
ular grains.These 
ir
ular grains may either have a deterministi
 or random but bounded radius.Furthermore, based on the introdu
ed simulation algorithm for the typi
al 
ell and onNeveu's ex
hange formula for Palm probability measures, we show how to estimate themean distan
e from a randomly 
hosen lo
ation to its nearest Voronoi 
ell nu
leus. Thelatter distan
e is interpreted as an important basi
 
ost 
hara
teristi
 in tele
ommuni-
ation networks, espe
ially for the 
omputation of more sophisti
ated fun
tionals lateron. Said lo
ation is 
hosen at random among the points of another modulated Poissonpro
ess where the modulation is generated by the same Boolean model as for the nu-
lei. The 
ase of a 
ompletely random pla
ement for the 
onsidered lo
ation is therebyin
luded as a spe
ial 
ase. The estimation of the 
ost fun
tional is performed in a waysu
h that a simulation of the lo
ation pla
ement is not ne
essary. Test methods for the
orre
tness of the algorithm based on tests for random software are brie�y dis
ussed.Numeri
al examples are provided for 
hara
teristi
s of the typi
al 
ell as well as for the
ost fun
tional. We 
on
lude with some remarks about extensions and modi�
ations ofthe model regarded in this paper, like modulated Poisson-Delaunay tessellations.Keywords : Sto
hasti
 geometry, tele
ommuni
ation network modelling,Neveu's ex
hange formula, Voronoi tessellation, Boolean model
1 Introdu
tionDuring the last years spatial sto
hasti
 modelling of tele
ommuni
ation networks has be
omean established alternative to more traditional e
onomi
 approa
hes for 
ost measurementand strategi
 planning of tele
ommuni
ation networks. While the geometri
 stru
ture ofsu
h a model allows a more realisti
 view to lo
ation dependent network 
hara
teristi
s than
onventional models, the random setting 
an re�e
t the network variability in time and spa
e.2



(a) Di�erent metropolitan regions (b) Overlapping metropolitan regionsFigure 1: Urban and rural lo
ations of real network devi
es in a region of Fran
eAmong the examples where sto
hasti
-geometri
 models have been 
onsidered re
ently aremobile tele
ommuni
ation systems, multi-
ast networks and swit
hing networks all based ontools from sto
hasti
 geometry like modulated Poisson�Voronoi tessellations (see Bªasz
zyszynand S
hott[7], [8]), Poisson�Voronoi aggregated tessellations (see Ba
elli, Klein, Lebourgesand Zuyev[3] and Thoumat
henko and Zuyev[19]), superpositions of Poisson-Voronoi tessella-tions (see Ba
elli, Gloaguen and Zuyev[2]), spanning trees (see Ba
elli, Kofman and Rougier[5]and Ba
elli and Zuyev[6]), and 
overage pro
esses (see Ba
elli and Bªasz
zyszyn[1]). TheSto
hasti
 Subs
riber Line Model (SSLM), 
f. [10℄ for example, is a parti
ular example of arandom-geometri
 approa
h to model networks with an expli
it des
ription of the underlyingroad system.However, a key issue in modelling 
ommuni
ation networks, espe
ially from a global per-spe
tive, is the 
onsideration of instationarities, in parti
ular with respe
t to the underlyinggeometry of the network. If we regard Figure 1 for example, we observe that the displayednetwork devi
es of two regions in Fran
e are s
attered spatially with a varying intensity. Morepre
isely the devi
es are s
attered denser in urban areas than in the rural lands
ape, due tothe fa
t that subs
ribers are lo
ated mu
h denser in metropolitan regions; 
f. Figure 1 (a).In 
ontrast, Figure 1 (b) shows a se
ond s
enario where network devi
es of an agglomerationof di�erent metropolitan regions overlap and thus are s
attered with varying density.While the infrastru
ture along whi
h some network devi
es are pla
ed 
an be modelled bynationwide versions of the SSLM, there remains the 
ru
ial part to have at hand a �exible3



model for the geometry layer, i.e. a model that is able to appropriately display the spatialstru
ture of the network geometry. A

urate estimations of the 
hara
teristi
s of the servi
ezones asso
iated to the network devi
es 
ould then be easily obtained and used as 
omponentsof 
ost or tra�
 models. Adopting 
lassi
al stationary approa
hes is often too naive sin
espatial �u
tuations are 
ompletely ignored. Truly instationary approa
hes like nonstationaryPoissonian models with parametri
 intensity shapes 
an be used to obtain interesting resultsin the shape of integral formulations. But su
h approa
hes are limited and will qui
kly be
ome
ompli
ated when 
loseness or overlapping of dense areas are to be taken into a

ount. Apossible way out of this dilemma is o�ered by a general framework in
luding stationary
ases that provide good approximations for instationary ones. Su
h a framework is, forexample, given by modulated Poisson-Voronoi tessellations (see Figure 2) that, althoughbeing stationary models, are able to re�e
t instationary s
enarios quite well. Hen
e, ourproposed model 
an address real situations of nationwide networks as in Figure 1 (a) or 
asesof overlapping dense areas like in Figure 1 (b).In this paper we analyze a spe
ial 
ase of modulated Poisson-Voronoi tessellations where themodulation is generated by a Boolean germ-grain model with 
ir
ular grains. Su
h a model
an, for example, be used to model population densities or densities of network devi
es onnationwide s
ales. It is able to 
over a wide variety of di�erent s
enarios due to the fa
tthat the underlying point pro
ess is very �exible. The possible randomness of the radiusof the grains allows to mimi
 the observed features of the towns lying in a given area andthus to a
hieve a proper analysis of a given region. Espe
ially we are interested in the
hara
teristi
s of so-
alled typi
al 
ells of these tessellations. In the stationary 
ase, thetypi
al 
ell 
an be regarded as a 
ell that is 
hosen at random out of the pool of all 
ellsavailable. For ergodi
 tessellation models this means that we 
an study 
hara
teristi
s ofthe typi
al 
ell instead of averaging over very large sampling windows sin
e the analysis oflarge sampling windows has some grave pra
ti
al disadvantages like memory and runtimeproblems as well as problems o

urring from edge-e�e
ts. Chara
teristi
s we are exploringin this 
ontext are area, perimeter and number of verti
es of the typi
al 
ell, where oneshould noti
e that all these 
hara
teristi
s are random variables in this setting. Apart fromthat, natural 
hara
teristi
s of interest are basi
 
ost fun
tionals like the mean distan
efrom a randomly 
hosen lo
ation within the 
ell to its 
orresponding 
ell nu
leus (
entre).4



Su
h an easy-to-handle 
ost fun
tional often serves as a surrogate for more sophisti
ated
ost fun
tionals used in pra
ti
e like the subs
riber line length. All these 
hara
teristi
s areuseful tools in the 
ost analysis of tele
ommuni
ation networks. In parti
ular they serve as
omponents for more sophisti
ated fun
tionals whi
h 
an be obtained by 
ombing these basi
fun
tionals. Noti
e that often not only �rst moments (means) are of interest but also se
ondor even higher moments in order to allow for an e�
ient risk analysis, for example. It isalso important to noti
e that by looking at the fun
tionals of the typi
al 
ell automati
allyfun
tionals for the model on a global view are obtained due to ergodi
ity. This means thate.g. by estimating the mean area of the typi
al 
ell, the mean area for the 
ells in a (verylarge) region is estimated.After an introdu
tion of the model of stationary modulated Poisson-Voronoi tessellationsand the notion of its typi
al 
ell (Se
tion 2), in Se
tion 3 a simulation algorithm for thetypi
al 
ell of modulated Poisson-Voronoi tessellations is given that is based on Palm 
al
ulus.Modi�
ations for random radii of the 
ir
ular grains of the underlying Boolean model are alsodis
ussed. In Se
tion 4 the fun
tional representing the mean distan
e from a random lo
ationto the 
orresponding 
ell nu
leus is introdu
ed and it is shown via usage of Neveu's ex
hangeformula for Palm probability measures how to estimate the 
ost fun
tional by simulating thetypi
al 
ell of the modulated Poisson-Voronoi tessellation. Afterwards in Se
tion 5 numeri
alexamples are provided, dealing with some spe
ial 
ases like the Swiss-
heese model introdu
edin Se
tion 2.2.Additionally, possibilities for statisti
al software testing of an implementation of the intro-du
ed algorithm are dis
ussed here. Finally in Se
tion 6 an outlook to possible extensionsand to other modulated Poisson-type models is provided.All implementations that have been done for the 
omputation and the simulation of thetypi
al 
ell of modulated Poisson-Voronoi tessellations and the 
orresponding 
ost fun
tionalsare integrated in the GeoSto
h library. This JAVA�based library was developed by theDepartments of Sto
hasti
s and Applied Information Pro
essing of the University of Ulmin order to o�er software tools designed for the analysis of spatial data with methods fromsto
hasti
 geometry; see Mayer, S
hmidt and S
hweiggert[15] and http://www.geosto
h.de.5



Figure 2: Realization of a modulated Poisson-Voronoi tessellations2 Stationary modulated Poisson-Voronoi tessellations and theirtypi
al 
ellsThis se
tion introdu
es the mathemati
al model of a stationary modulated Poisson-Voronoitessellation that is generated by a Boolean germ-grain model. For further details see appen-di
es A.1-A.5. After the dis
ussion of some spe
ial 
ases for su
h modulated Poisson-Voronoitesssellations, a Palm representation for the 
orresponding typi
al 
ell is provided that is usedin Se
tion 3 to derive a simulation algorithm.2.1 Stationary modulated Poisson-Voronoi tessellationsIn the following let Ψ =
⋃

n≥1 (Yn +Mn) be a Boolean germ-grain model (see (A.12)) where
{Yn} is a stationary Poisson point pro
ess with intensity β > 0 and where theMn are 
ir
ulargrains with a �xed radius r. In Figure 3 realizations of {Yn} and Ψ are displayed. Furthermorelet X = {Xn}n≥1 be a planar doubly-sto
hasti
 Poisson point pro
ess (also 
alled Cox pointpro
ess; see (A.4)) that has a random driving measure Λ generated by Ψ whi
h is de�ned as

Λ(dx) =





λ1dx if x ∈ Ψ,

λ2dx if x /∈ Ψ,
(2.1)
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(a) Realization of a Poisson pro
ess (b) Realization of a Boolean modelFigure 3: Boolean germ-grain modelwhere 0 ≤ λ1, λ2 < ∞ and max {λ1, λ2} > 0. Then the Voronoi tessellation τX indu
edby the Cox point pro
ess X is 
alled a modulated Poisson-Voronoi tessellation (see (A.14)).Analoguously, X is referred to as a modulated Poisson pro
ess. We often 
all Ψ the Booleanmodel 
orresponding to X and τX . In Figure 2 a realization of a modulated Poisson-Voronoitessellation is displayed.Due to the stationarity of Ψ and the de�nition of Λ given in (2.1), it is obvious that both
X and τX are stationary. Also, sin
e the Boolean model Ψ is an ergodi
 random 
losed set,both pro
esses X and τX are ergodi
.The intensity λ of the modulated Poisson pro
ess X 
an be 
omputed as

λ =
IEX(B)

|B| = pλ1 + (1 − p)λ2, (2.2)where p = IP(o ∈ Ψ) denotes the 
overage probability of the (stationary) Boolean model Ψ,
X(B) = #{n : Xn ∈ B}, and B ∈ B(IR2) is an arbitrary Borel set with positive and �niteLebesgue measure |B|.
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(a) Ordinary PVT (b) Swiss-
heese model (
) Inner-
ity modelFigure 4: Spe
ial 
ases of modulated Poisson-Voronoi tessellations2.2 Spe
ial 
ases of modulated Poisson-Voronoi tessellationsThe modulated Poisson-Voronoi tessellation introdu
ed in Se
tion 2.1 
overs a wide varietyof di�erent models due to the fa
t that the underlying point pro
ess is very variable. Thebasi
 
ase is the ordinary stationary Poisson-Voronoi tessellation (PVT), where λ1 = λ2(Figure 4a). Noti
e that for this 
ase the Poisson point pro
ess X be
omes independentfrom the Boolean model Ψ. Another interesting spe
ial 
ase is the swiss-
heese model, where
λ1 = 0 (Figure 4b). This model might be of interest �rst of all as a limiting 
ase. Se
ondlythere exist 
ases when there are 'forbidden zones' e.g. for antennas in densely populatedregions. We will regard a numeri
al example for the swiss-
heese model type in Se
tion 5.2sin
e interesting e�e
ts 
an be observed there. A further spe
ial 
ase that is interesting forappli
ations is the inner-
ity model, where λ2 = 0 (Figure 4
). The underlying point pro
ess
X in su
h a 
ase should not be 
onfused with so-
alled Matern-
luster pro
esses sin
e theintensity at a lo
ation 
overed by Ψ is given as the 
onstant value λ1 no matter how many
ir
les of Ψ are 
overing a spe
i�
 lo
ation.2.3 Representation of the typi
al 
ellUsing Palm 
al
ulus (see Se
tions A.3 and A.5), the typi
al 
ell of the modulated Poisson-Voronoi tessellation τX 
an be des
ribed as follows. Let the modulated Poisson pro
ess X ofnu
lei have random driving measure Λ given in (2.1) and let Ψ be the 
orresponding Booleanmodel. Let Q∗ denote the Palm distribution of the stationary random measure Λ (see for8



example Stoyan, Kendall and Me
ke[18], p. 229) and let X∗ be a Cox point pro
ess withrandom driving measure Λ∗ having the distribution Q∗, where
Q∗(·) =

λ1

λ
IP(Λ ∈ ·, o ∈ Ψ) +

λ2

λ
IP(Λ ∈ ·, o /∈ Ψ). (2.3)Then, under its Palm probability measure IP∗

X (see (A.10)), the Cox point pro
ess X has thesame distribution as δo +X∗ has under the original probability measure IP, i.e.,
IP∗

X(X ∈ ·) = IP(δo +X∗ ∈ ·), (2.4)where δo is the (deterministi
) point pro
ess that 
onsists solely of one single point at theorigin o. Thus, the typi
al 
ell of τX has the same distribution as the Voronoi 
ell with nu
leusat o whi
h is indu
ed by the point pro
ess δo + X∗. Noti
e that the Palm distribution Q∗given in (2.3) 
an be written as
Q∗(·) = pcIP(Λ ∈ · | o ∈ Ψ) + (1 − pc)IP(Λ ∈ · | o /∈ Ψ), (2.5)where

pc =
pλ1

λ
(2.6)is the 
onditional 
overage probability pc = IP∗

X(o ∈ Ψ) of the origin o by the Boolean model
Ψ under the Palm probability measure IP∗

X , i.e., 
onditional to the event that o belongs to thepoint pro
ess X, whereas p = IP(o ∈ Ψ) represents the (un
onditional) 
overage probabilityof o by Ψ and λ is the intensity of X. By (2.5) it be
omes 
lear that the Cox point pro
ess
X∗ is a mixture of two Cox point pro
esses with random driving measure whose 
onditionaldistributions are given by IP(Λ ∈ · | o ∈ Ψ) and IP(Λ ∈ · | o /∈ Ψ), respe
tively.3 Simulation algorithmIn this se
tion we introdu
e a simulation algorithm for the typi
al 
ell of modulated Poisson-Voronoi tessellations that are generated by the Boolean model with 
ir
ular grains having�xed radius r > 0. This algorithm is based on the Palm representation of the typi
al 
ell9



derived in Se
tion 2.3. Finally, in Se
tion 3.5, the 
ase of random radii is also 
onsidered.3.1 Radial simulation of Poisson point pro
essesThe simulation algorithm used later on utilizes radial simulation of Poisson pro
esses in IR2,where radial in this 
ontext means that the simulated points have an in
reasing distan
eto the origin. For a more general des
ription of radial generation of Poisson pro
esses seeQuine and Watson[16]. Re
all that a point x = (x1, x2) ∈ IR2 
an be represented in polar
oordinates as x = (r, z), where x1 = r cos z and x2 = r sin z. Consider a sequen
e ofrandom variables {Ri}i≥1 with R0 < R1 < ... su
h that {Ri} is a (linear) stationary Poissonpoint pro
ess in (0,∞) with parameter γ. Furthermore, 
onsider another sequen
e {Zi} ofindependent and U(0, 2π]-distributed random variables, whi
h is independent of {Ri}. Thenthe sequen
e {((Ri/π)1/2, Zi)} is a (two-dimensional) stationary Poisson point pro
ess in IR2with (planar) intensity γ.In pra
ti
e this means that a stationary Poisson point pro
ess in IR2 
an be generated radiallyby simulating independent random variables Tj ∼ Exp(γ), and Vi ∼ U(0, 2π) and by putting
Ri =

i∑

j=0

log Tj , i ≥ 1 (3.7)and
Zi = Vi, i ≥ 1. (3.8)3.2 Conditional simulation of modulated Poisson pro
essesEquations (2.3)-(2.6) provide a theoreti
al basis for the simulation of the typi
al 
ell ofthe modulated Poisson-Voronoi tessellation τX that 
orresponds to the modulated Poissonpro
ess X. Re
all that the typi
al 
ell of τX has the same distribution as the Voronoi 
ellwith nu
leus at o whi
h is indu
ed by the point pro
ess δo + X∗ given in (2.4). Hen
ethe modulated Poisson pro
ess X∗ = {X∗

n}n≥1 has to be simulated, whose random drivingmeasure has distribution Q∗ given in (2.5). Note that due to (2.5) a simulation of X∗ requiresa simulation of the Boolean model Ψ∗, 
onditional to the events that the origin is 
overed by
Ψ or not. In other words Ψ∗ has to be simulated 
onditional to the event that o ∈ X. The10



simulation of X∗ and Ψ∗ is performed radially, i.e., with in
reasing distan
e to the origin,and in an alternating fashion between the points of X∗ and the germs of Ψ∗. As an initialstep a point X∗
0 is pla
ed in the origin (Figure 5a), thereby representing the (degenerate)point pro
ess δo in (2.4). Then, it is determined by a Bernoulli experiment with su

essprobability pc given in (2.6) if X∗

0 = o is 
overed by Ψ or not. If o ∈ Ψ then the distan
e of
Y ∗

1 , the germ of Ψ∗ whi
h is nearest to X∗
0 , to the origin has to be less than or equal to r,otherwise, i.e., if o /∈ Ψ it has to be bigger than r. Therefore the distan
e of the �rst germ

Y ∗
1 to the origin has to be simulated 
onditional to o ∈ Ψ or o /∈ Ψ, respe
tively (Figure 5b).In pra
ti
e this means that a proposal distan
e R1 of the �rst germ Y ∗

1 to the origin isgenerated a

ording to (3.7) with γ = β, where β represents the intensity of the germs asde�ned in Se
tion 2.1. This proposal distan
e is a

epted or reje
ted based on R1 ≤ r or
R1 > r, respe
tively. In 
ase of a reje
tion another proposal distan
e R1 of Y ∗

1 to the origin isgenerated. Afterwards further points Xi = (Ri, Zi) are simulated radially a

ording to (3.7)and (3.8) with intensity γ = max{λ1, λ2}. For ea
h su
h point it is 
he
ked whether it is
overed by Ψ∗ or not (Figure 5
). This 
he
k is performed by simulating further germs Y ∗
jof Ψ∗ until either the distan
e of a germ to Xi be
omes smaller than or equal to r or if thedistan
e of Y ∗

j to the origin be
omes greater than |Xi| + r, where |Xi| denotes the distan
eof Xi to the origin. In the �rst 
ase Xi is 
overed by Ψ∗, in the se
ond, it is 
lear that itis not 
overed. Noti
e that it is important to retain all germs simulated for further 
he
ks,e.g., of the point Xi+1. After we have 
he
ked whether Xi is 
overed by the 
onditionalBoolean model Ψ∗ or not, in one of the two 
ases a thinning pro
edure has to be performed.So, if without loss of generality λ1 < λ2 and Xi ∈ Ψ∗ then the probability of dis
arding
Xi is given by 1 − λ1/λ2. On
e more it is important to retain the distan
e of Xi to theorigin as a starting value for the simulation of Xi+1, even if Xi is dis
arded in the thinningpro
edure in order to obtain 
orre
t results. Altogether, this method leads to a simulationof X∗ = {X∗

n}n≥1 by an alternating simulation of a stationary Poisson point pro
ess Xmaxwith intensity γ = max{λ1, λ2} and a 
onditional Boolean model Ψ∗ and by applying thethinning pro
edure des
ribed above (Figure 5d). Noti
e that un
onditional simulation of a(stationary) modulated Poisson pro
ess in the plane 
an be performed in a similar way byan alternating radial simulation of Xmax and the (un
onditional) Boolean model Ψ.11
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(a) Stopping 
riterion for initial 
ell (b) Constru
tion of initial 
ell using bise
torsFigure 6: Stopping 
riterion for initial 
ell and its 
onstru
tion3.3 Constru
tion of initial 
ellBased on the radial simulation of the modulated Poisson pro
ess X∗ as it was explained inSe
tion 3.2 an initial 
ell for the typi
al 
ell is 
onstru
ted next. This means that if for ea
hpoint X∗
n of X∗ = {X∗

n}n≥1 the perpendi
ular bise
tor (X∗
0 ,X

∗
n) is regarded we are interestedin a minimal integer n ≥ 3 su
h that X∗

0 is for the �rst time surrounded by a 
onvex polygonformed by these bise
tors. In Figure 6 a pro
edure for the 
onstru
tion of su
h an initial 
ellis visualized (see also Quine and Watson[16] and Wendel[20]). The lines X∗
1X

∗
0 and X∗

2X
∗
0form a 
one S2 with respe
t to the opposite side of X∗

0 . If the (next nearest) point X∗
3lies inside of this 
one the algorithm stops and an initial 
ell 
an be 
onstru
ted using thebise
tors (X∗

0 ,X
∗
1 ), (X∗

0 ,X
∗
2 ) and (X∗

0 ,X
∗
3 ). Otherwise the 
one S3 is taken as the maximal
one formed by two of the three lines X∗

1X
∗
0 , X∗

2X
∗
0 and X∗

3X
∗
0 on the opposite side of X∗

0 .Afterwards the point X∗
4 is taken into a

ount with respe
t to S3 (Figure 6a). This pro
edureis repeated until X∗

i+1 ∈ Si. With probability 1 this algorithm stops after a �nite number ofsteps (see Wendel[20] for the 
ase of stationary Poisson pro
esses) and an initial 
ell 
an be
onstru
ted by using the 
orresponding bise
tors (Figure 6b).
13
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7X(
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ell by X

∗

6 (d) Realization of the typi
al 
ellFigure 7: Alterations of initial 
ell and �nal realization of the typi
al 
ell3.4 Simulation of the typi
al 
ellAfter the 
reation of an initial 
ell a stopping 
riterion for the simulation of the typi
al
ell 
an be provided (see Quine and Watson[16]). If dmax denotes the maximal distan
e ofthe verti
es of the initial 
ell to the the origin o(= X∗
0 ) then the simulation of the points

Xi∗ ∈ X∗ has to be 
ontinued until the distan
e of X∗
i to o is bigger than 2dmax (Figure 7).Noti
e that dmax might be redu
ed during alterations of the 
ell (Figure 7b and Figure 7
)and therefore the stopping 
riterion has to be adapted a

ordingly in order to ensure fasterruntimes. The �nal result after ful�lling the stopping 
riterion is a realization of the typi
al
ell. (Figure 7d).
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3.5 Modi�
ations for random radiiIn order to simulate the typi
al 
ell for modulated Poisson-Voronoi tessellations in the 
asewhere the radius R of the 
ir
les of the 
orresponding Boolean model Ψ is random butbounded (e.g., R ∼ U [r − δ, r + δ] with 0 < δ < r) two modi�
ations to the algorithmintrodu
ed above for deterministi
 radius r have to be applied. It is important to noti
ethat, with respe
t to the simulation of the modulated Poisson pro
ess X∗, in the 
ase thatthe origin is 
overed by the 
onditional Boolean model Ψ∗, the grain generated by the �rstgerm Y ∗
1 of Ψ∗ with random radius R∗

1 does not ne
essarily 
over the origin o. However it ispossible that another grain 
overs o. Therefore, after determining whether X∗
0 = o is 
overed,the 
onditional radial simulation of the distan
es of the germs of Ψ∗ to the origin togetherwith the radii of the 
orresponding grains has to be performed in a way su
h that in the 
ase

o ∈ Ψ∗ at least one grain Y ∗
i + M∗

i 
overs X∗
0 . On the other hand, if o /∈ Ψ∗ one has tosimulate grains Y ∗

i +M∗
i that do not 
over X∗

0 until the distan
e of their 
orresponding germsto X∗
0 is bigger than the maximal possible radius rmax (in the example of uniform distributionabove rmax = r+ δ). In pra
ti
e this means that given o ∈ Ψ∗ or o /∈ Ψ∗ a proposal sequen
eof germs {Yi +Mi} is radially generated for i = 0, .., Imax, where |YImax

| > rmax. Afterwardsit is 
he
ked whether this sequen
e ful�lls the given 
ondition or not. In the �rst 
ase thesequen
e is a

epted and the simulation of the grains is 
ontinued radially with the grain
YImax+1 + MImax+1, otherwise a new proposal sequen
e is radially generated by starting atthe origin again. This pro
edure is repeated until a sequen
e is found that 
an be a

epted.An analogous modi�
ation has to be performed with respe
t to the ne
essary amount ofgrains that have to be simulated in order to know if a point Xi is 
overed by Ψ∗ or not. Inthe 
ase of a deterministi
 radius r of the grains it is su�
ient to simulate until the distan
eof the germs of Ψ∗ to the origin is bigger than |Xi|+ r. Now for random radii, the ne
essarydistan
e to the origin has to be bigger than |Xi| + rmax, where again rmax is the maximalpossible radius (r + δ in the example).
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4 Fun
tionals built on the typi
al 
ellAs a basi
 example of fun
tionals that 
an be built on the typi
al 
ell, we 
onsider here theaverage distan
e from a randomly 
hosen lo
ation to the nearest nu
leus of the modulatedPoisson-Voronoi tessellation. The 
hoi
e of this lo
ation might take pla
e purely random, inother words following the distribution of a stationary Poisson point pro
ess, or again mightbe taken from a modulated Poisson pro
ess 
onne
ted to the same Boolean model that themodulated Poisson pro
ess of nu
lei uses.4.1 De�nition via Palm probability measureSuppose that λ1, λ2, λ̃1, λ̃2 ≥ 0 are non-negative numbers su
h that max{λ1, λ2} > 0 and
max{λ̃1, λ̃2} > 0. Let X = {Xn}n≥1 be a modulated Poisson pro
ess 
onne
ted to a Booleanmodel Ψ via the random driving measure

Λ(dx) =





λ1dx if x ∈ Ψ,

λ2dx if x /∈ Ψ,
(4.1)and let {X̃n}n≥1 be another modulated Poisson pro
ess 
onne
ted to the same Boolean model

Ψ via the random driving measure
Λ̃(dx) =





λ̃1dx if x ∈ Ψ,

λ̃2dx if x /∈ Ψ.
(4.2)Assume that the modulated Poisson pro
esses {Xn} and {X̃n} are 
onditionally independent,given Ψ. Furthermore, if N(X̃n) denotes the lo
ation of the nearest (in the Eu
lidean sense)point ofX with respe
t to X̃n 
onsider the marked point pro
ess X̃ = {X̃n, |X̃n−N(X̃n)|}n≥1,where | · | denotes the Eu
lidean norm. The intensities of X and X̃ are given by λ =

pλ1 + (1 − p)λ2 and λ̃ = pλ̃1 + (1 − p)λ̃2, respe
tively, where p = IP(o ∈ Ψ). The fun
tionalwe are espe
ially interested in is the average distan
e c from the typi
al point of X̃ to itsnearest point of X. Using the Palm probability measure IP∗
eX
for X̃ (see (A.10)) we 
anexpress c as

c = IE eX
|N(o)|, (4.3)16



where IE eX
denotes expe
tation with respe
t to IP∗

eX
. Noti
e that due to the ergodi
ity of X̃it is possible to express the expe
tation c as the limit of spatial averages with respe
t to anaveraging sequen
e {Wi}i≥1 of unboundedly in
reasing sampling windows Wi. This meansthat with probability 1 (see for example Daley and Vere�Jones[9])

c = lim
i→∞

1

#{n : Xn ∈Wi}
∑

n≥1

1IWi
(X̃n)|X̃n −N(X̃n)|. (4.4)4.2 Appli
ation of Neveu's formulaThe following theorem allows for a pra
ti
ally more feasible representation of the fun
tional

c = IE eX |N(o)| given in (4.3). Thereby a more e�
ient way of 
omputing an approximationfor c is derived.Theorem 4.1 Consider the modulated Poisson pro
ess X = {Xn}n≥1 and the (marked)modulated Poisson pro
ess X̃ = {X̃n, |X̃n −N(X̃n)|}n≥1 whose (random) driving measures Λand Λ̃ are generated by the same Boolean model Ψ a

ording to (4.1) and (4.2), respe
tively.Then,
IE eX

|N(o)| =
λ

λ̃
IEX

(
λ̃1

∫

ΞX∩Ψ
|u|du + λ̃2

∫

ΞX∩Ψc

|u|du
)
, (4.5)where ΞX denotes the Voronoi 
ell indu
ed by X, whi
h 
ontains the origin, and IEX is theexpe
tation taken with respe
t to IP∗

X .Proof The proof of Theorem 4.5 is bsaed on Neveu's ex
hange formula (see (A.11)) forjointly stationary point pro
esses, whi
h are de�ned on a 
ommon probability spa
e (Ω,A, IP)equipped with some �ow {θx, x ∈ IR2}. We use (A.11) with XD and X̃ eD being equal to Xand X̃, respe
tively. Thus, the mark spa
e D will be omitted and D̃ = [0,∞). Consider thefun
tion f : IR2 × [0,∞) × Ω → [0,∞) given by
f(x, g̃, ω) =





g̃ if X(θ−xω,B
6=
|x|(x)) = 0 ,

0 otherwise (4.6)for any x ∈ IR2, g̃ ≥ 0, and ω ∈ Ω, where B 6=
|x|(x) = {y ∈ IR2 : |y − x| < |x|}. Noti
e that if

x ∈ IR2 is an atom of the 
ounting measure X(ω, .), then f(−x, g̃, ω) = g̃ only if there are no17



other atoms of X(ω, .) whi
h have a distan
e of less than |x| to the origin. Thus, applyingNeveu's ex
hange formula (Theorem A.1), we obtain that
IE eX |N(o)| =

∫

Ω× eD

∫

IR2

f(−x, g̃, ω)X(ω, dx)IP eX(d(ω, g̃))

=
λ

λ̃

∫

Ω

∫

IR2× eD

f(x, g̃, θxω)X̃(ω, d(x, g̃))IPX(dω) .

(4.7)
Given the Boolean model Ψ the inner integral on the right hand side of (4.7) 
an be expressedas

∫

IR2× eD

f(x, g̃, θxω)X̃(ω, d(x, g̃)) =

∫

(IR2∩Ψ)× eD

f(x, g̃, θxω)X̃(ω, d(x, g̃))

+

∫

(IR2∩Ψc)× eD

f(x, g̃, θxω)X̃(ω, d(x, g̃))

(4.8)
Furthermore, given Ψ and the Voronoi 
ell ΞX of X that 
ontains the origin, the randomnumber of points of X̃ in ΞX ∩ Ψ is Poisson distributed with expe
tation η1 = λ̃1|ΞX ∩ Ψ|,while the random number of points of X̃ in ΞX ∩Ψc is Poisson distributed with expe
tation
η2 = λ̃2|ΞX ∩ Ψc|. Thus, by the de�nition of the fun
tion f given in (4.6), the �rst integralon the right side of (4.8) 
an be written in the form

∫

(IR2∩Ψ)× eD

f(x, g̃, θxω)X̃(ω, d(x, g̃)) =

∫

(ΞX∩Ψ)× eD

f(x, g̃, θxω)X̃(ω, d(x, g̃))

=

∞∑

k=1

e−η1
ηk
1

k!

∫

ΞX∩Ψ

. . .

∫

ΞX∩Ψ

k∑

i=1

|ui|
|ΞX ∩ Ψ|k du1 . . . duk ,due to the 
onditional independen
e and uniform distribution of the points of X̃ in ΞX ∩Ψ.Hen
e,

∫

(IR2∩Ψ)× eD

f(x, g̃, θxω)X̃(ω, d(x, g̃)) =

∞∑

k=1

e−η1
ηk
1

k!

k

|ΞX ∩ Ψ|

∫

ΞX∩Ψ

|u| du

= λ̃1

∫

ΞX∩Ψ

|u| du .

18



Analogously, it 
an be shown that
∫

(IR2∩Ψc)× eD

f(x, g̃, θxω)X̃(ω, d(x, g̃)) =
∞∑

k=1

e−η2
ηk
2

k!

k

|ΞX ∩ Ψc|

∫

ΞX∩Ψc

|u| du

= λ̃2

∫

ΞX∩Ψc

|u| du .Altogether we get that
IE eX

|N(o)| =
λ

λ̃
IEX

(
λ̃1

∫

ΞX∩Ψ
|u|du + λ̃2

∫

ΞX∩Ψc

|u|du
)
,whi
h 
ompletes the proof of the theorem. 2In the spe
ial 
ase that λ̃1 = λ̃2, i.e., {X̃n} is an ordinary Poisson pro
ess (in the sense of(A.3)) Theorem 4.1 
an be restated as follows.Corollary 4.2 Suppose that λ̃1 = λ̃2, i.e., {X̃n} is a stationary Poisson point pro
ess withintensity λ̃. Then

IE eX |N(o)| = λIEX

∫

ΞX

|u|du, (4.9)Note that (4.9) shows in parti
ular that IE eX |N(o)| does not depend on λ̃. In the Poisson 
ase,i.e., if λ1 = λ2 and λ̃1 = λ̃2, the 
ost fun
tional c = IE eX |N(o)| 
an be analyti
ally 
omputedas (see also Ba
elli, Klein, Lebourges and Zuyev[4] and Bªasz
zyszyn and S
hott[7])
IE eX |N(o)| = λIEX

∫

ΞX

|u|du = λ

∫

IR2

|u| exp (−λπ|u|2)du =
1

2
√
λ

(4.10)4.3 Estimation by Monte-Carlo simulationTheorem 4.1 provides a useful approa
h for the 
onstru
tion of an estimator for the 
ostfun
tional c = IE eX |N(o)| whi
h is based on Monte-Carlo simulation. Let (Ξ∗
1,Ψ

∗
1)..., (Ξ

∗
n,Ψ

∗
n)be a sequen
e of independent 
opies of (ΞX ,Ψ) under the Palm probability measure P ∗
X .Then an unbiased and 
onsistent estimator for c is given by

ĉ =
λ

λ̃

1

n

n∑

i=1

∫

Ξ∗

i

|u|Λ̃i(du), (4.11)19



where
Λ̃i(du) =





λ̃1du if x ∈ Ψ∗
i ,

λ̃2du if x /∈ Ψ∗
i ,

(4.12)The estimator ĉ will be used in Se
tion 5.2 in order to obtain numeri
al results for someexample s
enarios. Noti
e that if λ̃1 = λ̃2 then the integral ∫
Ξ∗

i

|u|Λ̃i(du) appearing in (4.11)is 
omputed analyti
ally, otherwise it is 
omputed via numeri
al approximation. This is dueto the fa
t that in the �rst 
ase, by applying (4.9), we are able to rewrite the integral as anintegral with respe
t to the Lebesgue measure. If λ̃1 6= λ̃2 integration must be performedwith respe
t to the measure Λ̃i and therefore the shape of Ψ∗
i has to be taken into a

ount.This makes an analyti
al solution of the integral di�
ult to a
hieve.Another important fa
t 
on
erning a numeri
al evaluation is that it is not ne
essary tosimulate any points of X̃ in order to apply the estimator given in (4.11).5 Implementation and numeri
al examplesIn this se
tion we look at possible testing approa
hes for implementations of the algorithmintrodu
ed in Se
tion 3. In a se
ond part numeri
al results for di�erent s
enarios are regarded.5.1 Tests of implemented algorithmIn our 
ontext, apart from traditional testing methods for software tests, in parti
ular meth-ods for testing of software with random output are of interest. In the following we want tomention some examples for su
h tests, where a more detailed dis
ussion of random softwaretesting 
an, for example, be found in Gloaguen, Fleis
her, S
hmidt and S
hmidt[11] andMayer and Guderlei[14]. Basi
ally two di�erent testing methods have been applied to theimplemented algorithm.A �rst testing method was 
onstru
ted by using known theoreti
al formulae like the equalitybetween the intensity λτ of the tessellation model τX and the re
ipro
al of the mean area

IE(|Ξ∗|) of the 
orresponding typi
al 
ell; see (A.13). In parti
ular we tested if the algorithmprovides 
orre
t estimates for the mean area 1/λτ of Ξ∗. This was a
hieved by 
onstru
ting anasymptoti
ally Gaussian distributed test statisti
. Another example for a known theoreti
al20



formula that we used to 
onstru
t tests for our software was the 
ost fun
tional in the 
aseof ordinary stationary Poisson pro
esses; see (4.10).A di�erent testing te
hnique is to obtain tests by utilizing 
ertain s
aling properties of theunderlying tessellation model, meaning that for di�erent model parameter sets there is thesame underlying random stru
ture, only on a di�erent length s
ale. In our spe
i�
 model weget that for the three parameters c1 = p, c2 = λ1/β and c3 = λ2/β su
h a s
aling invarian
e
an be realized. Hen
e if for two models with parameter ve
tors (p(1), β(1), λ
(1)
1 , λ

(1)
2 ) and

(p(2), β(2), λ
(2)
1 , λ

(2)
2 ) the relationship (c

(1)
1 , c

(1)
2 , c

(1)
3 ) = (c

(2)
1 , c

(2)
2 , c

(2)
3 ) holds then they repre-sent the same random stru
ture but on a di�erent s
ale. This fa
t 
an be used to 
onstru
ttests similar to the tests for known theoreti
al formulae. For example, in su
h a 
ase wehave that β(1)IE|Ξ∗(1)| = β(2)IE|Ξ∗(2)| whi
h 
an be used as a theoreti
al formula in order todevelop an asymptoti
 Gaussian test.With 
onsideration to the test results we obtained for our implementations it su�
es here tosay that they showed the expe
ted behavior. Hen
e we may assume that the implementedalgorithms for the simulation of the typi
al 
ell and the 
omputation of the 
ost fun
tionalwork 
orre
tly.5.2 Some numeri
al resultsWith regard to numeri
al evaluations of the modulated Poisson-Voronoi tessellations 
onsid-ered in this paper it 
an be stated that due to the relatively large number of parametersinvolved, a 
omplete analysis is almost impossible to a
hieve. Therefore we only 
on
entrateon a spe
i�
 s
enario to show some of the interesting e�e
ts that appear. The s
enario wewant to 
onsider 
onsists of few large grains, where p = 0.6 and β = 0.2 that leads to a �xedradius r = 1.20761. We assume a �xed total intensity λ = 12 su
h that the mean area of thetypi
al Voronoi 
ell remains 
onstant as IE|Ξ∗| = λ−1 = 0.8333. Su
h a s
enario is realizedin Figure 4b for λ1 = 0.As a �rst example we let the parameter λ1 tend to 0 and regard the behavior of the distributionfor the perimeter of the typi
al 
ell (Figure 8). In other words we observe the behavior withregard to a transition to the swiss-
heese model. Noti
e that for ea
h pair (λ1, λ2) the samplesize is given as n = 2, 000, 000, while ea
h bar of the histogram has a width of 0.05. For the21




ase of an ordinary stationary Poisson-Voronoi tessellation (Figure 8a) a symmetri
al lookof the histogram for the perimeter of the typi
al 
ell 
an be observed. This 
hanges as λ1tends to 0, resulting in a shape that is skewed to the left. Another interesting e�e
t that
an be observed is the existen
e of a se
ond lo
al maximum for the histogram, espe
iallyfor very small values of λ1. This is mainly 
aused by the 
ells that 
over the grains of the
orresponding Boolean model sin
e inside of the Boolean model there are now almost no morepoints lo
ated. In parti
ular this result means that for su
h a s
enario basi
ally two typesof 
ells 
an be di�ered, 'normal ones' like for the ordinary modulated Voronoi tessellationand slim ones that are 
overing the zones where no points are allowed. With regard to theestimated values for the 
ost fun
tional de�ned in Se
tion 4 the observation is that theyin
rease as λ1 tends to 0 (Figure 9a) for a �xed intensity λ (here λ = 12). Noti
e that forthis example the intensities of the pro
ess X̃ are assumed to be equal, i.e., λ̃1 = λ̃2. Thesample size is again n = 2, 000, 000 for ea
h pair of parameters (λ1, λ2). The e�e
t of risingvalues for the 
ost fun
tional if λ1 tends to 0 
an possibly be explained by the appearan
eof 
ells that have a relatively large ratio of perimeter to area. This 
auses a relatively largemean distan
e to the 
ell nu
lei for points lo
ated in su
h 
ells. Noti
e that in the 
ase of anordinary Poisson-Voronoi tessellation (λ1 = λ2) the estimated value for the mean distan
eto the 
ell nu
lei of 0.14437 
oin
ides well with the theoreti
al value of (2
√
λ)−1 = 0.14434.As a �nal numeri
al example we have a look at a s
enario where λ̃1 6= λ̃2. For this s
enariowe take the same values for β, p and r as before and additionally keep λ1 = 4 and λ2 = 24�xed. The values for λ̃1 and λ̃2 vary under the 
ondition that λ̃ = 1. The results shownin Figure 9b display the linear relationship between the value of λ̃1 and the estimated 
ostfun
tional ĉ whi
h is a 
onsequen
e of (4.5). Due to this linear relationship it su�
es toestimate the two expe
tations IEX(

∫
ΞX∩Ψ |u|du) and IEX(

∫
ΞX∩Ψc |u|du) only for one spe
i�
pair of parameters λ̃1 and λ̃2 in order to obtain estimates of c for all pairs of parameters λ̃1and λ̃2 based on (4.5).Noti
e that numeri
al evaluations of examples where λ̃1 6= λ̃2 are more time 
onsumingdue to the numeri
al 
omputation of the estimator ĉ introdu
ed in (4.11) as opposed to the
ase where λ̃1 = λ̃2 sin
e here ĉ is 
omputed analyti
ally, given realizations of the typi
al
ell (Se
tion 4.2). Therefore, for 
ases where ĉ had to be 
omputed numeri
ally we took

n = 100000. 22



25000

50000

75000

100000

125000

1 2 3 4 5 0

25000

50000

75000

100000

1 2 3 4 5(a) λ1 = 12, λ2 = 12 (b) λ1 = 6, λ2 = 21

25000

50000

75000

100000

125000

150000

175000

1 2 3 4 5 0

25000

50000

75000

100000

125000

150000

175000

1 2 3 4 5(
) λ1 = 0.05, λ2 = 29.95 (d) λ1 = 0, λ2 = 30Figure 8: Perimeter of the typi
al 
ell
23



0.15

0.2

0.25

0.3

0.35

0.4

0.45

ĉ
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ĉ

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6

λ1
∼(a) λ1 variable and eλ1 = eλ2 (b) λ1 = 4, eλ = 1 and eλ1 variableFigure 9: Estimated 
ost fun
tionals for λ = 12 �xed6 Dis
ussion and outlookBig tele
ommuni
ation operators need 
ost models and tools for strategi
 planning and pri
ingpurposes. In order to be useful, these models must be able to reprodu
e the observed regionalvariability and to address relevant features from a tele
ommuni
ation point of view. Adetailed analysis of real data is often hard to a
hieve sin
e it relies on huge databases andis sometimes 
onfronted with the la
k of data. Moreover su
h an analysis is in most 
asesonly able to deliver observations but no explanations. Sto
hasti
 modeling is an alternativeapproa
h that dire
tly provides a global view of the network together with 
lear assumptionson equipment lo
ations and 
onne
tions. In this 
ontext, the typi
al 
ell is a parti
ularlyimportant obje
t sin
e by its de�nition any result 
omputed over repeated simulations of this
ell 
an be 
ompared to what is the result of measuring the whole tessellation that 
oversthe area under study. The typi
al 
ell is thus representative for the global network behavior.For example, the area of the serving zone, i.e. the area of the typi
al 
ell of the tessellation,
an be 
onne
ted to the in
oming demand for tra�
 via the number of 
ustomers. Various24




ost fun
tionals and hen
e various 
omponents for pri
ing studies 
an be asso
iated to thetypi
al 
ell. It is then important to derive rapid and reliable algorithms for the simulationof the typi
al 
ell, allowing further integration of any fun
tional depending on the geometri

hara
teristi
s of the involved random pro
esses and the typi
al 
ell. This paper fo
used ona basi
 example for su
h a fun
tional whi
h is the mean distan
e from a randomly 
hosenlo
ation within the 
ell to its 
orresponding 
ell nu
leus (
entre). All these 
hara
teristi
s andfun
tionals 
an subsequently be 
ombined and serve as 
omponents for more sophisti
ated
ost models.In this paper we presented an algorithm for the simulation of the typi
al 
ell for spe
i�
modulated Poisson-Voronoi tessellations, where the grains are generated by a Boolean modelwith 
ir
ular grains of a �xed or random but bounded radius. Based on this algorithm wehave shown how to e�
iently estimate a basi
 fun
tional, namely the mean distan
e from arandom lo
ation to its Voronoi 
ell nu
leus.Extensions of the model 
an also be regarded. A natural way to a
hieve su
h an extendedmodel would be, for example, to generate the modulation not by a single Boolean model
Ψ but by a sequen
e of Boolean models Ψ1, ..,Ψn with possibly di�erent parameters withrespe
t to the 
orresponding intensities and grain distribution. Another interesting extensionwould be to �nd a 
onne
tion between the modulated Poisson-Voronoi tessellations that 
anbe mainly used for modelling on a nationwide s
ale and models for urban a

ess networks likethe models provided by the Sto
hasti
 Subs
riber Line Model (see Gloaguen, Coupé, Maierand S
hmidt[10] and Gloaguen, Fleis
her, S
hmidt and S
hmidt[11], [12]). This might enablean e�
ient analysis of other 
ost fun
tionals like shortest path lengths along street systemsor similar 
hara
teristi
s.Apart from estimating the mean distan
e it is of a fundamental interest to estimate thedistribution of the distan
e from a random lo
ation to its nearest Voronoi 
ell nu
leus. Inparti
ular, su
h estimated distributions lead to the performan
e of risk analysis by lookingat o

urring tail probabilities.Additionally other modulated Poisson-type tessellations like the modulated Poisson-Delaunaytessellation (Figure 10) might be of interest. The modulated Poisson-Delaunay tessellationequipped with a realisti
 set of 
orresponding parameters might, for example, serve as a model25



Figure 10: A realization of a modulated Poisson-Delaunay tessellationfor the 
onne
tion between di�erent towns. In general, not only for the 
ase of modelling bymodulated Poisson type tessellations, the question of determining realisti
 parameter valuesis a very 
ompli
ated but also very rewardful one. Su
h a problem 
an of 
ourse only besolved by analyzing real data.A
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ript.A Mathemati
al ba
kgroundIn this appendix random (marked) point pro
esses, Boolean models and random tessellations arede�ned and brie�y explained. For a more detailed des
ription and dis
ussion of the topi
s mentionedthe reader is referred to S
hneider and Weil[17], and Stoyan, Kendall and Me
ke[18], for example.A.1 Basi
 notationsLet IR and IN be the set of real numbers and the set of positive integers, respe
tively; IN0 = IN ∪

{0}. The abbreviations int B, ∂B, and Bc are used to denote the interior, the boundary, and the
omplement of a set B ⊂ IR2, respe
tively, where IR2 denotes the 2-dimensional Eu
lidean spa
e. For
x ∈ IR2 let |x| denote the Eu
lidean norm of x. Furthermore, Br(x) and B 6=

r (x) denote, respe
tively,the 2�dimensional 
losed and open ball 
entered at x ∈ IR2 with radius r > 0, i.e., Br(x) = {y ∈ IR2 :26



|x − y| ≤ r} and B 6=
r (x) = {y ∈ IR2 : |x− y| < r}. By B(IR2) the Borel�σ�algebra on IR2 is denoted.

B0(IR
2) is the family of bounded Borel sets in IR2.On IR2 we now de�ne two topologi
al groups, namely the group of all translations tx : y 7→ y + x for

x ∈ IR2 and the group of all rotations ϑR : y 7→ Ry around the origin, where R denotes a 2×2�matrix,orthogonal and with detR = 1. This allows us to introdu
e the following operations on sets B ⊂ IR2,the translation txB = {y+ x : y ∈ B} for x ∈ IR2 and the rotation ϑRB = {ϑRx : x ∈ B} around theorigin o, respe
tively.Furthermore, introdu
e F , K, and C as the families of all 
losed sets, 
ompa
t sets, and 
onvexbodies (
ompa
t and 
onvex sets) in IR2, respe
tively. Re
all that a random 
losed set Ξ in IR2is a measurable mapping Ξ : Ω → F from some probability spa
e (Ω,A, IP) into the measurablespa
e (F ,B(F)), where B(F) denotes the smallest σ�algebra of subsets of F that 
ontains all sets
{F ∈ F , F ∩K 6= ∅} for anyK ∈ K. Parti
ularly, the random 
losed set Ξ is 
alled a random 
ompa
tset or a random 
onvex body if IP(Ξ ∈ K) = 1 or IP(Ξ ∈ C) = 1, respe
tively.Let M be the set of simple and lo
ally �nite 
ounting measures and let M be the smallest σ-algebraof subsets ofM that 
ontains all sets of the form {ϕ ∈M : ϕ(B) = j}, where j ∈ IN0 and B ∈ B(IR2).We introdu
e the shift operator tx : M → M de�ned by txϕ(B) = ϕ(t−1

x B) = ϕ(t−xB) for x ∈ IR2as well as the rotation operator ϑR : M → M by ϑRϕ(B) = ϕ(ϑ−1
R B) = ϕ(ϑR−1B) for any rotation

R around the origin.A.2 Planar point pro
essesA random point pro
ess X in IR2 is a measurable mapping X : Ω → M from some probability spa
e
(Ω,A, IP) into the measurable spa
e (M,M). Therefore, a (simple) point pro
ess X 
an be regardedas a 
ounting measure ∑

x∈supp(X) δx and X(B) =
∑

x∈supp(X) δx(B) as the (random) number ofpoints of X in B ∈ B(IR2). A point pro
ess X 
an on the other hand be identi�ed as a (planar)random 
losed set. In this 
ase it is 
onvenient to write X = {Xn}n≥1, whi
h expresses X as asequen
e X1, X2, . . . of random ve
tors Xn : Ω → IR2 for n ≥ 1 su
h that #{n : |Xn| < r} < ∞ forany r > 0.The distribution of X is given as PX(A) = IP(X ∈ A) for A ∈ M. The point pro
ess X is 
alledstationary if PX = PtxX for any x ∈ IR2. It is 
alled isotropi
 if PX = PϑRX for any rotation ϑRaround the origin.The intensity measure Λ : B(IR2) → [0,∞] of a point pro
ess X is de�ned by
Λ(B) = IEX(B) , B ∈ B(IR2) . (A.1)27



If X is stationary and Λ is not equal to the zero measure we get that
Λ(B) = λ|B|, (A.2)where |B| denotes the Lebesgue measure of B, and where the 
onstant λ > 0 is 
alled the intensityof X . A stationary point pro
ess X with distribution PX is said to be ergodi
 if there are no otherstationary point pro
esses X ′ and X ′′ with distributions PX′ and PX′′ , respe
tively, su
h that

PX = αPX′ + (1 − α)PX′′for an α ∈ (0, 1). A geometri
 interpretation of ergodi
ity is that if we regard the set of distributionsfor stationary point pro
esses as a simplex then the set of distributions for ergodi
 stationary pointpro
esses 
onsists of the verti
es of this simplex. Noti
e that analogous de�nitions of ergodi
ity existfor stationary random 
losed sets and stationary random tessellations.Let now Λ : B(IR2) → [0,∞] be any di�use and lo
ally �nite measure on B(IR2). A (simple) pointpro
ess X in R2 that ful�lls
IP(X(B) = k) = e−Λ(B) Λ(B)k

k!
, B ∈ B0(IR

2) , k ∈ IN0 , (A.3)is 
alled a Poisson point pro
ess with intensity measure Λ (see Figure 3a for a realization of a stationaryPoisson point pro
ess). A possible generalization of a Poisson pro
ess is to take the measure Λ itselfrandom. This leads to Cox pro
esses. If PΛ denotes the distribution of a Poisson pro
ess withintensity measure Λ, and Q is the distribution of a random measure, then the point pro
ess X withdistribution PX : M → [0, 1] given by
PX(A) =

∫
PΛ(A)Q(dΛ), A ∈ M (A.4)is 
alled a Cox pro
ess. Hen
e we 
an think of a Cox pro
ess as a two-step random me
hanism. In a�rst step a measure Λ is determined a

ording to a distribution Q. Afterwards, in a se
ond step, aPoisson pro
ess is generated a

ording to the intensity measure Λ.A.3 Planar marked point pro
essesAn extension of planar point pro
esses 
an be a
hieved by additionally equipping the points with amark taken from a mark spa
e D. Mathemati
ally, one assumes that D represents a Polish spa
e anddenotes by B(D) the σ-algebra of its Borel sets. Regard MD = M(IR2 ×D), the set of all measures28



ψ : B(IR2)×B(D) → IN0∪{∞} that are simple and lo
ally �nite with respe
t to the �rst 
omponent.Furthermore, let MD = M(IR2 ×D) be the smallest σ-algebra of subsets of MD 
ontaining all setsof the form {ψ ∈ MD : ψ(B × G) = j} for B ∈ B0(IR
2), G ∈ B(D) and j ∈ IN0. Then a randommarked point pro
ess XD is a mapping from (Ω,A, IP) into (MD,MD) with mark spa
e (D,B(D)).The distribution PXD

of XD is given by PXD
(A) = IP(XD ∈ A), A ∈ MD. As for unmarked pointpro
esses an alternative representation of XD = {[Xn, Dn]}n≥1 as a 
olle
tion of random markedpoints is often 
onvenient. Then XD is said to be independently marked if {Xn}n≥1 and {Dn}n≥1are independent and if {Dn}n≥1 
onsists of independent and identi
ally distributed random variables.Stationarity and isotropy for marked point pro
esses are de�ned with respe
t to the �rst 
omponent,in other words the lo
ations, of the marked point pro
ess.The intensity measure ΛD : B(IR2) ⊗ B(D) → [0,∞] of a marked point pro
ess XD is de�ned by

ΛD(B ×G) = IEXD(B ×G) , B ∈ B(IR2) , G ∈ B(D) . (A.5)Hen
e, ΛD(B×G) is the expe
ted number of points of XD in B with a mark in G. If XD is stationary,the intensity measure ΛD 
an be de
omposed as
ΛD(B ×G) = λ

∫

IR2

∫

D

1IB(x) 1IG(m)P (dm)dx , B ∈ B(IR2) , G ∈ B(D) , (A.6)where λ > 0 is 
alled intensity and P : B(D) → [0, 1] is the Palm mark distribution of XD, given by
P (G) =

1

λ|B| IE
∑

[x,m]∈supp(XD)

1IB(x) 1IG(m) , G ∈ B(D) , (A.7)for any B ∈ B(IR2) with 0 < |B| <∞.A.4 Neveu's ex
hange formulaIn the following Neveu's ex
hange formula for Palm distributions of (marked) point pro
ess in IR2 ispresented. This formula is useful in order to express the relationship of expe
tations of fun
tionalsof two stationary point pro
esses with respe
t to their Palm distributions.We 
onsider a �ow {θx : x ∈ IR2} on the spa
e Ω, i.e., a family of bije
tive shift operators θx : Ω → Ωsu
h that θx ◦ θy = θx+y, where ◦ denotes the 
on
atenation operator. Let us furthermore assumethat the mapping f : IR2 × Ω → Ω with f(x, ω) = θxω is measurable. For x ∈ IR2 we assume that θx
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is 
ompatible with our shift operator tx as de�ned in Se
tion A.1, whi
h means that
XD(θxω,B ×G) = txXD(ω,B ×G) = XD(ω, t−xB ×G) , (A.8)for any marked point pro
ess XD : Ω →MD and all B ∈ B(IR2), G ∈ B(D). Noti
e that then we 
anget the stationarity of XD by assuming that

IP(θxA) = IP(θ−1
x A) = IP(A) , A ∈ A and x ∈ IR2 (A.9)where θxA = {θxω : ω ∈ A} .Suppose that (A.9) holds. Then, we are able to introdu
e the Palm probability measure IP∗

XD
for astationary marked point pro
ess XD as the probability measure IP∗

XD
on A⊗ B(D) by

IP∗
XD

(A×G) =
1

λ|B|

∫

Ω

∫

IR2×G

1IB(x) 1IA(θxω)X(ω, d(x, g))IP(dω) (A.10)for any B ∈ B(IR2) with 0 < |B| <∞.Theorem A.1 (Neveu's ex
hange formula) Let XD and X̃ eD
be arbitrary stationary marked pointpro
esses on (Ω,A, IP) with mark spa
es D and D̃ and intensities λ and λ̃, respe
tively. Then, forany measurable fun
tion f : IR2 ×D × D̃ × Ω → [0,∞),

λ

∫

Ω×D

∫

IR2× eD

f(x, g, g̃, θxω)X̃ eD
(ω, d(x, g̃))IP∗

XD
(d(ω, g))

= λ̃

∫

Ω× eD

∫

IR2×D

f(−x, g, g̃, ω)XD(ω, d(x, g))IP∗
eXfD

(d(ω, g̃)) .

(A.11)
A.5 Boolean germ-grain modelConsider a stationary Poisson point pro
ess Y = {Yn} with intensity β > 0. Let M1,M2, ... be asequen
e of independent and identi
ally distributed random 
losed sets in IR2 with IE|M0|2 < ∞,where M0 is a generi
 representant of the sequen
e {Mn}n≥1. Furthermore, let {Yn} and {Mn} beindependent. Then we 
all the random 
losed set

Ψ =
⋃

n≥1

(Yn +Mn) (A.12)a Boolean germ-grain model. In Figure 3b a realization of a Boolean model is displayed. The pointpro
ess {Yn} is 
alled the germ pro
ess of Ψ with germs Yn, whereas the pro
ess {Mn} is 
alled30



the grain pro
ess of Ψ with grains Mn. Throughout this paper only Boolean models with 
ir
ulargrains 
entered at the origin are regarded, where the radius of the 
ir
le 
an be either deterministi
or random but bounded.A.6 Random tessellationsA tessellation in IR2 is a 
ountable family τ = {Cn}n≥1 of 
onvex bodies Cn ∈ C su
h that int Cn 6= ∅for all n, int Cn ∩ int Cm = ∅ for all n 6= m, ⋃
n≥1 Cn = IR2, and #{n : Cn ∩ K 6= ∅} < ∞ forany K ∈ K. Noti
e that the sets Cn, 
alled the 
ells of τ , are polygons in IR2. The family of alltessellations in IR2 is denoted by T . A random tessellation τ = {Ξn}n≥1 in IR2 is a sequen
e ofrandom 
onvex bodies Ξn su
h that IP(τ ∈ T ) = 1. Noti
e that a random tessellation τ = {Ξn}n≥1
an also be 
onsidered as a marked point pro
ess ∑

n≥1 δ[α(Ξn),Ξo
n], where α : C′ → IR2, C′ = C \ {∅},is a measurable mapping su
h that α(C) ∈ C and α(C + x) = α(C) + x for any C ∈ C′ and x ∈ IRd,and where Ξo

n = Ξn − α(Ξn) is the 
entered 
ell 
orresponding to Ξn whi
h 
ontains the origin.The point α(C) ∈ IR2 is 
alled an asso
iated point of C and 
an be 
hosen, for example, to be thelexi
ographi
ally smallest point of C.A.7 Typi
al 
ell of stationary tessellationsSuppose that the marked point pro
ess Xτ =
∑

n≥1 δ[α(Ξn),Ξ0
n] is stationary with positive and �niteintensity λτ = IE#{n : α(Ξn) ∈ [0, 1)2}. By Po we denote the family of all 
onvex polytopeswith their asso
iated point at the origin. Then, the Palm mark distribution P of Xτ is given by

P (B) = λ−1
τ IE#{n : α(Ξn) ∈ [0, 1)2, Ξo

n ∈ B} for any B ∈ B(F)∩Po. Noti
e that a random polytope
Ξ∗ : Ω → Po, whose distribution 
oin
ides with P , is 
alled the typi
al 
ell of Xτ . Furthermore, itholds that

λ−1
τ =

∫

P0

|C|P (dC) , (A.13)i.e., the expe
ted area IE|Ξ∗| = ∫
Po |C|P (dC) of the typi
al 
ell Ξ∗ is equal to λ−1

τ .A.8 Tessellations indu
ed by point pro
essesLet S = {x1, x2, ...} be a lo
ally �nite set of points in IR2. For xn, xm ∈ S de�ne the halfplane
H(xn, xm) by

H(xn, xm) = {x ∈ IR2 : |x− xn| ≤ |x− xm|}.
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Then we 
all the polygon Pn given by
P (xn) =

⋂

m 6=n

H(pn, pm) = {x ∈ IR2 : |x− xn| ≤ |x− xn|, ∀ m 6= n}. (A.14)the Voronoi 
ell of the point xn. If we suppose that for ea
h x ∈ S we have that P (x) is bounded,the sequen
e τ = {P (xn) : xn ∈ B} is 
alled the Voronoi tessellation with respe
t to S. The point
xn is often denoted as the nu
leus of P (xn). The Poisson-Voronoi tessellation 
an now be de�nedas the Voronoi tessellation τX that is indu
ed by a Poisson point pro
ess X = {X1, X2, ...}.Let S = {x1, x2, ...} be a lo
ally �nite set of points IR2 that is not 
ollinear, i.e., if xi, xj , xk are threepairwise di�erent points in S it holds that there does not exist a line with the property that xi, xj , xkare all lo
ated on that line. Furthermore, let τ ′ = {P (xn)} be the Voronoi tessellation with respe
tto S. Let Q = {q1, q2, ...} be the set of verti
es of τ ′ and xi1 , ..., xiki

be the points in S whose Voronoi
ells share the vertex qi. Let
Ti =



x ∈ IR2 : x =

ki∑

j=1

λjxij
,

ki∑

j=1

λj = 1, λj ≥ 0



and let τ = {T1, ..., Tm}. Then, the set τ is 
alled the Delaunay tessellation of S. LetX = {X1, X2, ...}be a Poisson point pro
ess. The Delaunay tessellation indu
ed by X is 
alled a Poisson-Delaunaytessellation.
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