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Abstract. We consider random geometric models for telecommunication ac-
cess networks and analyse their serving zones which can be given, for example,
by a class of so called Cox Voronoi tessellations (CVTs). Such CVTs are con-
structed with respect to locations of network components, the nucleii of their
induced cells, which are scattered randomly along lines induced by a Poisson
line process. In particular, we consider two levels of network components and
investigate these hierarchical models with respect to mean shortest path length
and mean subscriber line length, respectively. We explain point process tech-
niques that allow for these characteristics to be computed without simulating
the locations of lower—level components. We sustain our results by numerical
examples which were obtained through Monte Carlo simulations, where we used
simulation algorithms for typical Cox Voronoi cells derived in a previous paper.
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1 Introduction

Spatial stochastic models have been developed in recent years as alternatives to more tra-
ditional economical approaches for cost measurement and strategic planning of telecom-
munication networks; see, for example, [1], |2|, |3], |4], [5], [6], and [14|. These models
incorporate both stochastic as well as geometric features observable in telecommunication
networks. While the random setting reflects the network’s variability in time and space,
consideration of geometric structures of network architectures offer a more realistic view
to location-dependent network characteristics than conventional models.

The access network or local loop is the part of the network connecting a subscriber to its
corresponding Wire Center Stations (WCS), i.e. the place where the telecommunication
network fits into the town and country infrastructure. The hierarchical physical link is
made via network components. To each WCS we associate a serving zone such that the
inscribed subnetwork that gathers all lines between the WCS and the subscribers displays
a tree structure.

In recent years, access networks were studied in the context of the so-called Stochastic
Subscriber Line Model (SSLM); see |7], [8], |9] for example. The SSLM is a random
geometric model that offers tools to describe geometric features of access networks and



(a) Poisson line process (b) Cozx process

Fig. 1: Poisson line process and Cozx—Voronoi tessellation

that allows for stochastic econometrical analysis, like the analysis of connection costs.

The modelling framework of the SSLM can be subdivided into the network geometry
model, the network component model, and the network topology model. The network
geometry model represents the cable trench system, typically located along the urban in-
frastructure system, and in the SSLM modelled by random tessellations. Subsequently the
network component model places technical network components along the cable trenches
according to independent (Poisson) point processes on lines or in the plane. Finally the
components are connected with respect to the network topology model.

Methods for an optimal choice of the geometry model with respect to given data can be
found in [8]. In |9] an algorithm was introduced in order to simulate typical Cox-Voronoi
cells based on linear Poisson processes on random lines; see Fig. 1. In our contribution,
this algorithm, together with other techniques, is used to investigate two—level hierarchical
models, i.e. models of two different components where the lower level component is con-
nected to its closest higher level component, based on Poisson line tessellations. Efficient
computation and simulation techniques for network characteristics like mean shortest
path length and mean subscriber line length are shown. These network characteristics
are key—ingredients to an efficient cost analysis. Notice that Poisson line tessellations are
chosen as geometry model since earlier investigations showed that, for a lot of real data
situations, they can represent a suitable model for the urban infrastructure. We explain
methods which allow for these characteristics to be computed without simulating the lo-
cations of lower—level components, thereby enhancing simulation speed enormously. In
particular, instead of performing large—scale computations of shortest path lengths and
subscriber line lengths, respectively, for each lower level component individually, we first
use an ergodicity argument by which these large scale computations can be reduced to
the computation of a single expectation value with respect to the so called Palm proba-
bility measure induced by the point process of lower—level components. Then, we apply
Neveu’s exchange formula for Palm expectations of stationary marked point processes.
This allows us to pass to expectations with respect to the Palm probability measure in-
duced by the point process of higher level components, which are computationally easier
to handle. Finally, we compute the latter expectations by partitioning the underlying line
system and by applying inner Voronoi tessellations with respect to the edges of the cells
formed by the Poisson line process. An extended version of this contribution is given in
the paper [10].

All implementations that have been done for the computation and the simulation of



network characteristics and corresponding models are integrated in the GeoStoch library.
This JAVA-based library comprises software tools designed to analyze data with methods
from stochastic geometry; see |11| and http://www.geostoch. de.

2 Stochastic modelling of telecommunication access networks

In the following we regard two—level hierarchical models, i.e., two different equipment
types are placed along the infrastructure system. More precisely, we start by considering
a Poisson line process, which is intended to model the underlying road system. Given a re-
alization of such an underlying line system we independently generate either two (marked)
point processes on each line, which can be seen as spatial point processes concentrated on
the system of lines, or we generate one of the two point processes within the cells formed
by the lines of the underlying line system.

2.1 Network geometry and higher-level components

As a model for the underlying infrastructure system, or in other words the network geom-
etry, a Poisson line tessellation is chosen which is induced by a stationary and isotropic
Poisson line process X, with intensity 7. The higher—level components are placed on the
lines of this line system, in agreement with the rules defined by the SSLM. Furthermore,
the locations of higher—order components are assumed to form a (non-marked) stationary
point process Xg = {X, },>1 in IR? with intensity .

Later on in Section 5, we will assume that Xy is a doubly stochastic Poisson processs
whose (random) intensity measure is concentrated on the lines of the underlying Poisson
line pocess X,. However, for the purposes of Sections 3 and 4, this assumption is unnec-
essarily strong. Thus, for the moment, we only assume that Xy satisfies the following
conditions. Given X, consider independent stationary and ergodic (linear) point pro-
cesses on each line of X, and let Xy be the superposition of these point processes. Their
(linear) intensity A\;, measured along the lines of X}, is connected to the (full dimensional)
intensity A\g via Ag = A\7y.

Furthermore, suppose that each location X,, of a higher—level component has an influ-
ence zone =(X,,) and that the sequence {Z(X,,)},>1 forms a Voronoi tessellation induced
by Xpg: see Fig. 1(c).

Theorem 2.1 Let =* denote the typical cell of the Voronoi tessellation {Z(X,,)}n>1 in-
duced by the stationary point process Xy = { X, n>1 of higher level components. Then,

1
- Ex,n(L(EY)

where Ex,, denotes expectation with respect to the Palm probability measure Py and
where L(Z*) denotes the (Palm) line system within the typical cell =*.

Al

(2.1)

2.2 Lower—level components and shortest paths

With respect to the placement of lower level components two different scenarios are re-
garded. In a first scenario, given X,, the lower level components are placed according to
independent Poisson point processes with (linear) intensity Ay on the lines of the Poisson

line process Xy; see Fig. 2(a). Then, the union {X,},>; of all locations )?n of lower—level
components forms a stationary (doubly stochastic Poisson) point process in IR? whose
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(planar) intensity is denoted by Ay. Notice that A, = A\yy. To exclude trivial cases, we
always assume in this paper that 0 < Ay, \j, < 00.

Let N(X,) denote the location of the nearest (in the Euclidean sense) higher level
component of X,, and let P(X,, N(X,)) be the shortest path from X, to N(X,) along
the edges of the graph induced by the Poisson line process X;. By ¢(P(X,, N(X,))) we
denote the length of the path P(X,, N(X,)).

An important network characteristic of special interest is the mean shortest path
length, i.e., the average distance with respect to the underlying graph structure from the
lower—level components to their nearest (in the Euclidean sense) higher—level components.
In order to analyze this characteristic, each location )?n of the lower—level components
is associated with the mark ¢(P(X,, N(X,))) > 0. This leads to the stationary marked
point process

X = {[Xn, c(P(Xo, N(X0))) }n>1 (2.2)

whose mark space is the non-negative x—axis [0, 0o].

In a second scenario, the lower level components are not placed on the edges, but into
the cells formed by the Poisson line process X/, according to an independent (stationary)
Poisson point process { X/ },>1 in IR? with (planar) intensity \y. Afterwards, for each n,
the location X/, of the nth lower-level component is connected with the location N (X)) of
its nearest (in the Euclidean sense) higher level component. This is done in the following
way.

Let =, = E(N (X)) be the Voronoi cell of N(X!) and let L(Z,,) denote the restriction
of the Poisson line process X, to =Z,. Then, the location X is first connected to its nearest
point of the line system L(Z,); see Fig. 2(b). This “projection point” is denoted by X/
We are interested in the mean subscriber line length, representing the average shortest
distance of the projected points X/ on the lines to the locations N (X)) of their higher—
order components, with respect to the underlying graph structure induced the Poisson line
process X,. Again, these distances can be expressed via the marks ¢(P (X!, N(X]))), at-
tached to the locations X of lower level components. However, in this second placement
scenario, one can split up the marks according to

co(P(X,, N(X3))) = (X, X)) + e(P(X, N(X7))) (2:3)
where (X, X)) is the cost value of the “edge” with respective endpoints X, and X
Note that in Section 5, we assume ¢(X], X)) = 0 in order to enhance the clarity of
presentation.

3 Mean shortest path length

In this section we investigate the mean shortest path length for the first location scenario
of lower level components described in Section 2.2.

3.1 Simulation methods

At first glance, a natural approach in order to practically analyze the mean shortest path
length seems to be the following procedure. First, simulate the network in a (supposedly
large) sampling window W C IR?, then compute the shortest path length c(P(X,, N(X,)))

for each location X,, of lower level components generated in the sampling window, and,
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Fig. 2: Two scenarios for the placement of lower-level components

finally compute the average cLH(W) of these shortest path lengths, where

cor(W) = R ;HW P(X,,N(X,))). (3.1)

However, it becomes very rapidly clear that this method has some distinct disadvan-
tages. If the sampling window W is too small, the problem of edge—effects is significant.
If, on the other hand, W is large, the computational problem arises that a lot of memory
and runtime is needed for single simulation runs.

Therefore, we propose an alternative approach by using the Palm probability measure
IP’, of the stationary marked point process X = {[X,, c(P(X,, N(Xy)))|}n>1, intro-
duced in (2.2). This alternative approach is based on the following asymptotic property
of the random variable ¢,y (W) defined in (3.1). Let {W;};>1 be a so—called averaging
sequence of unboundedly increasing sampling windows. Then, by the ergodicity of the
stationary marked point process X, we have that

lim epp (W) = cpy (3.2)

holds with probability 1, where

i ]E > 15(X,)e(P(X,, N(X,))) = Ex,c(P(o,N(0))).  (3.3)

>‘L va(B n>1

Recall that the symbol B in (3.3) means an arbitrary (bounded) Borel set B € B(IR?)
with 0 < 15(B) < oo and Ex, denotes expectation with respect to the Palm probability
measure Py .

Thus, motivated by the limit in (3.2), we will compute ¢}, = Ex, c¢(P(o, N(0))),
which will be much easier than computing the average cpy (W) given in (3.1). Moreover,
by Neveu’s exchange formula for Palm expectations, we can express cj 5 in an even more
favorable way; see Section 3.2.

3.2 Application of Neveu’s formula

The following result admits a practically more feasible representation of the expectation
¢; g =IEx, c(P(o, N(0))) appearing in (3.2) and, in the consequence, a more efficient way
to approximately compute the mean shortest path length ¢,z (W) considered in (3.1).



Theorem 3.1 Consider the point process Xy = {X,}n>1 of locations of higher level
components and the (marked) point process Xp, = {[Xn, c(P(Xn, N(X,)))|}n>1- Then,

1
Ex, v (L(=))

Ex, c(P(o, N(0))) = Ey, / o(P(u, 0)) du, (3.4)

where Z* denotes the typical cell of the Voronoi tessellation induced by Xy and L(Z*) is
the (Palm) line system within =*.

Notice that by Theorem 3.1, we can further simplify the computation of the mean
shortest path length cpz (W) considered in (3.1). Namely, instead of computing the
expectation ¢}, = Ex, c(P(o, N(0))) appearing in (3.2), we will estimate the quotient
of expectations on the right—hand side of (3.4). For doing so, we just have to simulate
the typical serving zone =* of higher—level components, together with their corresponding
(typical) line system, where L(Z*) denotes this line system restricted to =*.

We also remark that the expression for IEx, ¢(P(0, N(0))) given in (3.4) can be alter-
natively written in the form

Ex, o(P(o, N(0))) = M Ex,, / o(P(u, 0)) du, (3.5)

which immediately follows from Theorems 2.1 and 3.1. This shows in particular that the
expectation Ex, ¢(P(o, N(0))) does actually not depend on As.

3.3 Computational algorithm

In order to get an estimator ¢y for ¢j,, we use the expression (3.4) derived in Theo-
rem 3.1. The idea is to simulate the typical Voronoi cell Z*, and the (typical) line system
L(Z*), a certain number of times, k say. Furthermore, we partition the line system L(Z})
in 2f for¢=1,..., k into its line segments E; = {S}l), 5}2).., S}Mi)}, where M; is the total
number of line segments in =7 for 1 < ¢ < k. Notice that the line which contains the
origin is subdivided into two segments; see Fig. 3(a).

Hence, taking classical sample means, we get that limy_ ., ¢ g(k) = ¢} with proba-
bility 1, where

Conlh) = ———— Zi/m o)) du. (3.6)
; n(i(E) ==

Alternatively, if the intensity A; is known, we can use the relationship (3.5) in order to
get still another estimator ¢y (k) for ¢}, where

Com (k) = )\1% >y /  c(Plu.0)du. (3.7)

In both cases, it remains to know how the integrals on the right-hand sides of (3.6) and
(3.7), respectively, can be computed. This is shown in the following theorem, where some
additional assumptions will be made on the cost function ¢: E — [0, 00) .
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(a) Partitioning of L(ZE}) into segments (b) Mean shortest path length for single segment
Fig. 3: Partitioning and weighted mean shortest path length

Theorem 3.2 Suppose that the values c(e) of the cost function ¢ : E — [0,00) only
depend on the lengths of the edges e € E and that c(e) is monotonously increasing with
respect to the length of e, where c(e) =0 if v1(e) = 0. Let S = S(A, B) be a line segment
with respective endpoints A and B, and let §g = ¢(P(B,0)) — ¢(P(A,0)). Then,

c(P(A, B)) = [ds] - (3.8)

Moreover, there exists a point D € S such that

(P(4,0)) + ¢(P(D, A)) = ¢(P(B,0)) + ¢(P(D, B)) (3.9)
and
/SC(P(u,o))du = c(P(A,o))ul(D—A)—l—/D c¢(P(A,u)) du
+C(P(B,o))V1(D—B)+/D o(P(B,u))du.  (3.10)

Corollary 3.1 If ¢(S) is the length of the segment S = S(A, B), i.e. ¢(S) =14(S), then

/SC(P(%O)) du = f(v1(S); c(P(A(S),0)), c(P(B(S),0))), (3.11)
where . ) )
f(SL’; 91, 92) = Zflfz + 5(‘91 + 92)1’ — 1(92 — ‘91)2 . (312)

If c(e) = v(e) for any e € E; for i = 1,...,k and k > 1 then by Corollary 3.1, we
immediately get the following final expressions for the estimators ¢y (k) and ¢pg (k).

Corollary 3.2 For each k > 1 let E; = {S}j)}?ﬁl be the partion of the line system L(ZY)

restricted to the ith typical cell ZF for @ = 1,... k and let AZ(.j) and Bi(j), respectively,
denote the endpoints of the segment S]. Then,

Gn(h) = —— SN Fu (89 e(P(AD),0),o(P(BD, o)) (313)

k
n(L(E)) =
=1

(2



and

ok Alzzm S9); e(P(AD),0), e(P(BY, 0))) (3.14)

=1

where the function f is given in (3.12).

By the representation formulae (3.13) and (3.14), it suffices to compute the path
lengths c(P(AEj)),o) and c(P(BZ-(j)),o) for j =1,...,M; and ¢ = 1,...,k in order to
determine the estimators ¢y (k) and ¢,y (k). This can be done, for example, by applying
Dijkstra’s algorithm; see Section 5 below.

4 Mean subscriber line length

In this section we consider the case, where the lower level components are not placed
on the edges, but into the cells formed by the Poisson line process X, according to an
independent (stationary) Poisson point process {X!},>; in IR? with (planar) intensity A;
see Section 2.2.

Recall that, for each n, the location X/, of the nth lower level component is connected
with the location N(X/) of its nearest (in the Euclidean sense) higher level component.
For this purpose, X! is first connected to its nearest point X/ of the line system L(Z,),
where =, = Z(N(X],)) is the Voronoi cell of N(X) and L(Z,) denotes the restriction of
the Poisson line process X, to =,,.

An interesting characteristic is the so—called mean subscriber line length

! S 1w (X)) e(P(X), N(X2) (4.1)

dru(W) = #{n: X! e W} n>1

for some sampling window 1 C IR?, where the cost value ¢(P(X’, N(X!))) of the shortest
path from X/ to N(X)) is given in (2.3).

In order to practically analyze the mean subscriber line length dpg (W), we propose
an approach which is analogous to that considered in Section 3, i.e., an approach based
on the Palm probability measure ]PX/ of the stationary marked p01nt process X| =
{IX}, c(X])]}n>1, where ¢(X]) = (P(X’ N(X!))). Then, by the ergodicity of XL, we
have that

lim dpp(Wi) = dp g (4.2)

1—00
holds with probability 1, where {W;},>; is an averaging sequence of unboundedly increas-
ing sampling windows and

LH = ]EZ I5(X,) c(P(X,, N(X}))) = Ex, c(P(o, N(0))) (4.3)

)‘LVQ n>1

for some (bounded) Borel set B € B(IR?) with 0 < v»(B) < oo.
Furthermore, applying Neveu's exchange formula for Palm expectations, we get the
following expression for the expectation IEx; ¢(P(o, N(0))) appearing in (4.3).

Theorem 4.1 Consider the point process Xy = { X, }n>1 of higher—level components and
the (marked) point process X; = {[ X}, c(P(X], N(X!))]}n>1. Then,

! Ex, /C(P(u,o))du, (4.4)

Ex, c(P(o,N(0))) = Ex, (=)

(1]



Fig. 4: Computational aspects of JLH: Typical Cox—Voronoi cell with inner
Voronoi tessellation (left) and example of inner Voronoi cell (right)

where =* denotes the typical cell of the Voronoi tessellation induced by Xy .

Using (4.3) and (4.4), we get an estimator dpy for the limit d; 5y considered in (4.2),
where limy_o, dpg (k) = d} ;; with probability 1, and where

C/Z\LH(k) - % Z
;Vz(EZ‘) '

koK
/C(P(u,o)) du . (4.5)

=1 jzlq,z(_n

The second summation is done over the (random) number K; of inner Voronoi cells \Ifgj) :

Fig. 4 provides a graphical explanation of the computation. For further details, it is
referred to [10].

5 Numerical analysis

Recall that in this section we assume Xy to be a doubly stochastic Poisson process as
pointed out in Section 2.1. Then, the whole model is completely described by the three
parameters Ay, A; and «y. Besides this we assume that ¢(.S) is the length of the segment
S, ie. ¢(S) = 1(9).

5.1 Scaling properties of CVT

As it has already been explained in [9], with respect to the two remaining parameters \;
and ~, a scaling invariance property holds for any fixed value of the quotient K = v/A;. In
particular suppose that v = ay(® and A\, = aA§°> for some 7@, \© > 0, fixed and a > 0.
Then, with respect to the typical cell =* of the corresponding Voronoi tessellation, the
expected number of vertices is constant, whereas the expected perimeter and the square
root of the expected area of the typical cell grow linearly, proportionally to a=!.

Furthermore, the following scaling property shows that it is possible to provide es-
timates for the characteristics described in Sections 3 and 4 corresponding to a given
parameter pair (v, A1) by using estimates for a different parameter pair having the same
quotient xk and by performing a suitable standardization afterwards.
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Fig. 5: Network characteristics for k =10 (0), K =50 (+) and k = 120 (¢)

Theorem 5.1 For any pair (v, A1) of parameters v, \y > 0, consider the (ergodic) limits
g =Cu(y, A1) and di gy = di (7, M) given in (3.2) and (4.2), respectively. Then

A (YW AD) = 4@ ¢ (PP (5.1)

and
* 1 * 2 5.2
7(1) l/H(’y(l)> )‘g )) = 7(2) Z,H(7(2)a )‘g )) ( . )

provided that 7(1>/A§1) = 7(2)/)\?).

5.2 Numerical results

With regard to the estimation of the mean shortest path length as well as the mean
subscriber line length we used k£ = 50000 iterations. Fig. 5 shows a visualization of the
scaling invariance effect for the mean shortest path length and the mean subscriber line
length. If we take x to be fixed for different values of ~, then the estimated results for
¢} i as well as for df ,; are proportional to 1/v. Therefore the graphs displayed in Fig. 5
for k = 10, Kk = 50, and k = 120 are linear and should pass through the origin. Of course,
the latter property cannot be directly checked since it means that v — oo.

A first important observation one can make, is that for the same parameter pair (7, A1)
we always have that ¢} > dj ;. This observation might be explained by the fact that the
cells of the Cox Voronoi tessellation of the upper level components are convex polygons,
hence if each point on the underlying line system is weighted by the distance measure of
the points in the cell projected to it, points lying close to the center of the cell get a larger
weight than these near the edge. With regard to the estimation of ¢, these weights are
always constant. Therefore, we have that the mean shortest path length is larger than
the mean subscriber line length for the same pair of parameters.

If k increases, the quotient ¢, /d; ; also slightly increases, meaning that in this case
the mean shortest path length becomes larger in relation to the mean subscriber line
length.

10
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Fig. 6: Estimates for m(k) and m/(k) for different k and the fitted function

Another interesting observation is that the values of both characteristics seem to in-
crease for increasing . Obviously this is due to the fact that the expected area [Evy (=)
of the typical cell =* of the Cox Voronoi tessellation also increases.

Recall that by Theorem 5.1 we have

-1

cLr(v,A) =m(k)y" and  dy(y, M) =m/(k)77", (5.3)

where m(x) and m’(k) are constants depending only on the quotient x = v/A;. If we
return to the graphs displayed in Fig. 5, we can obtain the estimates m(x) and m/(k) for
the slopes m(x) and m/(k) of the lines for £ constant and 1/~ variable.

The knowledge of m(x) and m/(k) thereby leads to the possibility of estimating the
mean shortest path length and the mean subscriber line length without having to do
simulations for any given parameter pair (v, A1), since then, only these parameter values
need to be plugged into the formulas in (5.3) to obtain the estimates for ¢}, and dj
respectively. Computationally these slopes are estimated for certain discrete values of x
and subsequently a function is fitted using the measurement points. Fig. 6 displays some
values of estimated slopes as well as a fitted function. Regarding the estimated values we
used

m(k) = ax and m' (k) = d'k"

where a,a’ € R and b,V € (0, 1]. Using the least squares method we obtained a = 1.5477,
b =0.450 and o' = 1.1242, b’ = 0.425.

Acknowledgement This research was supported by France Télécom R&D through
research grant No. 4236 68 97. The authors are grateful to Michael Rosch for his help in
performing the simulations, which lead to the numerical results.

References

[1| Baccelli, F. and B. Blaszczyszyn, B.: On a coverage process ranging from the Boolean
model to the Poisson—Voronoi tessellation. Advances in Applied Probability 33 (2001),
293 323.

11



2]
3]
4]

5]
(6]

17l

18]

19]

[10]

[11]

[12]
[13]

[14]

Baccelli, F., Gloaguen, C. and Zuyev, S.: Superposition of Planar Voronoi Tessella-
tions. Communications in Statistics, Series Stochastic Models 16 (2002), 69-98.

Baccelli, F., Klein, M., Lebourges, M. and Zuyev, S.: Géométrie aléatoire et archi-
tecture de réseaux. Annales des Télécommunication 51 (1996), 158-179.

Baccelli, F., Kofman, D., and Rougier, J.L.: Self organizing hierarchical multicast
trees and their optimization. Proceedings of IEEE Infocom ’99, IEEE Computer So-
ciety Press, New York 1999, 1081 1089.

Baccelli, B. and Zuyev, S.: Poisson-Voronoi spanning trees with applications to the
optimization of communication networks. Operations Research 47 (1996), 619 631.

Btaszczyszyn, B. and Schott, R.: Approximations of functionals of some modulated
Poisson Voronoi tessellations with applications to modeling of communication net-
works. Japan Journal of Industrial and Applied Mathematics, 22(2) (2005), to appear.

Gloaguen, G., Coupé, P., Maier, R. and Schmidt, V.: Stochastic modelling of urban
access networks. In Proc. 10th Internat. Telecommun. Network Strategy Planning
Symp. (Munich, June 2002), VDE, Berlin 2002, 99-104.

Gloaguen, G., Fleischer, F., Schmidt, H. and Schmidt, V.. Fitting of stochastic
telecommunication network models, via distance measures and Monte-Carlo tests.
Telecommunication Systems (2006), to appear.

Gloaguen, G., Fleischer, F., Schmidt, H. and Schmidt, V.: Simulation of typical Cox-
Voronoi cells with a special regard to implementation tests. Mathematical Methods
of Operations Research 62(3) (2005), 84 95.

Gloaguen, C., Fleischer, F., Schmidt, H. and Schmidt, V.: Analysis of shortest paths
and subscriber line lengths in telecommunication access networks. Networks and Spa-
tial Economics (2006), submitted.

Mayer, J., Schmidt, V. and Schweiggert, F.: A unified simulation framework for
spatial stochastic models. Simulation Modelling Practice and Theory 12 (2004), 307
326.

Schneider, R. and Weil, W.: Stochastische Geometrie. Teubner, Stuttgart 2000.

Stoyan D., Kendall W.S. and Mecke, J.: Stochastic Geometry and its Applications.
2nd ed., J. Wiley & Sons, Chichester 1995.

Tchoumatchenko, K. and Zuyev, S.: Aggregate and fractal tessellations. Probability
Theory Related Fields 121 (2001), 198 218.

12



