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Abstract: We discuss a simple methodology to enable a statistical comparison of human population with

the vegetation of North America over the past 13000 years. Nonparametric kernel methods are applied

for temporal and spatial smoothing of point data obtained from the Neotoma Paleoecology Database and

the Canadian Archaeological Radiocarbon Database, which results in sequences of maps showing the

development of population and different plant taxa during the Holocene. The estimation of smooth spa-

tial and spatio-temporal cross-correlation functions is proposed in order to detect relationships between

population and vegetation in fixed time intervals. Furthermore, the effects of varying environment on

demographic changes as well as potential impacts of populations on plant taxa over time are analyzed.

Pointwise confidence bands for cross-correlation functions are computed and a robustness analysis is per-

formed to assess the significance of obtained results. Considering the example of oak, an interpretation

of our results for eastern North America shows the value of this methodology.

Keywords: Space-time analysis, Nonparametric estimation, Cross-correlation function



Correlations of population and vegetation in NA

1 INTRODUCTION

1.1 Motivation

In North America, European colonists had an enormous impact on the landscape since their arrival 400

years ago, for example, deforesting much of the landscape of Eastern North America by the early 20th cen-

tury, although much has since regrown (Williams, 1989). Determining human impacts on the landscape

of North America before historical times, however, is more complicated, and is done using (sub)fossil

data.Two opposing viewpoints have been proposed about the nature of the vegetation of North America

prior to the arrival of Europeans (e.g., Denevan, 1992; Vale, 2002). A first view is that North Amer-

ica in CE1492 was a “pristine landscape” with low population densities and vegetation largely unal-

tered by human activities. In this case, the primary factor causing changes in population numbers or

in cultural/technological expression would have been climate and environmental changes. However, an

alternate view suggests that in large parts of the Americas, First Nations used fire to clear the forest

and maintain the prairies, practiced more extensive agriculture, and in general altered the forests and

plains through extensive land use. Although local and regional studies have shown human impacts on the

landscape (Delcourt and Delcourt, 2004; Munoz and Gajewski, 2010), it is important to understand this

interaction at continental scales (e.g., Jäger and Neuhäusl, 1994). As this has not yet been discussed in the

literature, we suggest to use simple and intuitive statistical strategies to examine this potential association

over the course of the past 13000 years using centennial-scale time intervals.

1.2 Population intensity maps

We investigate space-time correlations of population density and vegetation abundances in prehistoric

North America based on fossil data. While a methodology for the estimation of vegetation abundance

is proposed in Sect. 4, we use population estimates that were derived in a previous study (Chaput et al.,

2015). The original data come from the Canadian Archaeological Radiocarbon Database (CARD), which

is a compilation of radiocarbon measurements that indicate the ages of samples from archaeological sites

in North America (e.g., Gajewski et al., 2011). The CARD consists of 35,905 calibrated radiocarbon

dates, with 29,609 of them containing suitable geographical, chronological and descriptive information

linking them to culturally-distinct human activity. The suggested approach relies on the well-accepted

assumption that the frequency of radiocarbon dates is, after accounting for sampling and taphonomic
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biases, proportional to population activity (dates as data approach, e.g., Steele, 2010).

At first, a sequence of 121 500-year time intervals was selected, which range from 500-1000 BP (be-

fore present1), 600-1100 BP, 700-1200 BP up to 12500-13000 BP. For each interval all corresponding

radiocarbon dates are selected and spatially smoothed intensities of date counts are computed for all lo-

cations of the North American continent not permanently covered by ice using a nonparametric kernel

density estimator with a two-dimensional Epanechnikov kernel and a globally fixed bandwidth of 600

km (the choice of this methodology is justified in Chaput et al. (2015)). In order to account for spatially

inhomogeneous sampling strategies, we also estimate a sampling intensity based on all geographically

distinct data locations in CARD (from all intervals) and divide intensities of date counts of each interval

by sampling intensities. The resulting population intensities can be understood as (smoothed) numbers

of dates per sampling site (falling in the considered time interval) and are interpreted as indicators of

population density. In addition to sampling biases, the method also accounts for biases occurring due to

taphonomic loss and boundary effects. Furthermore, some temporal smoothing is included in the method.

Two examples of estimated population intensity maps are shown in Fig. 1. The maps show clear patterns

of population activity and we consider that the results capture paleodemographic trends. This is justified

by the observation that patterns correlate well with previous archaeological interpretations of population

change across the North American continent during the Holocene that were derived partly from radiocar-

bon dates, but also other data sources and inferences.

1.3 Outline

In Sect. 2 we introduce the database used to obtain estimates of vegetation abundance of different taxa

over the past 13000 years, including a discussion of calibrated radiocarbon ages. Sect. 3 describes an

intuitive procedure for temporal smoothing and interpolation of pollen percentages to the target ages

needed for the correlation analyses. The preparation of spatially smooth vegetation intensity maps is

discussed in Sect. 4, along with a depiction of examples for one taxon and a comparison to existing

results from the literature. In Sect. 5 we describe a simple approach to the estimation of spatial cross-

correlations of vegetation abundances with population densities and the cross-correlations of changes in

vegetation and populations at various temporal lags. This section also introduces a method to compute

nonparametric confidence bands of estimated cross-correlations. In Sect. 6.1 we apply the presented

1The term ’present’ refers to the year CE1950, by convention. For example, the year 500 BP is equivalent to the year CE1450.
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methods to a selected taxon and illustrate the insights obtained from this analysis. Furthermore, in Sect.

6.2, we perform a brief robustness study. Sect. 7 concludes.

2 THE NEOTOMA PALEOECOLOGY DATABASE

Space-time data of prehistoric pollen abundance used in this study are obtained from the Neotoma Pa-

leoecology Database (Grimm, 2008). Neotoma is a comprehensive compilation of fossil data from the

Holocene, Pleistocene, and Pliocene for more than 8,400 sites worldwide.

2.1 Calibration of radiocarbon ages

For the estimation of vegetation intensities we use pollen data, which are typically acquired as follows.

Consider a set of sites (lakes) on the North American continent, at which pollen data are available in

Neotoma. Samples are taken along a sediment core for a sequence d0 < . . . < dn of n + 1 depths.

Each sample contains a certain number of fossil pollen, which are counted and classified. Next, the age

of the sample at each depth needs to be determined. Since radiocarbon dating is rather expensive, it is

not used to estimate the ages of all samples. Instead, radiocarbon ages are only determined for a subset

{di1 , . . . , dij} ⊂ {d0, . . . , dn} and ages for depths d ∈ {d0, . . . , dn}\{di1 , . . . , dij} are computed using

interpolation methods2. Ages obtained from the radiocarbon method (or from interpolation) need to be

calibrated to be measurable in calender years BP. As the manual use of standard calibration curves is not

suitable for application to such a large number of dates as considered in our study, we suggest to convert

radiocarbon ages into calibrated ages using a smoothed radiocarbon calibration curve (Grimm, 2008, Fig.

3). This simplified calibration is not exact but in Grimm (2008) it is estimated that the probability of

the occurring error being less than or equal to 25 years is 0.47 and the probability of the occurring error

being less than or equal to 200 years is 0.97. Since this is clearly below the temporal scale of this study,

it is extremely unlikely that a significant bias is introduced by using the simplified calibration curve. The

result of calibration is a sequence a0, . . . , an of calibrated radiocarbon ages (the unit being cal years BP;

for simplicity we will write BP) that correspond to the samples taken at depths d0, . . . , dn.

The correct procedure would be to calibrate radiocarbon ages at depths di1 , . . . , dij first, resulting in cal-

ibrated ages ai1 , . . . , aij , and to interpolate ages for depths d ∈ {d0, . . . , dn} \ {di1 , . . . , dij} afterwards

2For more detailed information on age-depth modeling see, e.g., Bronk Ramsey (2008) or Haslett and Parnell (2008).
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based on ai1 , . . . , aij . For the majority of sites, however, ages are interpolated based on uncalibrated

ages at di1 , . . . , dij before feeding data into Neotoma, and we then calibrate the ages of all n+ 1 depths

d0, . . . , dn using the smoothed calibration curve. In general, this exchange of calibration and interpo-

lation leads to an error in calibrated ages. Unfortunately, for those sites at which ages are interpolated

before calibration, it does not seem possible to identify, which (uncalibrated) ages were obtained from

dating and which from interpolation, making it impossible to eliminate this error. To investigate whether

these calibration errors will significantly bias the results of our study, we perform the following compari-

son. We select 22 independent test samples from the literature, each consisting of a sequence d0, . . . , dn

of depths in cm and a sequence ã0, . . . , ãn of uncalibrated radiocarbon ages, with n varying between

4 and 17. For each test sample, we consider the sequence {δ1, . . . , δk} ⊂ [d0, dn], which contains all

depths between d0 and dn that are a multiple of 5 cm. We first determine radiocarbon ages for depths

δ1, . . . , δk by applying linear interpolation based on ã0, . . . , ãn and afterwards calibrate interpolated ages

using the smoothed calibration curve. Next, we first calibrate ã0, . . . , ãn and then determine calibrated

ages for δ1, . . . , δk by applying linear interpolation. This results in two calibrated radiocarbon ages a and

a′ for each depth δ ∈ {δ1, . . . , δk}, i.e., in two depth-age curves for each test sample. We find that the

vast majority of absolute errors is smaller than 100 years with absolute errors of more than 300 years

occurring extremely rarely (Fig. 2). Moreover, the largest errors occur for ages older than 13000 BP,

which are not considered in our analysis. In summary, since the observed differences are small compared

to the temporal scale of this study, we can assume that the errors occurring from exchanging calibration

and interpolation of radiocarbon ages are negligible in the following.

2.2 Data selection

In order to access the Neotoma database for automatic data selection and processing we use the R package

neotoma (Goring et al., 2015). First, we select all sites from Neotoma which are labeled with the

geopolitical id ’Canada’ or ’United States’. Then, all datasets associated with the sites obtained are

loaded and those with the dataset type ’pollen’ and the collection type ’composite’ or ’core’ are selected.

Each dataset contains a sequence of n + 1 samples that are taken at depths d0 < . . . < dn (resulting

in n intervals between samples) and the corresponding ages a0, . . . , an in cal years BP. The samples

contain count data for different taxa. Since we are interested in pollen counts only, we select data with

taxon group ’vascular plant’, variable element ’pollen’ or ’spore’ and variable unit ’number of identified
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specimen (NISP)’. Count data can sometimes not be compared directly across sites due to different levels

of taxonomic resolution used by the researchers contributing to Neotoma. For example, one analyst

might discriminate sub-taxa of Acer (maple), such as Acer rubrum (red maple) or Acer saccharinum

(silver maple), while another might simply identify Acer to the genus level. To provide comparability,

taxa and corresponding pollen data are aggregated using the standardization list suggested in Williams

and Shuman (2008). Finally, the usual practice is to compute relative pollen abundances for all sites,

ages and taxa based on pollen counts for all included plant taxa, which are much easier to interpret and

compare. Altogether, we obtain a set of 1, 151 sites, each of which contains a sequence a0, . . . , an of

calibrated radiocarbon ages together with the corresponding relative pollen abundances of 64 taxa.

3 TEMPORAL INTERPOLATION AND SMOOTHING OF POLLEN ABUNDANCES

In order to be able to estimate spatial vegetation intensity maps, relative pollen abundances need to be

available at all 1, 151 sites with Neotoma data simultaneously for the same years. Since relative pollen

abundances of one taxon might vary considerably even during short time periods, some of which are

random sampling errors, it is preferable to use smoothing methods over interpolation. In the follow-

ing, we consider a fixed site, a fixed taxon and the corresponding relative pollen abundances. With

(a0, p0), . . . , (an, pn), where 0 ≤ a0 < . . . < an, we denote the ages of the available samples and

the corresponding relative pollen abundances (taking values in [0, 1]) for the chosen site and taxon. We

interpret (a0, p0), . . . , (an, pn) as (sorted) realizations of some independent and identically distributed

random vectors3 (A0, P0), . . . , (An, Pn) taking values in [0,∞) × [0, 1]. It seems almost impossible

to find a parametric representation describing the dependence of random pollen abundances P0, . . . , Pn

on random ages A0, . . . , An sufficiently well, which is why the following (nonlinear) relationship is as-

sumed:

Pi = p(Ai) + εi for i = 0, . . . , n, (1)

where p : [0,∞) → [0, 1] with p(a) = E (P0 |A0 = a) for a ≥ 0 is the conditional expectation

function of P0 given A0 and ε0, . . . , εn denote random errors with E ε0 = . . . = E εn = 0. In order to

3In literature this setting is denoted as random design (e.g., Härdle et al., 2004). This framework seems suitable in our application

since the ages of samples are not fixed a priori by the analyst performing the study and can thus be considered to be random.

Furthermore, samples for different ages are acquired and investigated independently.
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estimate p by using kernel smoothing, we consider the time intervals I1, . . . , In, where Ii = [ai−1, ai)

for i = 1, . . . , n − 1 and In = [an−1, an]. We denote by hi = ai − ai−1 the length of interval Ii for

i = 1, . . . , n. The bandwidth h, which controls the degree of smoothing in kernel estimators, should be

chosen not smaller than the maximum max{h1, . . . , hn}. However, for some sites and taxa, long time

periods Ii without a sample can occur leading to a bandwidth that can cause oversmoothing in other

intervals Ij , j 6= i, eliminating too many details. To avoid such effects, we only consider those intervals

{Ii1 , . . . Iik} ⊂ {I1, . . . , In} that have a length of not more than 2,000 years and define I = Ii1∪ . . .∪Iik
and h = max{hi1 , . . . , hik}. For all a ∈ I an estimate p̂(a) of p(a) can be determined using a (one-

dimensional) Nadaraya-Watson estimator with the bandwidth h (e.g., Wand and Jones, 1995), by

p̂(a) =

n
∑

i=0

pi K
G
1

(

a− ai
h

)

n
∑

i=0

KG
1

(

a− ai
h

) for all a ∈ I, (2)

where KG
1 : R → [0,∞) denotes the one-dimensional Gaussian kernel defined as

KG
1 (u) =

1√
2π

exp

(

−1

2
u2

)

for all u ∈ R. (3)

Motivation for choosing the Gaussian kernel is that it has an unbounded support and is thus expected

to provide a smooth estimate even in regions of sparse data. However, for a /∈ I , using the Nadaraya-

Watson estimator occasionally results in sudden decreases or increases making it an inappropriate choice.

Therefore, we alternatively suggest to estimate p using linear interpolation, which leads to an estimate

p̃(a) of p(a) for all a ∈ [a0, an]. Finally, we set p̂(a) = p̃(a) for a ∈ [a0, an] \ I . The proposed method-

ology is applied to 10 selected taxa. These include major taxa and those representative or characteristic

of the major biomes (Quercus (oak): deciduous forest; Picea (spruce) and Pinus (pine): boreal forest;

Poaceae (grass): Prairie), taxa used or potentially affected by human use (Carya (hickory), Juglans (wal-

nut, butternut), Castanea (chestnut)), disturbance taxa (Populus (poplar, aspen)), or representatives of

mature forests, i.e., non-disturbance (Fagus (beech), Acer (maple)). For example, if Native Americans

extensively used fire to manage the forests, we would expect a positive association of human population

densities and oak tree abundance (Abrams and Nowacki, 2008). If Native Americans managed the forests

and planted useful trees, then there should be a spatial correlation of population density and nut trees,
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as seen on a local level (Wycoff, 1991). Munoz and Gajewski (2010) showed an increase in Populus in

southern Ontario associated with introduction of agriculture, and we wanted to see it this occurred at a

larger scale. On the other hand, we would also expect no association of spruce with human population

densities, as human populations were assumed to be relatively low in boreal forests. In Fig. 3 sample

data of relative pollen abundance from Neotoma are shown for two sites in North America together with

estimates {p̂(a), a ∈ I} and {p̃(a), a ∈ [a0, an]} obtained using a Nadaraya-Watson estimator and linear

interpolation, respectively. We find that choosing the smoothing parameter h as explained above leads

to estimates that capture the temporal development very precisely (even for abrupt in- or decreases, see,

e.g., the cyan curve in Fig. 3, top), whereas noise is also eliminated quite well, see, e.g., the yellow and

the blue curve in Fig. 3 (top). In Fig. 3 (bottom) we have that I 6= [a0, an] since for ages between 3500

BP and 6500 BP interpolation is preferred over smoothing due to sparse data.

4 VEGETATION INTENSITY MAPS

4.1 Nonparametric estimation of vegetation intensity maps

We now address the question how spatially smooth vegetation maps can be determined. We consider the

sequence of years 750 BP, 850 BP, . . ., 12750 BP, which corresponds to the midpoints of the 500-year

intervals considered for the nonparametric estimation of population intensity maps sketched in Sect. 1.2.

The estimation procedure is applied to each year and taxon separately. Let y be the considered year, i.e.,

y ∈ {750, 850, . . . , 12750}, and let W denote the set of all locations on the North American continent that

are not covered by ice in year y. At first, we need to identify at which sites pollen abundances for the year

y are available. In order to do that we consider the 1, 151 sites with Neotoma data and check for each site

individually whether y ∈ [a0, an], with a0 and an being the site-specific minimal and maximal available

calibrated radiocarbon ages introduced in Sect. 2.1. This results in a sequence (s1, π1), . . . , (sm, πm),

with m ≤ 1, 151, where s1, . . . , sm denote the sites in North America with available pollen abundances

π1, . . . , πm in year y that were estimated using the kernel estimator in Eq. (2) or linear interpolation (for

time intervals with sparse data). Typically, m is higher in more recent years since for older time periods

there is a larger number of sites with an < y.

As relative pollen abundances may vary considerably among closely located sites (due to noise) and as

we are mainly interested in large scale patterns of spatial vegetation intensities, it seems suitable to apply
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nonparametric methods for spatial smoothing as well. Since vegetation intensity maps are compared to

population intensity maps in Sect. 5, we aim to provide as many similarities in the corresponding esti-

mation procedures as possible. We suppose that (s1, π1), . . . , (sm, πm) can be interpreted as realizations

of some independent and identically distributed random vectors4 (S1,Π1), . . . , (Sm,Πm) with values in

W × [0, 1]. Again, it seems impossible to find a parametric representation that models the relationship

between sites S1, . . . , Sm and relative pollen abundances Π1, . . . ,Πm sufficiently well, which is why we

suppose that

Πi = π(Si) + ε′i for i = 1, . . . ,m, (4)

where π : W → [0, 1] with π(s) = E (Π1 |S1 = s) for s ∈ W denotes the conditional expectation

function of Π1 given S1 and ε′1, . . . , ε
′

m are random errors with E ε′1 = . . . = E ε′m = 0. An extensive

literature has demonstrated that pollen can be used as a quantitative index of past plant abundance (Birks

and Birks, 1980), which is why the field {π(s), s ∈ W} is considered as a map of expected intensities of

the considered taxon in the following. However, as pollen percentages may be over- or underrepresented

in comparison with the abundance of the plant on the landscape, we are not reconstructing vegetation,

but rather mapping the change in time and space. We suggest to estimate {π(s), s ∈ W} based on

(s1, π1), . . . , (sm, πm) using a two-dimensional Nadaraya-Watson estimator (e.g., Härdle et al., 2004).

Accordingly, an estimate π̂(s) of π(s) is determined by

π̂(s) =

m
∑

i=1

πiK
E
2 (s, si, h)

m
∑

i=1

KE
2 (s, si, h)

for all s ∈ W, (5)

where KE
2 : W ×W × (0,∞) → [0,∞) with

KE
2 (s1, s2, h) =

(

1− d(s1, s2)
2

h2

)

1[0,h)(d(s1, s2)) for all s1, s2 ∈ W (6)

4Choosing a random design is again suitable here. On the one hand, sampling sites were not designed by one analyst but chosen

individually by many different researchers and can thus be considered to be independent random variables. On the other hand,

corresponding pollen abundances are estimated independently for different sites based on the data from Neotoma, which are also

sampled independently across sites.
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denotes a scaled two-dimensional Epanechnikov kernel, h > 0 is the bandwidth controlling the degree

of smoothing and d(s1, s2) denotes the geographic distance of two locations s1, s2 ∈ W (Diggle and

Ribeiro Jr., 2007, Sec. 2.7). We set h = 600 km in Eq. (5) to ensure comparability to the population

intensity maps described in Sect. 1.2, which is also the reason for choosing the Epanechnikov kernel over

a kernel with unbounded support (such as the Gaussian kernel). However, in contrast to the estimation

of population intensity maps, we do not need to account for sampling biases and errors occurring due

to taphonomic loss. On the one hand, the denominator in Eq. (5) prevents the estimator from being

influenced by inhomogeneous sampling strategies. On the other hand, relative pollen abundances do

not contain taphonomic biases as pollen does not degrade over the time-scale of our study. Computing

{π̂(s), s ∈ W} for all y ∈ {750, . . . , 12750} results in a sequence of estimated vegetation intensity

maps. Note that elevation is currently not considered when estimating vegetation intensities as this would

require a thorough extension of the methodology which will be developed in future studies within this

research program.

4.2 Computation of taxon ranges

Most taxa analyzed in this paper have regions of typical occurrence (e.g., the eastern and southern U.S.

for Quercus). Only in those regions do the estimated vegetation intensities have significantly positive

values, whereas in the remaining areas intensities are zero or very close to zero (due to few pollen grains

being transported by wind or caused by data and measurement errors). When comparing population and

vegetation intensity maps in Sect. 5, it seems reasonable to only take into account the taxon range ξ ⊂

W . For example, if correlations between population activity and the intensity of Quercus are analyzed,

only regions in the eastern and southern U.S. should be considered. In the western U.S. and in Canada

(i.e., outside the range of Quercus), estimated vegetation intensities will be very close to zero although

population activity is found in various regions, which will dilute correlation results. For that purpose we

suggest an approach to determine (temporally varying) estimates of the taxon range ξ. Let {π̂(s), s ∈ W}

be the estimated vegetation intensity map of a selected taxon for a given year y. Then, we suggest to

compute an estimate ξ̂ of the taxon range ξ ⊂ W by

ξ̂ = {s ∈ W : π̂(s) ≥ u ·max{π̂(s), s ∈ W}} , (7)
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with a suitable threshold u ∈ (0, 1), i.e., the estimated range ξ̂ consists of those locations on the North

American continent, at which the local vegetation intensity is at least u times the global maximum of the

vegetation intensity map. In order to determine an optimal choice for the threshold u, the taxon range is

estimated for the most current year (y = 750 BP) for thresholds 0.05, 0.1, 0.15, 0.2, 0.25 and 0.3, and a

visual comparison to the taxon’s modern range is made (Thompson et al., 1999). We observe that for all

10 taxa considered in Sect. 3 the threshold u = 0.2 provides the best overall match. Since the estimate ξ̂

as defined in Eq. (7) always depends on the maximum estimated vegetation intensity of the current year

(and thus changes over time), we suppose that the suggested approach is also able to capture the typical

taxon ranges for older years, which is confirmed by the examples shown in Sect. 4.3.

4.3 Interpretation of results

As an example illustrating the results of the methodology discussed here, we use the history of Quercus

(oak) over the past 13000 years. Oak is the characteristic species of the Eastern Deciduous Forest and is

a general indicator of the extent of this ecosystem. It is a major source of food for both humans and game

animals (McShea and Healy, 2002). Prior to 12000 BP, high values of Quercus were restricted to Florida

and the southern Gulf States. The range expanded and moved north and westward after 10750 BP, see

Fig. 4 (top). At a smaller scale, the maps capture the lower values of Quercus in the upper slopes of

the Appalachian Mountains, and Quercus became more abundant especially west of this mountain chain.

During this time, Quercus remained abundant across all southern states. Beginning around 9000 BP,

Quercus decreased in the south, and remained at higher values in a band across the Mid-Atlantic States,

see Fig. 4 (center). During the period between 8000-7000 BP, maximum oak abundance remained in

the region. Note that many sites have high values of oak pollen to the north of the region of maximum

abundance, but other sites in proximity have lower values, so the map shows a decrease in regional

abundance in this region. This pattern remained for the next few thousand years, followed by a slight

decrease in abundance in the past 1500 years, see Fig. 4 (bottom).

Maps depicting the abundance of the pollen of tree taxa through time for eastern North America have

been produced several times since the 1970s, as the database increased in size and methods to produce the

maps have evolved, see the references in Williams et al. (2004). The latest version (Williams et al., 2004)

used the North American Pollen Database with 759 sites, which has been incorporated and expanded

in Neotoma. They made maps every 1000 to 2000 years using tri-cubic distance weighting to average
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pollen data from a 300 km × 300 km × 500 m (vertical) window to a 50 km grid. There is a very close

visual correspondence of our maps to those of Williams et al. (2004); all of the features discussed above

are seen in both sets of maps suggesting that the methodology proposed in the present paper is able to

provide reliable indicators of vegetation abundance.

A more sophisticated approach to the inference of local vegetation intensities for tree taxa is discussed

in Paciorek and McLachlan (2009), where Bayesian models and methods have been also used to esti-

mate uncertainties in obtained results. However, we do not consider this to be necessary in our study

as estimated vegetation intensity maps correspond particularly well with those of the existing literature,

see above. Furthermore, the proposed methodology is closely related to that we used when estimating

population intensity maps.

5 CORRELATION ANALYSIS OF POPULATION AND VEGETATION INTENSITIES

5.1 Cross-correlations of population and vegetation intensity maps

We aim to investigate whether significant correlations between vegetation and population intensities can

be found. In the following, we again fix a taxon and a year y ∈ {750, 850, . . . , 12750} and consider

the corresponding map {π̂(s), s ∈ ξ̂} of estimated vegetation intensities restricted to the estimated taxon

range ξ̂. Furthermore, let {λ̂(s), s ∈ ξ̂} denote the corresponding estimated population intensity map for

the 500-year time period [y − 250, y + 250], which is obtained using a similar nonparametric smoothing

method (Chaput et al., 2015). In statistical estimation theory, it is common to model estimators as random

elements, which is why ξ̂ is considered to be a realization of some random closed subset Ξ of W (Chiu

et al., 2013). Furthermore, the estimates {π̂(s), s ∈ ξ̂} and {λ̂(s), s ∈ ξ̂} can be interpreted as realizations

of two random fields Π = {Π(s), s ∈ W} and Λ = {Λ(s), s ∈ W} restricted to Ξ.

To infer probabilistic properties we assume that Π and Λ are jointly second-order stationary and isotropic

(Wackernagel, 2003). This means that EΠ(s) = µΠ and EΛ(s) = µΛ for all s ∈ W , and that for any pair

of locations s1, s2 ∈ W the covariances cov (Π(s1),Π(s2)), cov (Λ(s1),Λ(s2)) and cov (Π(s1),Λ(s2))

only depend on the geographic distance d(s1, s2) between s1 and s2. Clearly such assumptions are hard to

justify on a continental scale. However, when estimating cross-correlation functions we only consider the

restriction of the random fields to the estimated taxon range, which covers a smaller region (in particular

for Quercus) making this a more realistic assumption.
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For the analysis of relationships between vegetation and population intensities we consider cross-

covariance and cross-correlation functions. Let rmax > 0 denote the maximum distance of any two

locations in W , i.e., rmax = max{d(s1, s2), s1, s2 ∈ W}. As Π and Λ are assumed to be jointly second-

order stationary and isotropic, the cross-covariance function CΠΛ : [0, rmax] → R of Π and Λ is defined

by CΠΛ(r) = cov (Π(s1),Λ(s2)) for any s1, s2 ∈ W with r = d(s1, s2) (Genton and Kleiber, 2015).

Since cross-covariance functions are difficult to interpret, they are typically normalized to obtain cross-

correlation functions. Using that the variances σ2
Π = varΠ(s) and σ2

Λ = varΛ(s) do not depend on

s ∈ W and by assuming that σ2
Π, σ

2
Λ > 0, the cross-correlation function ρΠΛ : [0, rmax] → [−1, 1] of Π

and Λ can be defined by

ρΠΛ(r) =
CΠΛ(r)
√

σ2
Π σ2

Λ

for all r ∈ [0, rmax]. (8)

In order to give an estimator of the cross-correlation function ρΠΛ, we first need to choose a finite se-

quence t1, . . . , tk ∈ ξ̂ of sample points, at which the values π̂(t1), . . . , π̂(tk) and λ̂(t1), . . . , λ̂(tk) are

determined to be used for estimation. For that purpose, we suggest to generate a realization of a homoge-

neous Poisson point process in W with intensity α = 0.0003 (e.g., Chiu et al., 2013; Diggle, 2014), and

use those points of the process as sample points t1, . . . , tk that fall into the considered estimated taxon

range ξ̂. The intensity α = 0.0003 seems suitable as, on average, we get a number of sample points (3,876

in W in our example) that is high enough to ensure a reliable estimation but still allows computations to

be done in a reasonable time.

The most intuitive approach is to first estimate the cross-covariance function CΠΛ using the method of

moments (e.g., Genton and Kleiber, 2015). However, this method usually provides estimates for certain

distance classes only leading to discontinuous and unstable estimated cross-covariance functions. Also

the fitting of parametric models, as advised in most geostatistical applications to obtain smooth and

continuous estimates (Montero et al., 2015), is not suitable here since it seems impossible to find a model

that can be fitted adequately for all taxa and time periods. A more appropriate alternative is to consider a

nonparametric kernel approach for the estimation of cross-covariance functions (similar to the Nadaraya-

Watson estimator used in Sect. 3 and 4.1). This kind of estimator is frequently used in point process

statistics for the estimation of mark correlation functions (Illian et al., 2008, Sect. 5.3), and has been
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successfully applied and interpreted in a geographical context (e.g., Shimatani, 2002; Ledo et al., 2011)5.

Let rest > 0 be chosen in such a way that for each r ≤ rest the number of pairs of sampling points

ti, tj ∈ {t1, . . . , tk} in ξ̂ with approximate distance r ≈ d(ti, tj) is reasonably large. Then, an estimate

ĈΠΛ(r) of CΠΛ(r) based on π̂(t1), . . . , π̂(tk) and λ̂(t1), . . . , λ̂(tk) can be computed by

ĈΠΛ(r) =

k
∑

i=1

k
∑

j=1

(π̂(ti)− µ̂Π)(λ̂(tj)− µ̂Λ)K
E
1

(

r−d(ti,tj)
h

)

k
∑

i=1

k
∑

j=1

KE
1

(

r−d(ti,tj)
h

)

for all r ∈ [0, rest], (9)

where µ̂Π = 1
k

∑k
i=1 π̂(ti) and µ̂Λ = 1

k

∑k
i=1 λ̂(ti) are standard estimates of µΠ and µΛ and KE

1 : R →

[0,∞) denotes the one-dimensional Epanechnikov kernel with bandwidth h > 0, which is defined as

KE
1 (u) =

3

4
(1− u2)1(−1,1)(u) for all u ∈ R. (10)

Comparisons of estimates based on different bandwidths have shown that h = 20 is a good choice to

obtain smooth functions without eliminating important details. Using different types of kernel functions

has a negligible effect on obtained results. Finally, a plug-in estimate ρ̂ΠΛ(r) of the cross-correlation

function ρΠΛ(r) is given by

ρ̂ΠΛ(r) =
ĈΠΛ(r)
√

σ̂2
Π σ̂2

Λ

for all r ∈ [0, rest], (11)

where σ̂2
Π and σ̂2

Λ are estimates of the variances σ2
Π and σ2

Λ. In order to obtain stable estimated cross-

correlation functions it is recommended not to consider the standard moment estimates here. Instead, by

using that σ2
Π = cov (Π(s),Π(s)) for all s ∈ W , an estimate σ̂2

Π can be computed according to Eq. (9) for

r = 0 with π̂(t1), . . . , π̂(tk) and µ̂Π instead of λ̂(t1), . . . , λ̂(tk) and µ̂Λ. The estimate σ̂2
Λ is determined

analogously. The value ρ̂ΠΛ(r) for any r ∈ [0, rest] can be interpreted as the estimated correlation of the

vegetation intensity and the population intensity at two arbitrary locations in the estimated taxon range ξ̂

separated by distance r.

5A similar estimator for covariance functions has been proposed in Hall et al. (1994), where the authors consider an additional

adjustment using the Fourier transform to ensure that estimated functions are positive semi-definite. We are not following this path,

since the procedure is extremely computationally intensive and does not really affect qualitative interpretation.
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5.2 Cross-correlations of population and vegetation changes with temporal lag

An even more interesting question that arises when analyzing correlations of vegetation and population

is how certain taxa responded to changes in population and vice versa. For that purpose, we suggest to

estimate and interpret cross-correlations of changes in vegetation and population intensity maps. We fix

a taxon and a year y ∈ {1000, 1100, . . . , 12500}. Let π̂(y)(s) denote the estimated change in vegetation

intensity at location s ∈ W between the years y+250 and y−250 (in years BP), which is computed based

on the estimated vegetation intensities for the years y + 250 and y − 250. Analogously, let λ̂(y)(s) be

the estimated change of population intensity at s in the same period (or, to be more precise, between the

500-year intervals [y, y+500] and [y−500, y], whose midpoints correspond to y+250 and y−250). We

only consider locations s that fall into the intersection ξ̂(y) of the estimated taxon ranges corresponding

to the years y+250 and y− 250 in the following. By t̃1, . . . , t̃k̃ we denote those sample points (obtained

from a realization of a Poisson point process, see Sect. 5.1) that fall into ξ̂(y). We again suppose ξ̂(y) to be

a realization of some random closed subset Ξ(y) of W . Furthermore, we interpret the fields {π̂(y)(s), s ∈

ξ̂(y)} and {λ̂(y)(s), s ∈ ξ̂(y)} as realizations of some random fields Π(y) = {Π(y)(s), s ∈ W} and

Λ(y) = {Λ(y)(s), s ∈ W} restricted to Ξ(y) with Π(y)(s),Λ(y)(s) taking values in R for s ∈ W .

It is conceivable that a change in vegetation intensity between the years y + 250 and y − 250 does

not affect the change in population intensity in the same period but in a period a few hundred years

later (or that the vegetation change is influenced by a population change some hundred years ear-

lier). Therefore, we also analyze the cross-correlation function of Π(y) and Λ(y+δ) for a temporal lag

δ ∈ {−1000,−900, . . . , 900, 1000}. At first, we again assume that the random fields Π(y) and Λ(y+δ) are

jointly second-order stationary and isotropic. Accordingly, the cross-covariance function CΠ(y)Λ(y+δ) :

[0, rmax] → R of Π(y) and Λ(y+δ) is defined by CΠ(y)Λ(y+δ)(r) = cov (Π(y)(s1),Λ
(y+δ)(s2)) for

s1, s2 ∈ W with r = d(s1, s2). The cross-correlation function ρΠ(y)Λ(y+δ) : [0, rmax] → [−1, 1] is

defined as

ρΠ(y)Λ(y+δ)(r) =
CΠ(y)Λ(y+δ)(r)
√

σ2
Π(y) σ

2
Λ(y+δ)

for all r ∈ [0, rmax], (12)

where σ2
Π(y) = varΠ(y)(s) and σ2

Λ(y+δ) = varΛ(y+δ)(s) for any s ∈ W . For the estimation of ρΠ(y)Λ(y+δ)

consider a distance r
(y)
est > 0 such that for each r ≤ r

(y)
est the number of pairs of sampling points t̃i, t̃j ∈
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{t̃1, . . . , t̃k̃} in ξ̂(y) with approximate distance r ≈ d(t̃i, t̃j) is large enough. For the computation of

estimates ρ̂Π(y)Λ(y+δ)(r) of the cross-correlations ρΠ(y)Λ(y+δ)(r) for all r ∈ [0, r
(y)
est] we suggest to use the

estimators proposed in Sect. 5.1 based on π̂(y)(t̃1), . . . , π̂
(y)(t̃k̃) and λ̂(y+δ)(t̃1), . . . , λ̂

(y+δ)(t̃k̃) instead

of π̂(t1), . . . , π̂(tk) and λ̂(t1), . . . , λ̂(tk).

5.3 Nonparametric confidence bands of cross-correlation functions

In order to determine which of the values of estimated cross-correlation functions should be consid-

ered as significantly different from zero, we suggest to construct pointwise confidence bands using non-

parametric resampling methods. We consider two approaches: a subsampling method and a bootstrap

method (e.g., Chernick and LaBudde, 2011). We describe how the methods can be applied to esti-

mated cross-correlations of vegetation and population intensity maps obtained in Sect. 5.1. An appli-

cation to cross-correlations of vegetation and population changes, see Sect. 5.2, works analogously. Let

{ρ̂ΠΛ(r), r ∈ [0, rest]} be the estimated cross-correlation function of some fixed year and taxon (with es-

timated range ξ̂) obtained according to Eq. (11) based on estimated vegetation intensities π̂(t1), . . . , π̂(tk)

and estimated population intensities λ̂(t1), . . . , λ̂(tk) at locations t1, . . . , tk ∈ ξ̂. In the subsampling ap-

proach with subsampling proportion β ∈ (0, 1) a random Bernoulli experiment with success probability

β is performed for each sample point t ∈ {t1, . . . , tk} (independently for different sample points) to

decide whether the data pair (π̂(t), λ̂(t)) is retained or dropped. Based on all retained data pairs another

estimate {ρ̂(1)ΠΛ(r), r ∈ [0, rest]} of {ρΠΛ(r), r ∈ [0, rest]} is computed. When applying the bootstrap ap-

proach, {ρ̂(1)ΠΛ(r), r ∈ [0, rest]} is determined based on π̂(t′1), . . . , π̂(t
′

k) and λ̂(t′1), . . . , λ̂(t
′

k), where the

k sample points t′1, . . . , t
′

k are drawn randomly with replacement from the set of original sample points

{t1, . . . , tk}. The difference between both approaches can be interpreted as follows. In the subsampling

approach, the cross-correlation function is re-estimated based on a reduced set of sampling points, i.e., we

are interested in how the estimates change when it is assumed that some of the data are overrepresented or

erroneous and are thus dropped. In the bootstrap approach, we do not only drop some of the sample points

but also provide the estimated intensities at some other sample points with a higher weight to consider the

case that those intensities might be underrepresented in the data. In both approaches the spatial correlation

structure of the data is not violated since estimated vegetation and population intensities are still associ-

ated with the same geographical locations as before. The resampling procedure is repeated 5,000 times,

resulting in a sample ρ̂
(1)
ΠΛ(r), . . . , ρ̂

(5,000)
ΠΛ (r) of estimates for each r ∈ [0, rest]. Then, based on this sam-
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ple a confidence interval [θ
¯

(γ)(r), θ̄(γ)(r)] of level γ ∈ (0, 1) can be computed for ρ̂ΠΛ(r), where θ
¯

(γ)(r)

denotes the empirical (1− γ)/2 quantile and θ̄(γ)(r) the empirical 1− (1− γ)/2 quantile of the sample

ρ̂
(1)
ΠΛ(r), . . . , ρ̂

(5,000)
ΠΛ (r). The confidence interval [θ

¯

(γ)(r), θ̄(γ)(r)] is constructed in such a way that it

contains γ · 100% of the estimates ρ̂
(1)
ΠΛ(r), . . . , ρ̂

(5,000)
ΠΛ (r). Finally, the functions {θ

¯

(γ)(r), r ∈ [0, rest]}

and {θ̄(γ)(r), r ∈ [0, rest]} describe the (lower and upper) boundaries of pointwise confidence bands of

level γ for the estimated cross-correlation function {ρ̂ΠΛ(r), r ∈ [0, rest]}. We consider an estimated

cross-correlation ρ̂ΠΛ(r) to be significantly different from zero, if 0 /∈ [θ
¯

(γ)(r), θ̄(γ)(r)], where usually

γ = 0.95 or γ = 0.99 is chosen.

6 DISCUSSION OF RESULTS

6.1 Interpretation of correlation results

In this section we focus on the history of Quercus as a (more detailed) interpretation for all taxa con-

sidered in Sect. 3 would go beyond the scope of this paper. Fig. 5 shows estimated cross-correlation

functions ρ̂ΠΛ for all years y ∈ {750, 850, . . . , 12750}, where warm colors indicate positive and cold

colors negative cross-correlations. Prior to 10550 BP both Quercus and population intensities were very

high in Florida and decreased to the north and westward, leading to high cross-correlations. During the

period between 10550 BP and 6850 BP Quercus was moving northwards, while the population showed

a complex pattern of changes. For example, relatively low values of Quercus in Texas while population

intensities were high and decreasing values of population in Florida while Quercus remained stable con-

tributed to low cross-correlations. This is a time period of quite some variability in the climate (Viau et al.,

2006), although incompleteness of the population database cannot be ruled out. Between 6850 BP and

3650 BP, the Late Archaic cultural period, the cross-correlations were generally high. The distribution of

Quercus did not change much during this time, and population gradually increased in the central portion

of the continent, the region of maximum Quercus intensities. Fluctuations in the population caused the

cross-correlations to increase and decrease during this time. In the past 3650 years, the Woodland Period,

cross-correlations were uniformly high. Populations decreased in New England and greatly increased,

within the central portion of the range, which continued to be the area of maximum Quercus abundances.

The spatial association of the two variables in the late Holocene suggests optimal conditions for human

population growth during this time.
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As explained in Sect. 5.2 we also estimate cross-correlation functions of changes in vegetation and

population intensity during 500-year intervals. Additionally, a temporal lag is introduced, which im-

plies that changes in Quercus in a certain interval are also compared to population changes in a inter-

val starting and ending δ years earlier/later with δ ∈ {−1000,−900, . . . , 900, 1000}. In order to al-

low for a thorough analysis of relationships between vegetation and population changes it is desirable

to summarize cross-correlations for all temporal lags in one figure. For all y ∈ {1000, . . . , 12500}

and δ ∈ {−1000,−900, . . . , 900, 1000} we compute the mean of the estimated cross-correlations

{ρ̂Π(y)Λ(y+δ)(r), r = 30, 35, 40, . . . , 200 km} (to reflect local associations only) and summarize com-

puted means in Fig. 6. Mean cross-correlations on the bold diagonal line correspond to the temporal lag

δ = 0, values above the diagonal line correspond to a negative temporal lag and values below the line to a

positive lag. Several periods of positive cross-correlations between changes in intensities of Quercus and

population are seen, notably between 11000 and 10000 BP, around 6000-5000 BP, and in the past 2000

years. Negative cross-correlations are found, e.g., between 7000 and 6000 BP.

The largest positive cross-correlations are found for changes in Quercus in the period between 11000

and 9500 BP and changes in population in 11300-10000 BP (for all positive and small negative temporal

lags). This suggests that Quercus and population changed similarly over a period of more than 1000 years.

During this time, both were decreasing in Florida, while increasing to the north (especially Quercus).

This was a time of rapid warming in North America (Viau et al., 2006). During this time, people of the

Paleoindian culture relied on a diverse set of resources including hunting different animals and gathering

a variety of food (Fagan, 2000), and the increased diversity of the forest would have provided a suitable

habitat to enable the increase of the population. However, the sample size used for estimating population

intensities, especially to the south in Florida is small, so more definitive interpretation awaits further

development of the database.

A period with low to medium negative associations between 8000-6500 was a time when both of the

variables showed a complex series of changes. During this time, major changes in Quercus occurred in

the west, due to a climate becoming moister, whereas changes in population occurred in various places,

including to the east. In addition, a decrease in Quercus abundance in Florida and the southeast while

population was increasing in the region contributed to the negative correlation. Further work is needed

to ensure this is a real signal and not a function of lack of data; both datasets have low site densities
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in this region. The major changes in population at this time, therefore are most likely not driven by

climate changes which would have been directly affecting Quercus. An increase in sedentism, and use

of a diverse resource base by Middle Archaic peoples (Fagan, 2000) would have enabled adaptation to

numerous environments, and contributed to a lower association with Quercus abundance. Delcourt and

Delcourt (2004) have speculated that people may have thinned tree populations to encourage acorn yields,

at least in some regions, and this would also contribute to a negative correlation.

In the recent past, agriculture and more sedentary lifestyles became increasingly established, with large

cities in some areas and increasing impact on the environment (e.g., Fagan, 2000; Delcourt and Delcourt,

2004; Munoz and Gajewski, 2010). The population greatly increased across most of the area, especially in

the past 2000 years and there were small increases in oak abundance, especially to the west. Agriculture

and Quercus abundance would both be favored in areas with optimal environmental conditions, which

could explain positive cross-correlations between change in Quercus in 3000-2500 BP and population in

2500-1500 BP as well as between change in Quercus in 1500-1000 BP and population in 2500-1500 BP.

To conclude the interpretation and discussion we present some example results of confidence bands for

cross-correlation functions as proposed in Sect. 5.3, where we focus on cross-correlations of changes in

Quercus and population. Due to their time-consuming computation, confidence bands were only provided

every 1000 years for temporal lag δ = 0 using the bootstrap method and the subsampling method with

success probabilities β1 = 0.25, β2 = 0.5 and β3 = 0.75. In Fig. 7 confidence bands based on the

subsampling method with β2 = 0.5 for one cross-correlation function are shown. Cross-correlations

for distances up to 550 km are significantly different from zero at significance level 0.99. Using the

subsampling method with β1 = 0.25 or β3 = 0.75 results in wider or narrower bands, respectively. The

bootstrap approach leads to bands that are almost identical to subsampling with β2 = 0.5. In order to

give a more general recommendation on how large (absolute) cross-correlations of changes in Quercus

and population should be in order to be considered as significantly different from zero, we compute the

maximum width of the confidence band (the difference of the upper and the lower bound of level 0.95)

for all distances between 30 and 200 km (estimates for smaller distances tend to be occasionally unstable)

for a sequence of estimated cross-correlation functions and divide them by 2 (Fig. 8). For example, the

maximum of the green line indicates that when relying on the subsampling method with β2 = 0.5 (which

is a reasonably conservative choice) all cross-correlations greater than 0.35 (or smaller than -0.35) can be
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assumed to be significant. Note that this approach assumes the confidence bands to be symmetric, which

is the case (at least approximately) for the vast majority of estimated cross-correlation functions.

6.2 Robustness analysis

To conclude we perform several simulation studies to show the robustness of the obtained correlation

results. In this context, we investigate to what extent the described signals are susceptible to uncertainties

in the data or modifications of the methodology.

In Sect. 2.1 we mention two sources of error in the underlying pollen data which, however, are expected

to have minor influence on correlation results. Altogether, there are five potential errors that can occur

when compiling the data used in this paper: (1) the error from radiocarbon dating, (2) the error from

radiocarbon calibration using, e.g., IntCal, (3) the error from using the simplified calibration curve from

Grimm (2008) instead of IntCal, (4) the error from interpolation using a chronology, and (5) the error from

exchanging interpolation and calibration. For each pollen sample considered in this study we simulate

five independent random errors which are then added to the sample age. An (asymptotic) distribution of

error (1) is estimated based on the raw 14C errors in the CARD database, the distribution of error (2) is

approximated based on the IntCal probability curves from a set of test samples, and error (4) is simulated

based on the root mean squared errors of different chronologies considered in Telford et al. (2004). Errors

(3) and (5) are simulated based on the histograms in Grimm (2008), Fig. 6 and Fig. 2 of this paper. While

some of these distributions are rather rough approximations they still provide valuable insights on how

different errors might impact the final results of radiocarbon dating. Based on this modified dataset Fig.

3-6 are recomputed. In all figures only minor differences are found, neither the temporal nor the spatial

distributions of pollen abundances change noticeably. In particular, we observe that all correlation signals

(including weaker ones) are retained in Fig. 5 and 6, which shows that the results described previously

are strongly robust with respect to uncertainties in the pollen data.

In a second simulation study we investigate how modifications of the methodology for temporal and spa-

tial smoothing affect correlation results. In this context we again recreate Fig. 3-6 where different kernel

functions and bandwidths for temporal and spatial smoothing of the pollen data are used. At first, the

temporal smoothing procedure described in Sect. 3 is repeated with modified bandwidths (50% or 200%

of the original values) and using an Epanechnikov kernel, respectively. As expected reduced bandwidths
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lead to more fluctuations and do not eliminate noise sufficiently well while increased bandwidths smooth

broadly but are not able to capture abrupt changes as for Poaceae in Fig. 3 (top). Thus, bandwidths as

used in Sect. 3 are a good compromise. Changing the kernel function seems to have minor effect. Es-

timated vegetation intensity maps and cross-correlation functions, however, are only marginally affected

by changing the parameters in temporal smoothing. All patterns described in Sect. 6.1 are retained,

only some weaker correlation signals may vary slightly. In addition, we analyze the impact of modi-

fying the spatial smoothing procedure described in Sect. 4.1. While using a two-dimensional Gaussian

kernel has no noticeable effect (except of providing a smoother taxon range), changing the bandwidth

can lead to stronger differences. The smaller the bandwidth the more fluctuations can be found and the

rougher and smaller the taxon range, although most areas of strong population are still located in similar

regions. Larger bandwidths lead to more extended taxon ranges and smoother patterns while the region

of strongest population activity is moved slightly to the south. However, despite showing noticeable

differences in population patterns, estimated cross-correlation functions are less strongly affected. In all

scenarios we find the same correlation signals as described in Sect. 6.1, although they can be considerably

weaker (small bandwidths down to 300 km) or slightly stronger (large bandwidths up to 1000 km). This

shows clearly that the proposed methodology is robust to parameter configuration as well.

7 CONCLUSIONS

The aim of this study was to find out if there was a relation between human population intensities and plant

abundance intensities over the past 13000 years in North America, using estimates of human population

density from archaeological databases and plant abundance data from a pollen database. The methodol-

ogy discussed in this paper is based on creating a comparable series of maps for the two datasets using

simple nonparametric kernel approaches, and analyzing the spatio-temporal cross-correlations between

them. Pointwise confidence bands of cross-correlation functions are proposed to investigate the signifi-

cance of the obtained results.

Using an example of the relation between population densities in eastern North America and oak pollen

abundance (an index of tree abundance through time), we could identify times in the past when there were

both positive and negative associations between changes in the intensities of these two features. Inspec-

tion of the maps indicates times and locations where individual points seem to have undue influence on

the correlations, especially in areas with few sites in the database. Future work refining the method could
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be to determine site density needed to more reliably estimate the intensities, especially to enable identifi-

cation of overly influential or outlier points. Local analyses with smaller smoothing bandwidths may be

effective here. In a companion study (Gajewski, Kriesche, Chaput, Kulik, and Schmidt, Gajewski et al.)

the other taxa for which results have been prepared are analyzed in more detail. Since the community

ecology of the tree species is well studied, and relative human use of the various taxa is also understood,

consistencies between the taxa should help to identify the interpretable signal in these results. Finally

these results will be interpreted in the context of more detailed regional studies to ensure that database

limitations are not driving the correlations.

The relation between human population growth and ecosystem changes is complex, and causation can

go in both directions. In addition, the human use of resources or human influence on the environment

has changed through time as cultures evolve. This paper provides a method to quantify the relation

between population and vegetation and show how they have changed through time and space. The ap-

proach is the first attempt to quantify this relation on continental scales and in that way contributes to our

understanding of human-environment interactions in North America. Furthermore, the methodology has

wide applications in geographic and environmental sciences, where large databases consisting of repeated

measurements at a spatial system of sites are being accumulated.
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Figure 1. Population intensity maps estimated from the CARD for two time intervals. Intensities are

colored according to a logarithmic scale in the interval [0, 1]. Gray colors indicate areas permanently

covered by ice.
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Figure 2. Analysis of errors occurring when exchanging calibration and interpolation of radiocarbon

ages. Left: histogram of errors for all chosen depths in all test samples. Right: depth-age-curves for three

test samples showing the differences between correct procedure (blue) and exchanging calibration and

interpolation (red).
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Figure 3. Relative pollen abundances for two different sites in North America and 10 selected taxa: data

from Neotoma (points), estimates obtained using linear interpolation (thin lines) and estimates obtained

using a Nadaraya-Watson estimator (bold lines).
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Figure 4. Estimated vegetation intensity maps showing the relative abundance of Quercus for three

example years. The left-hand side illustrates intensities within the entire observation window W together

with temporally smoothed abundances of Quercus at all sites from Neotoma with available data in the

considered year. On the right only vegetation intensities within the taxon range estimated with threshold

0.2 are shown. Gray colors indicate areas permanently covered by ice.
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Figure 5. Estimated cross-correlation functions for vegetation intensity maps of Quercus and population

intensity maps for time intervals between 12750 BP and 750 BP.
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Figure 6. Mean cross-correlations for 500-year changes in vegetation intensity maps of Quercus and

population intensity maps. Means are computed based on cross-correlations for distances between 30

and 200 km. Values on the abscissa correspond to the midpoints of the 500-year intervals of change in

population intensity and values on the ordinate correspond to the midpoints of the 500-year intervals of

change in vegetation intensity.
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Figure 7. Estimated cross-correlation function of changes in Quercus and population between 9550

and 9050 BP together with pointwise confidence bands of levels 0.95 and 0.99 computed based on the

subsampling method with success probability β = 0.5. The gray dashed line indicates the width of the

confidence band (i.e., the difference of the upper and the lower bound) of level 0.95.
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Figure 8. Half of the maximum width of confidence bands for cross-correlation functions of changes in

Quercus and population. Bands are computed using four different approaches and maxima are determined

among all widths for differences between 30 and 200 km.


