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Appendix A: Three Examples of Use Cases

In this section we discuss three scientific use cases, which have been already introduced
before in Section 1.3 of the main manuscript text and which are directly or indirectly
dealing with particle-discrete datasets queried from the PARROT database. The use
cases are embedded into three different research projects with the following titles: (i)
Development of process models based on 3D information about the multiphase processes
in the pore space of a filter cake (funded by DFG, project number: PE 1160/23-1), (ii)
Stochastic modeling of multidimensional particle properties with parametric copulas for
the investigation of microstructure effects on the fractionation of fine particle systems
(funded by DFG through project Z2 of SPP 2045, project number: SCHM 997/27-2),(iii)
Two-scale approach for the simulation of multidimensional fractionation of fine particles
(funded by DFG through project Z4 of SPP 2045, project number: KR 4259/8-2).

A-1: Acquisition, Preprocessing and Analysis of 3D Image Data

This use case refers to results obtained in the framework of project (i) mentioned above,
dealing with multiphase processes in the pore space of a filter cake which is build from
particulate powders. Here, a pore is defined as interconnected void space between par-
ticles within a bulk. In contrast to the solid phase, a pore is a compact disperse prop-
erty (Schubert, 1982). Often, a pore is defined as concave chamber between several
particles, connected by constrictions, called pore throats. At these points, particles
touch or become very close to each other. Of course, in general, the distribution of a
particle characteristic depends on the kind of the shape or size characteristic considered
in each case. In practice, often univariate distributions are determined of (indepen-
dently measured) single particle characteristics, which, in some cases, can be combined
to multivariate distributions of vectors of particle characteristics by applying suitable
mathematical algorithms (Prifling et al., 2019; Furat et al., 2021b). Moreover, when
used in process models like cake filtration, distributed information is often reduced to
an aggregated numerical value, which is only partially able to capture the distributed
nature of particle or pore space characteristics.

Cake Filtration. One possible approach to determine the 3D morphology of filter
cakes non-destructively and non-intrusively (by in-situ filtration experiments) is given
by the utilization of XRM, where the procedure to generate such filter cake structures
is to mechanically classify particles from an initial particle system (here Al2O3), i.e., to
divide them into different subsets such that each subset exhibits a narrow particle size
distribution. These subsets are then used for filtration experiments, where the resulting
filter cakes can be investigated with respect to the 3D morphology of their pore space.
Based on the experimental data, it is now possible to determine a correlation function
between discrete particle and pore space characteristics. However, the goal of future
research is to replace this very time-consuming procedure by considering artificially
generated particle subsets. For this purpose, the particulate powder (not the filter cake
structure itself) will be measured tomographically and the resulting particle-discrete
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data will be stored in the PARROT database. Then, by means of a filtered database
query, specific subsets can be virtually extracted from this simulated particle population,
i.e., the mechanical classification process is mimicked.

To achieve this medium-term goal, some preliminary work for conventionally classified
particle systems must be performed first to reveal fundamental relationships between the
used particle system and the resulting filter cake structure obtained in process engineer-
ing experiments. For this, we build several filter cakes from subsets of Al2O3 particles.
Here, the structure of the pore space, described by pore radii, numbers of contact points,
local tortuosity, and interconnected or isolated fluid volumes, as well as the correspond-
ing particle size and shape characteristics are relevant for a more detailed mechanistic
understanding of the micro-processes within the pore space (Löwer et al., 2020). All
measurement parameters are given in Table S2, where the reconstructed image stacks of
the filter cake structures can also be found.

Investigating Similarity Effects. We now investigate the question how the size dis-
tribution of Al2O3 particles influences the morphology of the pore space of corresponding
filter cakes. For that purpose, we use aero classifying (Turbo classifier TC-15, Nisshin
Engineering Inc.) to extract three particle systems with differently sized particles from
the Al2O3 sample, see Table S1 for the particle size ranges. From these small, medium
and large sized particle systems, subsamples of particles are taken for laser diffraction
measurements to obtain particle size distributions for the three considered particle sys-
tems, followed by the fitting of volume-weighted log-normal distributions to the particle
sizes, see Figure S1. Note that the declaration of the particle systems refers to the
average particle size (small, medium, large). However, the location and shape of the cor-
responding size distributions differ between the three considered particle systems. The
underlying distributions based on the raw data are shown in Figure S10.

More details on fitting the parameters of the log-normal distribution can be found in
Section , where the fact is used that its probability density is given by a simple formula,
see Formula (S3). The fitted volume-weighted probability densities q(small), q(medium), q(large) :
R→ [0,∞) for the particle sizes of the small, medium and large sized particle systems,
respectively, are visualized in Figure S1. Note that for the purpose of visual inspection
of self-similarity, Figure S1 shows normalized versions q̃ of the considered probability
densities q, which are given by

q̃(x) =
1

x50
q(x/x50) for all x ∈ R, (S1)

where x50 denotes the median of q. This procedure is widely described in the literature on
comminution processes(Andreasen, 1957; Rumpf, 1973; Venkataraman, 1988). Location
and scattering parameters of the log-normal fits are given in Table S1.

For each of the three particle systems, filtration experiments were performed and
the resulting filter cakes were imaged using XRM. In order to characterize the mor-
phology of the filter cakes’ pore spaces, the three XRM tomograms have been used to
determine the spherical contact distribution based on the maximum inscribed sphere
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approximation (Silin & Patzek, 2006). Then, volume-weighted log-normal distribu-
tions are fitted to model the pore size distributions. The fitted probability densities

q
(small)
pore , q

(medium)
pore , q

(large)
pore : R → [0,∞) for the pore sizes of filter cakes resulting from

filtration experiments with the small-, medium- and large-sized particle systems, respec-
tively, are visualized in Figure S1 and corresponding location and scattering of the fits
are given in Table S1. Using the three particle systems described above, we now in-
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Figure S1: Planar 2D slices of medium-, small- and large-sized particle systems (left
from top to bottom), with magnified details showing similar structures. Nor-
malised cumulative distribution functions and probability densities of particle
sizes for the three particle systems (right top) and their corresponding pore
sizes (right bottom).

vestigate the question of how the discrepancy between the particle size distribution of
two different particle systems transfer to the pore size distributions of the correspond-
ing filter cakes. As a discrepancy measure we consider a quantity based on the notion
of self-similarity. More precisely, the self-similarity measure (Klichowicz et al., 2014)
I(q(1), q(2)) of two probability densities q(1), q(2) : R→ [0,∞) is given by

I(q(1), q(2)) =
1

n

n∑
k=1

|q(1)(xk)− q(2)(xk)|, (S2)

where {x1, . . . , xn} is some set of support points x1, . . . , xn ∈ R.
Using Formula (S2) we computed the self-similarities I(q(small), q(medium)) and I(q(large),

q(medium)) of the particle size distributions of small and large sized particle systems with
respect to the medium sized particle system as a reference, see Table S1. For this, we
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used the percentiles x10, x16, x25, x50, x75, x84, x90 of q(medium) as support points in For-

mula (S2). Analogously, the values I(q
(small)
pore , q

(medium)
pore ) and I(q

(large)
pore , q

(medium)
pore ) of the

self-similarity measure for the pore size distributions of the corresponding filter cakes
have been computed, see Table S1.

The increase of the values of the self-similarity measure I presented in Table S1 indi-
cate that increasing deviations of particle size distributions from the reference particle
size distribution are reflected in the filter cake structures by increasing deviations of
the pore size distributions from the corresponding reference distribution. As soon as
experimental and tomographical data regarding the filtration experiments is available in
the database, the functionality of the latter can be used for a more comprehensive anal-
ysis to better understand the influence of the nature of particle systems on the resulting
morphology of the pore space within filter cakes. In particular, in addition to size charac-
teristics of particles and pores, further characteristics which describe their shape will be
considered. Then, using multivariate modeling, joint distributions of multidimensional
vectors of particle/pore characteristics can be considered, see Section for further details.
Moreover, using the tomographical data of the considered particle system, stochastic ge-
ometry models can be calibrated for the generation of artificial particles, so-called digital
twins (Prifling et al., 2019; Furat et al., 2021c), which also can be made available in the
database. This will enable the prediction of filter cake properties based on artificially
generated filter cakes, where only a small number of real filtration experiments will be
needed for model calibration. Thus, this would represent a significant advance in process
modeling.

A-2: Statistical Analysis and Multivariate Parametric Modeling of 3D
Image Data

This use case refers to results obtained in the framework of project (ii) mentioned above,
dealing with microstructure effects on the fractionation of fine particle systems. An
efficient way for describing complex voxelized particles in segmented image data is given
by size, shape and textural characteristics(Burger & Burge, 2016; Furat et al., 2021a)—a
selection of common particle characteristics can be directly accessed in the PARROT
database. Moreover, entire systems of particles can then be efficiently described by
fitting probability distributions to the particle characteristics extracted from image data.
Especially parametric probability distributions (e.g., log-normal and beta distributions)
are useful for modeling the univariate distribution of individual particle characteristics
since they can be fully specified by just a few parameters(Johnson et al., 1994, 1995).

Due to the characterization of particles in segmented image data by means of possibly
correlated particle characteristics, multivariate probability distributions which describe
the correlation structure of these characteristics are much more informative than univari-
ate distributions (Furat et al., 2019). Furthermore, it is possible to include characteristics
which describe physical properties of individual particles computed by simulations, see
Section , in order to investigate the influence of size and shape characteristics on physical
particle properties. To illustrate this, we provide an example for multivariate probabilis-
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tic modeling of particle characteristics by means of so-called copulas(Nelsen, 2006; Joe,
2014). More precisely, we fit a bivariate probability distribution to the two-dimensional
data vectors of volume-equivalent spherical diameter and sphericity of particles observed
in the aluminum oxide data set queried from the PARROT database. We start by mod-
eling univariate probability distributions for both diameter and sphericity. Then, in a
second step, a bivariate probability distribution is fitted, using a parametric copula, such
that its marginal distributions coincide with the previously fitted univariate distribu-
tions. Note that in this section we consider number-weighted probability densities which
we denote by f , instead of the volume-weighted versions considered in Section which
were denoted by q.
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Figure S2: Histogram (blue) and fitted parametric probability density (red) of the
volume-equivalent spherical diameter (a) and sphericity (b) of Al2O2 par-
ticles. Bivariate probability density of volume-equivalent spherical diameter
and sphericity of Al2O2 particles computed by means of kernel density esti-
mation (c) and the copula approach (d).

Parametric Modeling of Single Particle Characteristics. From the PARROT
database we can directly access tables of particle characteristics for any specified search
request. For example, for the n = 1571 particles segmented in the aluminum oxide
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dataset, we receive vectors (di, si) of the particle’s volume-equivalent spherical diame-
ter and sphericity for each i = 1, . . . , n. Then, in a next step, we can fit parametric
probability distributions to this data. It turns out that the log-normal distribution with
probability density fµ,σ : R→ [0,∞) given by

fµ,σ(d) =
1

d
√

2πσ2
exp
(
−(ln d− µ)2

2σ2

)
for each d > 0 (S3)

is a good choice for modeling the volume-equivalent spherical diameters d1, . . . , dn, where
the maximum likelihood method(Johnson et al., 1994) is used for computing optimal val-
ues of the model parameters µ ∈ R and σ > 0. Note that for selecting an adequate para-
metric probability distributions among multiple ones (e.g., normal, log-normal, gamma
distribution) the Akaike information criterion can be used. For more details on model
selection the reader is referred to Held & Sabanés Bové (2014). The resulting proba-
bility density fdiameter determined in this way is visualized in Figure S2a. Analogously,
a beta distribution(Johnson et al., 1995) is fitted to the sphericity data s1, . . . , sn—the
resulting probability density fsphericity depicted in Figure S2b.

Parametric Modeling of Pairs of Particle Characteristics. For modeling the
bivariate (joint) distribution of volume-equivalent spherical diameter and sphericity of
particles, we use parametric copulas which are bivariate distributions themselves, but
with special properties. More precisely, using a parametric copula density cθ : [0, 1] →
[0, 1] with some parameter θ ∈ R we can construct a bivariate probability density fθ :
R2 → [0,∞) such that

fθ(d, s) =fdiameter(d) fsphericity(s) cθ (Fdiameter(d), Fsphericity(s))

for all d > 0, s ∈ [0, 1],
(S4)

where Fdiameter, Fsphericity : R→ [0, 1] denote the cumulative distribution functions corre-
sponding to fdiameter and fsphericity, respectively(Nelsen, 2006). This construction of the
bivariate probability density fθ has the advantage that its marginal probability densities
coincide with the predetermined probability densities fdiameter and fsphericity. Similar
to the univariate case, there are numerous families of parametric copula densities, e.g.,
the Gumbel, Clayton and Ali-Mikhail-Haq copulas, the parameters of which can be fit-
ted using a maximum likelihood approach(Nelsen, 2006; Joe, 2014). In Figure S2d the
bivariate probability density fθ of volume-equivalent spherical diameter and sphericity
is visualized where a Ali-Mikhail-Haq copula has been fitted to the data (d1, s1), . . . ,
(dn, sn). This probability density is described by five parameters (the copula parameter
θ and two further parameters for each of the marginal distributions). For visual compar-
ison we also computed the bivariate probability density of volume-equivalent spherical
diameter and sphericity using a non-parametric approach, namely kernel density esti-
mation(Botev et al., 2010), see Figure S2c.
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A-3: Numerical Process Modeling Based on 3D Image Data

Finally, this use case refers to results obtained in the framework of project (iii) men-
tioned at the beginning of Appendix A, which deals with the simulation of particle
settling. Note that such a modeling approach is not limited to particles extracted from
an individual tomogram. More precisely, since the PARROT database allows users to
download virtual particles across different datasets according to their search query, such
multivariate modeling approaches allow them to efficiently characterize their custom
particle systems with relatively few parameters. Then, for example, these parameters
can be correlated with results obtained by numerical simulations (see Section 1.3.3 in
the main manuscript text) for investigating the influence of of the geometry of particles
within a particle systems on physical properties.

Surface-Resolved Simulations. In recent years, simulation methods mimicking the
dynamics of objects with complex (non-spherical) shapes became increasingly popular.
Prominent examples are the immersed boundary method (Uhlmann, 2005) and the ho-
mogenized lattice Boltzmann method (Trunk et al., 2021). The latter enables simulations
of the settling of arbitrarily shaped particles (Trunk et al., 2018), like that depicted in
Figure S3a. This allows to precisely track the settling path and velocity, an extract
of the simulation result at t = 0.235s is shown in Figure S3b. Both approaches have
been implemented in the open source software OpenLB (Krause et al., 2021) and vali-
dated by various benchmark studies. Similar to real laboratory experiments (Horowitz &
Williamson, 2010), where the settling regime of spheres and its dependence on Reynolds
number and density ratio was studied, the behavior of particles with other simple shapes
has been investigated too (Rahmani & Wachs, 2014; Shao et al., 2017). Regarding the
particle considered in the present paper, it is apparent from Figure S3c that the object
enters a state of constant rotation around its x-axis.

a b c

Figure S3: Surface representation of a particle retrieved from the PARROT database
used for simulation (a), magnitude of velocity around a particle settling under
gravity (b), angles with respect to x-, y- and z-axis over simulated time (c).
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Correlation of Particle Morphology and Physical Properties. The simulation
results of single settling particles can be used to quantify correlations between particle
characteristics describing their 3D morphology and physical properties, respectively, i.e.,
to deduce structure-property relationships, which can be utilized in further large-scale
simulations or to get a-priori assumptions for the processes under consideration. For
more than three decades attempts have been made to extend drag relationships derived
for spheres (Schiller & Naumann, 1933) to particles with more complex shapes (Ganser,
1993; Haider & Levenspiel, 1989). Due to its high complexity, this still is a topic of on-
going research, as shown by various new correlation proposals (Bagheri & Bonadonna,
2016; Hölzer & Sommerfeld, 2008). Note that the quality of structure-property relation-
ships and their range of applicability is mainly determined by the nature and quality
(e.g., voxel resolution) of datasets used to deduce them. However, most studies are based
on datasets obtained in real laboratory experiments which, usually, are not comprehen-
sive enough to validate correlations between particle characteristics describing their 3D
morphology and physical properties sufficiently well and, in addition, might not be ac-
cessible to other interested parties. On the other hand, a large particle database like
PARROT, not only containing various morphological particle characteristics but also
their surface representation, serves as basis for reproducible results which allows the
reliable quantification of structure-property relationships for a broad spectrum of par-
ticles. For example, selecting particles of a specific material or shape class enables the
creation of specified correlation models. This has been performed, e.g., for volcanic
pumice particles (Dioguardi & Mele, 2015; Dellino et al., 2005).
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Appendix B: Exemplary Particles

a) Al2O3

b) oversegmented
c) undersegmented

Figure S4: a) Five correctly segmented Al2O3 particles from the PARROT database. b)
Two wrongly oversegmented Al2O3 particle fragments. c) Two examples of
undersegmented Al2O3 particle clusters. Over- and undersegmented particles
such as shown in b) and c) are not included in the PARROT database.
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a) glass

b) oversegmented

c) undersegmented

Figure S5: a) Six correctly segmented glass particles from the PARROT database. b)
Three wrongly oversegmented glass particle fragments. c) Two examples of
undersegmented glass particle clusters. Over- and undersegmented particles
such as shown in b) and c) are not included in the PARROT database.
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a) dolomite

b) oversegmented

c) undersegmented

Figure S6: a) Four correctly segmented dolimite particles from the PARROT database.
b) Three wrongly oversegmented dolomite particle fragments. c) Two ex-
amples of undersegmented dolomite particle clusters. Over- and underseg-
mented particles such as shown in b) and c) are not included in the PARROT
database.
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a) limestone

b) oversegmented

c) undersegmented

Figure S7: a) Five correctly segmented limestone particles from the PARROT database.
b) One wrongly oversegmented limestone particle fragment. c) Two exam-
ples of undersegmented limestone particle clusters. Over- and underseg-
mented particles such as shown in b) and c) are not included in the PARROT
database.
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a) mica

b) oversegmented

c) undersegmented

Figure S8: a) Three correctly segmented mica particles from the PARROT database. b)
Three wrongly oversegmented mica particle fragments. c) Three examples of
undersegmented mica particle clusters. Over- and undersegmented particles
such as shown in b) and c) are not included in the PARROT database.
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a) quartz

b) oversegmented
c) undersegmented

Figure S9: a) Four correctly segmented quartz particles from the PARROT database. b)
Two wrongly oversegmented quartz particle fragments. c) Two examples of
undersegmented quartz particle clusters. Over- and undersegmented particles
such as shown in b) and c) are not included in the PARROT database.
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Appendix C: ImageJ segmentation workflow

1. Histogram equalization (0.35 %)

2. Non-local means denoising (auto sigma)

3. Unsharp masking (radius 1; mask weight 0.3)

4. Despeckle

5. Unsharp masking (radius 1; mask weight 0.3)

6. Despeckle

7. Local automated threshold (Bernsen; radius 20 to 35 depending on the particle
system)

8. 3D Watershed Split (radius 12); 3D object counter)

Appendix D: ImageJ macro for particle extraction

1 // ===== CONFIGURATION =======
2 outputFolder = getD i r e c to ry ( ” S e l e c t output d i r e c t o r y f o r ex t rac t ed

p a r t i c l e s ! ” ) ;
3 minVoxelEdgeLength = 5 ;
4
5 // ======== MAIN =============
6 // I t e r a t i n g through a l l d i s t i n c t gray v a l u e s
7 maxGrayVal = MaxGrayValue ( ) ;
8 p a r t i c l e I D = 1 ;
9

10 for ( grayVal = 1 ; grayVal < maxGrayVal ; grayVal++) {
11 run ( ” Dupl icate . . . ” , ” d u p l i c a t e ” ) ;
12 rename ( p a r t i c l e I D ) ;
13 E x t r a c t P a r t i c l e ( outputFolder , pa r t i c l e ID , grayVal ) ;
14 p a r t i c l e I D++;
15 }
16
17 // ====== max gray v a l ======
18 func t i on MaxGrayValue ( ) {
19 mgv = 1 ;
20
21 for ( i =1; i<=n S l i c e s ; i++) {
22 s e t S l i c e ( i ) ;
23 ge tRawSta t i s t i c s ( count , mean , min , max , std ) ;
24 i f (max > mgv) {
25 mgv = max ;
26 }
27 }

17



28 p r i n t ( ”Max gray value : ” + d2s (mgv , 0 ) ) ;
29 return (mgv) ;
30 }
31
32 // ======= EXTRACT ===========
33 // E x t r a c t i n g each s i n g l e p a r t i c l e from the segmented image s t a c k .
34 // Here , each p a r t i c l e i s determined by a d i s t i n c t gray v a l u e .
35 // The method i t e r a t e s through a l l t h e s e gray va lues , i g n o r i n g no i se
36 // & edge−touch ing p a r t i c l e s g i v i n g a l l p a r t i c l e s in the volume .
37 func t i on E x t r a c t P a r t i c l e ( path , pa r t i c l e ID , grayVal ) {
38
39 // Set a c t u a l gray v a l u e to c r e a t e b inary image only c o n t a i n i n g

s i n g l e p a r t i c l e .
40 setAutoThreshold ( ” Defau l t dark stack ” ) ;
41 setThresho ld ( grayVal , grayVal ) ;
42 run ( ”Convert to Mask” , ”method=Defau l t background=Dark black ” ) ;
43
44 // Contro l i f volume con ta i ns p a r t i c l e v o x e l s & i s NOT touch ing i t s

edges .
45 i f ( isEmpty ( ) == 1 | | isTouchingEdge ( ) == 1) {
46 //do noth ing
47 }
48 else {
49 // Cropping the f u l l volume to the p a r t i c l e volume
50 run ( ”Auto Crop 3D” ) ;
51 rename ( ”Cropped” ) ;
52
53 // I f p a r t i c l e s are too sma l l compared to the voxe l−r e s o l u t i o n

−−> exc luded
54 getDimensions ( width , height , channels , s l i c e s , frames ) ;
55 i f ( he ight > minVoxelEdgeLength && width > minVoxelEdgeLength &&

s l i c e s > minVoxelEdgeLength ) {
56 run ( ”3D OC Options ” ,
57 ”volume ” +
58 ” s u r f a c e ” +
59 ” n b o f o b j . v o x e l s ” +
60 ” n b o f s u r f . v o x e l s ” +
61 ” m e a n d i s t a n c e t o s u r f a c e ” +
62 ” s t d d e v d i s t a n c e t o s u r f a c e ” +
63 ” m e d i a n d i s t a n c e t o s u r f a c e ” +
64 ” c e n t r e o f m a s s ” +
65 ” bounding box ” +
66 ” d o t s s i z e=5 f o n t s i z e =10

s t o r e r e s u l t s w i t h i n a t a b l e n a m e d a f t e r t h e i m a g e (
mac ro f r i end ly ) r e d i r e c t t o=none” ) ;

67 run ( ”3D Objects Counter” , ” th r e sho ld=1 s l i c e =10 min.=10 max
.=80000000000 s t a t i s t i c s ” ) ;

68
69 // Rename t a b l e to g e t ac ces s to the ImageJ b u i l t−in f u n c t i o n s
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70 IJ . renameResults ( ” S t a t i s t i c s f o r Cropped” , ” Resu l t s ” ) ;
71 nRows = nResults ;
72
73 // In case o f a f a i l u r e ( r e s u l t s not c o n t a i n i n g any number )
74 i f (nRows == 0) {
75 selectWindow ( ”Cropped” ) ;
76 run ( ”VTK Writer . . . ” , ” save =[” + outputFolder + ” F a i l u r e ” +

p a r t i c l e I D + ” . vtk ] ” ) ;
77 }
78 else {
79 saveAs ( ” Resu l t s ” , outputFolder + p a r t i c l e I D + ” . t sv ” ) ;
80 selectWindow ( ”Cropped” ) ;
81 run ( ”VTK Writer . . . ” , ” save =[” + outputFolder + p a r t i c l e I D +

” . vtk ] ” ) ;
82 }
83 c l o s e ( ” Resu l t s ” ) ;
84 }
85 c l o s e ( ”Cropped” ) ;
86 }
87 selectWindow ( p a r t i c l e I D ) ;
88 c l o s e ( ) ;
89 }
90
91 // ===== CHECK ( empty ) ===========
92 // Contro l i f the t h r e s h o l d i n g g i v e s a b i n a r i z e d r e s u l t wi th NO

p a r t i c l e v o x e l s ( whi te )
93 func t i on isEmpty ( ) {
94 getDimensions ( width , height , channels , s l i c e s , frames ) ;
95 a l l V o x e l s P e r S l i c e = he ight ∗ width ;
96
97 for ( s l i c e =1; s l i c e<=n S l i c e s ; s l i c e ++) {
98 s e t S l i c e ( s l i c e ) ;
99 ge tRawSta t i s t i c s (n , mean , min , max , std , h i s t ) ;

100 numBlackVoxels = h i s t [ 0 ] ;
101
102 i f ( numBlackVoxels < a l l V o x e l s P e r S l i c e ) {
103 return ( fa l se ) ;
104 break ;
105 }
106 }
107 return ( true ) ;
108 }
109
110 // ===== CHECK ( on edge ) ===========
111 // Checking i f the p a r t i c l e i s touch ing top OR bottom o f the sample

volume
112 func t i on isTouchingEdge ( ) {
113 getDimensions ( width , height , channels , s l i c e s , frames ) ;
114 a l l V o x e l s P e r S l i c e = he ight ∗ width ;
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115
116 // Going to s l i c e 1 ( top ) , check how many whi te p i x e l s in image (

p a r t i c l e phase )
117 s e t S l i c e (1 ) ;
118 ge tRawSta t i s t i c s (n , mean , min , max , std , h i s t ) ;
119 numBlackVoxelsSl ice1 = h i s t [ 0 ] ;
120
121 // . . . same on the l a s t s l i c e ( bottom )
122 s e t S l i c e ( n S l i c e s ) ;
123 ge tRawSta t i s t i c s (n , mean , min , max , std , h i s t ) ;
124 numBlackVoxelsSliceMax = h i s t [ 0 ] ;
125
126 // Check i f the p a r t i c l e i s touch ing top OR bottom
127 i f ( numBlackVoxelsSl ice1 < a l l V o x e l s P e r S l i c e | |

numBlackVoxelsSliceMax < a l l V o x e l s P e r S l i c e ) {
128 return ( true ) ;
129 break ;
130 }
131 return ( fa l se ) ;
132 }

Appendix E: Acquisition parameters for tomographic scan
of filter structure

Table S2: Measurement parameters for three scanned filter cake structures built from
the large-sized particle sample. Note that the uneven number of digits of
the fields of view are due to an artifact minimizing tomographic measurement
mode (Dynamic Ringe Removal, DRR).

Sample 1 Sample 2 Sample 3

field of view (FOV) in pixel 998 × 1001 987 × 1009 990 × 1005
sample size (cylindric, width × height) in mm 5 × 14.0 5 × 12.5 5 × 13.0
source filter (ZEISS standard) LE 4 LE 4 LE 4
acceleration voltage/power in kV/W 50 / 4 50 / 4 50 / 4
optical magnification 4× 4× 4×
pixel size in µm 3.90 3.99 4.01
exposure time 4 s 4 s 4 s
number of projections (angular range) 2001 (360°) 2001 (360°) 2001 (360°)
camera binning 2 2 2
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Appendix F: Raw data of laser diffraction measurement
and class based pore size distribution
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Figure S10: Particle size distribution (left) and corresponding pore size distribution
(rigth) to all three particle systems small, medium, and large. Note the
fluctuating density distribution to the left side due to class based determi-
nation by laser diffraction measurement. For better comparison, the raw
data of the pore size distribution is binned within the same classes.
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