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t. We 
onsider random geometri
 models for tele
ommuni
ation a
-
ess networks and analyse their serving zones whi
h 
an be given, for example,by a 
lass of so�
alled Cox�Voronoi tessellations (CVTs). Su
h CVTs are 
on-stru
ted with respe
t to lo
ations of network 
omponents, the nu
leii of theirindu
ed 
ells, whi
h are s
attered randomly along lines indu
ed by a Poissonline pro
ess. In parti
ular, we 
onsider two levels of network 
omponents andinvestigate these hierar
hi
al models with respe
t to mean shortest path lengthand mean subs
riber line length, respe
tively. We explain point�pro
ess te
h-niques that allow for these 
hara
teristi
s to be 
omputed without simulatingthe lo
ations of lower�level 
omponents. We sustain our results by numeri
alexamples whi
h were obtained through Monte Carlo simulations, where we usedsimulation algorithms for typi
al Cox�Voronoi 
ells derived in a previous paper.Keywords: tele
ommuni
ation network modelling, sto
hasti
 geometry, pointpro
ess, Palm probability, Neveu's ex
hange formula, spatial tessellation, typi-
al Cox�Voronoi 
ell, a

ess network, shortest path, subs
riber line1 Introdu
tionSpatial sto
hasti
 models have been developed in re
ent years as alternatives to more tra-ditional e
onomi
al approa
hes for 
ost measurement and strategi
 planning of tele
om-muni
ation networks; see, for example, [1℄, [2℄, [3℄, [4℄, [5℄, [6℄, and [14℄. These modelsin
orporate both sto
hasti
 as well as geometri
 features observable in tele
ommuni
ationnetworks. While the random setting re�e
ts the network's variability in time and spa
e,
onsideration of geometri
 stru
tures of network ar
hite
tures o�er a more realisti
 viewto lo
ation-dependent network 
hara
teristi
s than 
onventional models.The a

ess network or lo
al loop is the part of the network 
onne
ting a subs
riber to its
orresponding Wire Center Stations (WCS), i.e. the pla
e where the tele
ommuni
ationnetwork �ts into the town and 
ountry infrastru
ture. The hierar
hi
al physi
al link ismade via network 
omponents. To ea
h WCS we asso
iate a serving zone su
h that theins
ribed subnetwork that gathers all lines between the WCS and the subs
ribers displaysa tree stru
ture.In re
ent years, a

ess networks were studied in the 
ontext of the so-
alled Sto
hasti
Subs
riber Line Model (SSLM); see [7℄, [8℄, [9℄ for example. The SSLM is a randomgeometri
 model that o�ers tools to des
ribe geometri
 features of a

ess networks and1



(a) Poisson line pro
ess (b) Cox pro
ess (
) CVTFig. 1: Poisson line pro
ess and Cox�Voronoi tessellationthat allows for sto
hasti
 e
onometri
al analysis, like the analysis of 
onne
tion 
osts.The modelling framework of the SSLM 
an be subdivided into the network geometrymodel, the network 
omponent model, and the network topology model. The networkgeometry model represents the 
able tren
h system, typi
ally lo
ated along the urban in-frastru
ture system, and in the SSLM modelled by random tessellations. Subsequently thenetwork 
omponent model pla
es te
hni
al network 
omponents along the 
able tren
hesa

ording to independent (Poisson) point pro
esses on lines or in the plane. Finally the
omponents are 
onne
ted with respe
t to the network topology model.Methods for an optimal 
hoi
e of the geometry model with respe
t to given data 
an befound in [8℄. In [9℄ an algorithm was introdu
ed in order to simulate typi
al Cox-Voronoi
ells based on linear Poisson pro
esses on random lines; see Fig. 1. In our 
ontribution,this algorithm, together with other te
hniques, is used to investigate two�level hierar
hi
almodels, i.e. models of two di�erent 
omponents where the lower�level 
omponent is 
on-ne
ted to its 
losest higher�level 
omponent, based on Poisson line tessellations. E�
ient
omputation and simulation te
hniques for network 
hara
teristi
s like mean shortestpath length and mean subs
riber line length are shown. These network 
hara
teristi
sare key�ingredients to an e�
ient 
ost analysis. Noti
e that Poisson line tessellations are
hosen as geometry model sin
e earlier investigations showed that, for a lot of real datasituations, they 
an represent a suitable model for the urban infrastru
ture. We explainmethods whi
h allow for these 
hara
teristi
s to be 
omputed without simulating the lo-
ations of lower�level 
omponents, thereby enhan
ing simulation speed enormously. Inparti
ular, instead of performing large�s
ale 
omputations of shortest path lengths andsubs
riber line lengths, respe
tively, for ea
h lower�level 
omponent individually, we �rstuse an ergodi
ity argument by whi
h these large�s
ale 
omputations 
an be redu
ed tothe 
omputation of a single expe
tation value with respe
t to the so�
alled Palm proba-bility measure indu
ed by the point pro
ess of lower�level 
omponents. Then, we applyNeveu's ex
hange formula for Palm expe
tations of stationary marked point pro
esses.This allows us to pass to expe
tations with respe
t to the Palm probability measure in-du
ed by the point pro
ess of higher�level 
omponents, whi
h are 
omputationally easierto handle. Finally, we 
ompute the latter expe
tations by partitioning the underlying linesystem and by applying inner Voronoi tessellations with respe
t to the edges of the 
ellsformed by the Poisson line pro
ess. An extended version of this 
ontribution is given inthe paper [10℄.All implementations that have been done for the 
omputation and the simulation of2



network 
hara
teristi
s and 
orresponding models are integrated in the GeoSto
h library.This JAVA�based library 
omprises software tools designed to analyze data with methodsfrom sto
hasti
 geometry; see [11℄ and http://www.geosto
h.de.2 Sto
hasti
 modelling of tele
ommuni
ation a

ess networksIn the following we regard two�level hierar
hi
al models, i.e., two di�erent equipmenttypes are pla
ed along the infrastru
ture system. More pre
isely, we start by 
onsideringa Poisson line pro
ess, whi
h is intended to model the underlying road system. Given a re-alization of su
h an underlying line system we independently generate either two (marked)point pro
esses on ea
h line, whi
h 
an be seen as spatial point pro
esses 
on
entrated onthe system of lines, or we generate one of the two point pro
esses within the 
ells formedby the lines of the underlying line system.2.1 Network geometry and higher-level 
omponentsAs a model for the underlying infrastru
ture system, or in other words the network geom-etry, a Poisson line tessellation is 
hosen whi
h is indu
ed by a stationary and isotropi
Poisson line pro
ess Xℓ with intensity γ. The higher�level 
omponents are pla
ed on thelines of this line system, in agreement with the rules de�ned by the SSLM. Furthermore,the lo
ations of higher�order 
omponents are assumed to form a (non�marked) stationarypoint pro
ess XH = {Xn}n≥1 in IR2 with intensity λH .Later on in Se
tion 5, we will assume that XH is a doubly sto
hasti
 Poisson pro
essswhose (random) intensity measure is 
on
entrated on the lines of the underlying Poissonline po
ess Xℓ. However, for the purposes of Se
tions 3 and 4, this assumption is unne
-essarily strong. Thus, for the moment, we only assume that XH satis�es the following
onditions. Given Xℓ, 
onsider independent stationary and ergodi
 (linear) point pro-
esses on ea
h line of Xℓ and let XH be the superposition of these point pro
esses. Their(linear) intensity λ1, measured along the lines of Xℓ, is 
onne
ted to the (full�dimensional)intensity λH via λH = λ1γ .Furthermore, suppose that ea
h lo
ation Xn of a higher�level 
omponent has an in�u-en
e zone Ξ(Xn) and that the sequen
e {Ξ(Xn)}n≥1 forms a Voronoi tessellation indu
edby XH ; see Fig. 1(
).Theorem 2.1 Let Ξ∗ denote the typi
al 
ell of the Voronoi tessellation {Ξ(Xn)}n≥1 in-du
ed by the stationary point pro
ess XH = {Xn}n≥1 of higher�level 
omponents. Then,
λ1 =

1

IEXH
ν1(L(Ξ∗))

, (2.1)where IEXH
denotes expe
tation with respe
t to the Palm probability measure IP∗

XH
andwhere L(Ξ∗) denotes the (Palm) line system within the typi
al 
ell Ξ∗.2.2 Lower�level 
omponents and shortest pathsWith respe
t to the pla
ement of lower�level 
omponents two di�erent s
enarios are re-garded. In a �rst s
enario, given Xℓ, the lower�level 
omponents are pla
ed a

ording toindependent Poisson point pro
esses with (linear) intensity λ2 on the lines of the Poissonline pro
ess Xℓ; see Fig. 2(a). Then, the union {X̃n}n≥1 of all lo
ations X̃n of lower�level
omponents forms a stationary (doubly sto
hasti
 Poisson) point pro
ess in IR2 whose3



(planar) intensity is denoted by λL. Noti
e that λL = λ2γ . To ex
lude trivial 
ases, wealways assume in this paper that 0 < λH , λL < ∞ .Let N(X̃n) denote the lo
ation of the nearest (in the Eu
lidean sense) higher�level
omponent of X̃n and let P (X̃n, N(X̃n)) be the shortest path from X̃n to N(X̃n) alongthe edges of the graph indu
ed by the Poisson line pro
ess Xℓ . By c(P (X̃n, N(X̃n))) wedenote the length of the path P (X̃n, N(X̃n)).An important network 
hara
teristi
 of spe
ial interest is the mean shortest pathlength, i.e., the average distan
e with respe
t to the underlying graph stru
ture from thelower�level 
omponents to their nearest (in the Eu
lidean sense) higher�level 
omponents.In order to analyze this 
hara
teristi
, ea
h lo
ation X̃n of the lower�level 
omponentsis asso
iated with the mark c(P (X̃n, N(X̃n))) > 0. This leads to the stationary markedpoint pro
ess
XL = {[X̃n, c(P (X̃n, N(X̃n)))]}n≥1 , (2.2)whose mark spa
e is the non�negative x�axis [0,∞].In a se
ond s
enario, the lower�level 
omponents are not pla
ed on the edges, but intothe 
ells formed by the Poisson line pro
ess Xℓ, a

ording to an independent (stationary)Poisson point pro
ess {X ′

n}n≥1 in IR2 with (planar) intensity λL. Afterwards, for ea
h n,the lo
ation X ′
n of the nth lower�level 
omponent is 
onne
ted with the lo
ation N(X ′

n) ofits nearest (in the Eu
lidean sense) higher�level 
omponent. This is done in the followingway.Let Ξn = Ξ(N(X ′
n)) be the Voronoi 
ell of N(X ′

n) and let L(Ξn) denote the restri
tionof the Poisson line pro
ess Xℓ to Ξn. Then, the lo
ation X ′
n is �rst 
onne
ted to its nearestpoint of the line system L(Ξn); see Fig. 2(b). This �proje
tion point� is denoted by X ′′

n.We are interested in the mean subs
riber line length, representing the average shortestdistan
e of the proje
ted points X ′′
n on the lines to the lo
ations N(X ′

n) of their higher�order 
omponents, with respe
t to the underlying graph stru
ture indu
ed the Poisson linepro
ess Xℓ. Again, these distan
es 
an be expressed via the marks c(P (X ′
n, N(X ′

n))), at-ta
hed to the lo
ations X ′
n of lower�level 
omponents. However, in this se
ond pla
ements
enario, one 
an split up the marks a

ording to

c(P (X ′
n, N(X ′

n))) = c′(X ′
n, X

′′
n) + c(P (X ′′

n, N(X ′
n))) , (2.3)where c′(X ′

n, X ′′
n) is the 
ost value of the �edge� with respe
tive endpoints X ′

n and X ′′
n.Note that in Se
tion 5, we assume c′(X ′

n, X
′′
n) = 0 in order to enhan
e the 
larity ofpresentation.3 Mean shortest path lengthIn this se
tion we investigate the mean shortest path length for the �rst lo
ation s
enarioof lower�level 
omponents des
ribed in Se
tion 2.2.3.1 Simulation methodsAt �rst glan
e, a natural approa
h in order to pra
ti
ally analyze the mean shortest pathlength seems to be the following pro
edure. First, simulate the network in a (supposedlylarge) sampling window W ⊂ IR2, then 
ompute the shortest path length c(P (X̃n, N(X̃n)))for ea
h lo
ation X̃n of lower�level 
omponents generated in the sampling window, and,4
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ement and proje
tion to nearestlineFig. 2: Two s
enarios for the pla
ement of lower-level 
omponents�nally 
ompute the average cLH(W ) of these shortest path lengths, where
cLH(W ) =

1

#{n : X̃n ∈ W}

∑

n≥1

1IW (X̃n)c(P (X̃n, N(X̃n))) . (3.1)However, it be
omes very rapidly 
lear that this method has some distin
t disadvan-tages. If the sampling window W is too small, the problem of edge�e�e
ts is signi�
ant.If, on the other hand, W is large, the 
omputational problem arises that a lot of memoryand runtime is needed for single simulation runs.Therefore, we propose an alternative approa
h by using the Palm probability measure
IP∗

XL
of the stationary marked point pro
ess XL = {[X̃n, c(P (X̃n, N(X̃n)))]}n≥1, intro-du
ed in (2.2). This alternative approa
h is based on the following asymptoti
 propertyof the random variable cLH(W ) de�ned in (3.1). Let {Wi}i≥1 be a so�
alled averagingsequen
e of unboundedly in
reasing sampling windows. Then, by the ergodi
ity of thestationary marked point pro
ess XL, we have that

lim
i→∞

cLH(Wi) = c∗LH (3.2)holds with probability 1, where
c∗LH =

1

λLν2(B)
IE

∑

n≥1

1IB(X̃n)c(P (X̃n, N(X̃n))) = IEXL
c(P (o, N(o))) . (3.3)Re
all that the symbol B in (3.3) means an arbitrary (bounded) Borel set B ∈ B(IR2)with 0 < ν2(B) < ∞ and IEXL

denotes expe
tation with respe
t to the Palm probabilitymeasure IP∗
XL

.Thus, motivated by the limit in (3.2), we will 
ompute c∗LH = IEXL
c(P (o, N(o))),whi
h will be mu
h easier than 
omputing the average cLH(W ) given in (3.1). Moreover,by Neveu's ex
hange formula for Palm expe
tations, we 
an express c∗LH in an even morefavorable way; see Se
tion 3.2.3.2 Appli
ation of Neveu's formulaThe following result admits a pra
ti
ally more feasible representation of the expe
tation

c∗LH = IEXL
c(P (o, N(o))) appearing in (3.2) and, in the 
onsequen
e, a more e�
ient wayto approximately 
ompute the mean shortest path length cLH(W ) 
onsidered in (3.1).5



Theorem 3.1 Consider the point pro
ess XH = {Xn}n≥1 of lo
ations of higher�level
omponents and the (marked) point pro
ess XL = {[X̃n, c(P (X̃n, N(X̃n)))]}n≥1. Then,
IEXL

c(P (o, N(o))) =
1

IEXH
ν1(L(Ξ∗))

IEXH

∫

L(Ξ∗)

c(P (u, o)) du , (3.4)where Ξ∗ denotes the typi
al 
ell of the Voronoi tessellation indu
ed by XH and L(Ξ∗) isthe (Palm) line system within Ξ∗.Noti
e that by Theorem 3.1, we 
an further simplify the 
omputation of the meanshortest path length cLH(W ) 
onsidered in (3.1). Namely, instead of 
omputing theexpe
tation c∗LH = IEXL
c(P (o, N(o))) appearing in (3.2), we will estimate the quotientof expe
tations on the right�hand side of (3.4). For doing so, we just have to simulatethe typi
al serving zone Ξ∗ of higher�level 
omponents, together with their 
orresponding(typi
al) line system, where L(Ξ∗) denotes this line system restri
ted to Ξ∗.We also remark that the expression for IEXL

c(P (o, N(o))) given in (3.4) 
an be alter-natively written in the form
IEXL

c(P (o, N(o))) = λ1 IEXH

∫

L(Ξ∗)

c(P (u, o)) du , (3.5)whi
h immediately follows from Theorems 2.1 and 3.1. This shows in parti
ular that theexpe
tation IEXL
c(P (o, N(o))) does a
tually not depend on λ2 .3.3 Computational algorithmIn order to get an estimator ĉLH for c∗LH , we use the expression (3.4) derived in Theo-rem 3.1. The idea is to simulate the typi
al Voronoi 
ell Ξ∗, and the (typi
al) line system

L(Ξ∗), a 
ertain number of times, k say. Furthermore, we partition the line system L(Ξ∗
i )in Ξ∗

i for i = 1, . . . , k into its line segments Ei = {S
(1)
i , S

(2)
i .., S

(Mi)
i }, where Mi is the totalnumber of line segments in Ξ∗

i for 1 ≤ i ≤ k. Noti
e that the line whi
h 
ontains theorigin is subdivided into two segments; see Fig. 3(a).Hen
e, taking 
lassi
al sample means, we get that limk→∞ ĉLH(k) = c∗LH with proba-bility 1, where
ĉLH(k) =

1
k∑

i=1

ν1(L(Ξ∗
i ))

k∑

i=1

Mi∑

j=1

∫

S
(j)
i

c(P (u, o)) du . (3.6)Alternatively, if the intensity λ1 is known, we 
an use the relationship (3.5) in order toget still another estimator čLH(k) for c∗LH , where
čLH(k) = λ1

1

k

k∑

i=1

Mi∑

j=1

∫

S
(j)
i

c(P (u, o)) du . (3.7)In both 
ases, it remains to know how the integrals on the right�hand sides of (3.6) and(3.7), respe
tively, 
an be 
omputed. This is shown in the following theorem, where someadditional assumptions will be made on the 
ost fun
tion c : E → [0,∞) .6
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(b) Mean shortest path length for single segmentFig. 3: Partitioning and weighted mean shortest path lengthTheorem 3.2 Suppose that the values c(e) of the 
ost fun
tion c : E → [0,∞) onlydepend on the lengths of the edges e ∈ E and that c(e) is monotonously in
reasing withrespe
t to the length of e, where c(e) = 0 if ν1(e) = 0. Let S = S(A, B) be a line segmentwith respe
tive endpoints A and B, and let δS = c(P (B, o)) − c(P (A, o)). Then,
c(P (A, B)) ≥ |δS| . (3.8)Moreover, there exists a point D ∈ S su
h that

c(P (A, o)) + c(P (D, A)) = c(P (B, o)) + c(P (D, B)) (3.9)and
∫

S

c(P (u, o)) du = c(P (A, o))ν1(D − A) +

∫ A

D

c(P (A, u)) du

+ c(P (B, o))ν1(D − B) +

∫ B

D

c(P (B, u)) du . (3.10)Corollary 3.1 If c(S) is the length of the segment S = S(A, B), i.e. c(S) = ν1(S), then
∫

S

c(P (u, o)) du = f(ν1(S); c(P (A(S), o)), c(P (B(S), o))) , (3.11)where
f(x; θ1, θ2) =

1

4
x2 +

1

2
(θ1 + θ2)x −

1

4
(θ2 − θ1)

2 . (3.12)If c(e) = ν1(e) for any e ∈ Ei for i = 1, . . . , k and k ≥ 1 then by Corollary 3.1, weimmediately get the following �nal expressions for the estimators ĉLH(k) and čLH(k).Corollary 3.2 For ea
h k ≥ 1 let Ei = {S
(j)
i }Mi

j=1 be the partion of the line system L(Ξ∗
i )restri
ted to the ith typi
al 
ell Ξ∗

i for i = 1, . . . , k and let A
(j)
i and B

(j)
i , respe
tively,denote the endpoints of the segment Sj

i . Then,
ĉLH(k) =

1
k∑

i=1

ν1(L(Ξ∗
i ))

k∑

i=1

Mi∑

j=1

f(ν1(S
(j)
i ); c(P (A

(j)
i ), o), c(P (B

(j)
i , o))) (3.13)7



and
čLH(k) =

λ1

k

k∑

i=1

Mi∑

j=1

f(ν1(S
(j)
i ); c(P (A

(j)
i ), o), c(P (B

(j)
i , o))) , (3.14)where the fun
tion f is given in (3.12).By the representation formulae (3.13) and (3.14), it su�
es to 
ompute the pathlengths c(P (A

(j)
i ), o) and c(P (B

(j)
i ), o) for j = 1, . . . , Mi and i = 1, . . . , k in order todetermine the estimators ĉLH(k) and čLH(k). This 
an be done, for example, by applyingDijkstra's algorithm; see Se
tion 5 below.4 Mean subs
riber line lengthIn this se
tion we 
onsider the 
ase, where the lower�level 
omponents are not pla
edon the edges, but into the 
ells formed by the Poisson line pro
ess Xℓ, a

ording to anindependent (stationary) Poisson point pro
ess {X ′

n}n≥1 in IR2 with (planar) intensity λL;see Se
tion 2.2.Re
all that, for ea
h n, the lo
ation X ′
n of the nth lower�level 
omponent is 
onne
tedwith the lo
ation N(X ′

n) of its nearest (in the Eu
lidean sense) higher�level 
omponent.For this purpose, X ′
n is �rst 
onne
ted to its nearest point X ′′

n of the line system L(Ξn),where Ξn = Ξ(N(X ′
n)) is the Voronoi 
ell of N(X ′

n) and L(Ξn) denotes the restri
tion ofthe Poisson line pro
ess Xℓ to Ξn.An interesting 
hara
teristi
 is the so�
alled mean subs
riber line length
dLH(W ) =

1

#{n : X ′
n ∈ W}

∑

n≥1

1IW (X ′
n) c(P (X ′

n, N(X ′
n))) (4.1)for some sampling window W ⊂ IR2, where the 
ost value c(P (X ′

n, N(X ′
n))) of the shortestpath from X ′

n to N(X ′
n)) is given in (2.3).In order to pra
ti
ally analyze the mean subs
riber line length dLH(W ), we proposean approa
h whi
h is analogous to that 
onsidered in Se
tion 3, i.e., an approa
h basedon the Palm probability measure IP∗

X′

L
of the stationary marked point pro
ess X ′

L =

{[X ′
n, c(X

′
n)]}n≥1, where c(X ′

n) = c(P (X ′
n, N(X ′

n))). Then, by the ergodi
ity of X ′
L, wehave that

lim
i→∞

dLH(Wi) = d∗
LH (4.2)holds with probability 1, where {Wi}i≥1 is an averaging sequen
e of unboundedly in
reas-ing sampling windows and

d∗
LH =

1

λLν2(B)
IE

∑

n≥1

1IB(X ′
n) c(P (X ′

n, N(X ′
n))) = IEX′

L
c(P (o, N(o))) (4.3)for some (bounded) Borel set B ∈ B(IR2) with 0 < ν2(B) < ∞.Furthermore, applying Neveu's ex
hange formula for Palm expe
tations, we get thefollowing expression for the expe
tation IEX′

L
c(P (o, N(o))) appearing in (4.3).Theorem 4.1 Consider the point pro
ess XH = {Xn}n≥1 of higher�level 
omponents andthe (marked) point pro
ess X ′

L = {[X ′
n, c(P (X ′

n, N(X ′
n)))]}n≥1. Then,

IEX′

L
c(P (o, N(o))) =

1

IEXH
ν2(Ξ∗)

IEXH

∫

Ξ∗

c(P (u, o)) du , (4.4)8
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ts of d̂LH: Typi
al Cox�Voronoi 
ell with innerVoronoi tessellation (left) and example of inner Voronoi 
ell (right)where Ξ∗ denotes the typi
al 
ell of the Voronoi tessellation indu
ed by XH .Using (4.3) and (4.4), we get an estimator d̂LH for the limit d∗
LH 
onsidered in (4.2),where limk→∞ d̂LH(k) = d∗

LH with probability 1, and where
d̂LH(k) =

1
k∑

i=1

ν2(Ξ
∗
i )

k∑

i=1

Ki∑

j=1

∫

Ψ
(j)
i

c(P (u, o)) du . (4.5)The se
ond summation is done over the (random) number Ki of inner Voronoi 
ells Ψ
(j)
i .Fig. 4 provides a graphi
al explanation of the 
omputation. For further details, it isreferred to [10℄.5 Numeri
al analysisRe
all that in this se
tion we assume XH to be a doubly sto
hasti
 Poisson pro
ess aspointed out in Se
tion 2.1. Then, the whole model is 
ompletely des
ribed by the threeparameters λL, λ1 and γ. Besides this we assume that c(S) is the length of the segment

S, i.e. c(S) = ν1(S).5.1 S
aling properties of CVTAs it has already been explained in [9℄, with respe
t to the two remaining parameters λ1and γ, a s
aling invarian
e property holds for any �xed value of the quotient κ = γ/λ1. Inparti
ular suppose that γ = aγ(0) and λ1 = aλ
(0)
1 for some γ(0), λ(0) > 0, �xed and a > 0.Then, with respe
t to the typi
al 
ell Ξ∗ of the 
orresponding Voronoi tessellation, theexpe
ted number of verti
es is 
onstant, whereas the expe
ted perimeter and the squareroot of the expe
ted area of the typi
al 
ell grow linearly, proportionally to a−1 .Furthermore, the following s
aling property shows that it is possible to provide es-timates for the 
hara
teristi
s des
ribed in Se
tions 3 and 4 
orresponding to a givenparameter pair (γ, λ1) by using estimates for a di�erent parameter pair having the samequotient κ and by performing a suitable standardization afterwards.9
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riber line lengthFig. 5: Network 
hara
teristi
s for κ = 10 (o), κ = 50 (+) and κ = 120 (⋄)Theorem 5.1 For any pair (γ, λ1) of parameters γ, λ1 > 0, 
onsider the (ergodi
) limits

c∗LH = c∗LH(γ, λ1) and d∗
LH = d∗

LH(γ, λ1) given in (3.2) and (4.2), respe
tively. Then
γ(1) c∗LH(γ(1), λ

(1)
1 ) = γ(2) c∗LH(γ(2), λ

(2)
1 ) (5.1)and

γ(1) d∗
LH(γ(1), λ

(1)
1 ) = γ(2) d∗

LH(γ(2), λ
(2)
1 ) (5.2)provided that γ(1)/λ

(1)
1 = γ(2)/λ

(2)
1 .5.2 Numeri
al resultsWith regard to the estimation of the mean shortest path length as well as the meansubs
riber line length we used k = 50000 iterations. Fig. 5 shows a visualization of thes
aling invarian
e e�e
t for the mean shortest path length and the mean subs
riber linelength. If we take κ to be �xed for di�erent values of γ, then the estimated results for

c∗LH as well as for d∗
LH are proportional to 1/γ. Therefore the graphs displayed in Fig. 5for κ = 10, κ = 50 , and κ = 120 are linear and should pass through the origin. Of 
ourse,the latter property 
annot be dire
tly 
he
ked sin
e it means that γ → ∞.A �rst important observation one 
an make, is that for the same parameter pair (γ, λ1)we always have that c∗LH > d∗

LH . This observation might be explained by the fa
t that the
ells of the Cox�Voronoi tessellation of the upper�level 
omponents are 
onvex polygons,hen
e if ea
h point on the underlying line system is weighted by the distan
e measure ofthe points in the 
ell proje
ted to it, points lying 
lose to the 
enter of the 
ell get a largerweight than these near the edge. With regard to the estimation of c∗LH , these weights arealways 
onstant. Therefore, we have that the mean shortest path length is larger thanthe mean subs
riber line length for the same pair of parameters.If κ in
reases, the quotient c∗LH/d∗
LH also slightly in
reases, meaning that in this 
asethe mean shortest path length be
omes larger in relation to the mean subs
riber linelength. 10
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riber line lengthFig. 6: Estimates for m(κ) and m′(κ) for di�erent κ and the �tted fun
tionAnother interesting observation is that the values of both 
hara
teristi
s seem to in-
rease for in
reasing κ. Obviously this is due to the fa
t that the expe
ted area IEν2(Ξ
∗)of the typi
al 
ell Ξ∗ of the Cox�Voronoi tessellation also in
reases.Re
all that by Theorem 5.1 we have

c∗LH(γ, λ1) = m(κ) γ−1 and d∗
LH(γ, λ1) = m′(κ) γ−1 , (5.3)where m(κ) and m′(κ) are 
onstants depending only on the quotient κ = γ/λ1. If wereturn to the graphs displayed in Fig. 5, we 
an obtain the estimates m̂(κ) and m̂′(κ) forthe slopes m(κ) and m′(κ) of the lines for κ 
onstant and 1/γ variable.The knowledge of m̂(κ) and m̂′(κ) thereby leads to the possibility of estimating themean shortest path length and the mean subs
riber line length without having to dosimulations for any given parameter pair (γ, λ1), sin
e then, only these parameter valuesneed to be plugged into the formulas in (5.3) to obtain the estimates for c∗LH and d∗

LH ,respe
tively. Computationally these slopes are estimated for 
ertain dis
rete values of κand subsequently a fun
tion is �tted using the measurement points. Fig. 6 displays somevalues of estimated slopes as well as a �tted fun
tion. Regarding the estimated values weused
m(κ) = aκb and m′(κ) = a′κb′ ,where a, a′ ∈ IR and b, b′ ∈ (0, 1]. Using the least squares method we obtained a = 1.5477,

b = 0.450 and a′ = 1.1242, b′ = 0.425.A
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