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ABSTRACT

A new algorithmic approach to segmentation of highly porous 3D image data gained

by FIB-SEM tomography (SEMt) is described. The SEMt technique has shown to be

useful in more and more fields of research, in particular for the development of new

functional materials. However, algorithmic segmentation of SEMt images is a challenging

problem for highly porous materials if filling the pore phase, e.g. with epoxy resin, is

difficult. The grey intensities of individual voxels are not sufficient to determine the phase

represented by them and usual thresholding methods are not applicable. We thus propose

a new approach to segmentation of SEMt images. It consists in detecting the first and last

occurrences of individual substructures by analysing the variation of grey intensities in

z-direction. As an application, the segmentation of SEMt images for a cathode material

used in polymer electrolyte membrane fuel cells is discussed.
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INTRODUCTION

In the next decades humanity has to face the problem of global climate change which

is linked to our societies present and future energy consumption. Replacing fossil fuels

and internal combustion engines by hydrogen and fuel cells is regarded as a key solution

for future sustainable energy supply (Dunn, 2002). In particular, polymer electrolyte

membrane fuel cells (PEMFC) are important energy converters delivering electric energy

from chemical energy. In the PEMFC reaction, hydrogen and oxygen are converted to

water. For a controlled performance of this reaction a high level of technological know-

how especially in the membrane electrode assembly (MEA) is mandatory (Shao et al.,

2008). This approximately 40 µm thick structure consists of an anode catalyst layer, a

polymer electrolyte membrane (PEM) and a cathode catalyst layer (CCL). In the anode

catalyst layer hydrogen molecules are catalytically split into electrons and protons. The

PEM conducts protons to the anode but does not conduct electrons. The electrons can be

conducted to the CCL via an electric circuit thereby providing electric energy. Finally, in

the CCL, the protons, electrons and oxygen have to be transported to platinum catalyst

sites where the crucial oxygen reduction reaction takes place.

There is no doubt that the 3D CCL morphology has a large impact on the performance

of PEMFCs (Mezedur et al., 2002). To better understand the influence of CCL morphol-

ogy on rate limiting processes, several approaches have been developed to create artificial

CCL morphologies (Siddique and Liu, 2010). However, since the CCL morphology is

considerably influencing the transport processes within PEMFC, methods are required

for the correct reconstruction of real CCL morphologies in 3D. The method which is

currently best suited for this purpose is Focused Ion Beam (FIB) / Scanning Electron

Microscope (SEM) tomography (shortly called SEMt in this paper). Note that SEMt is

an advanced imaging technique which has successfully been used in materials science,

e.g. for ceramics (Holzer et al., 2004; Gaiselmann et al., 2013), batteries (Hutzenlaub

et al., 2012; Stenzel et al., 2013) and PEMFC cathodes (Ziegler et al., 2011; Thiele et al.,

2011). But algorithmic segmentation of SEMt images is a challenging problem for highly
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porous materials especially if it is difficult to fill the pore phase, e.g. with epoxy resin.

In this case the grey intensities of individual voxels are not sufficient to determine the

phase represented by them and usual thresholding methods are not applicable. We thus

propose a different approach to segmentation of SEMt images, which is an extension of

an algorithm recently introduced in (Salzer et al., 2012) for the segmentation of SEMt

images of another type of porous material.

In the present paper, our algorithm is applied to SEMt images for CCL material,

where we detect the first and last occurrences of individual substructures by analysing

the variation of grey intensities in z-direction. The algorithm is validated by comparing

its segmentation results with those obtained by thresholding methods and by a manual

segmentation approach (Thiele et al., 2011), which is both subjective and time consum-

ing.

The paper is organized as follows. We first describe the material and image data that

is used as an example of application of our approach. Then, we introduce our method

of automatic image segmentation. Subsequently, we discuss the obtained segmentation

results and compare them to those which have been received by global thresholding and

manual segmentation, respectively. A final section concludes and gives an outlook to

possible future research.

PRELIMINARIES

DESCRIPTION OF MATERIAL AND IMAGING TECHNIQUE

In this study, a pristine commercial Gore PRIMEA A510.1 M710.18 C510.4 PEMFC

membrane electrode assembly was used to carry out all tomographic experiments, see

Fig. 1a. For this material, water modeling and imaging techniques complementary to

SEMt have been studied e.g. in (Hutzenlaub et al., 2012; Thiele et al., 2013) but without

establishing any automatic image segmentation. ← insert Fig. 1
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The loading which is mass of Pt per surface area was 0.1 mg/cm2 at the anode and

0.4 mg/cm2 at the cathode. The CCL has a thickness of about 11 µm while the thickness

of the anode catalyst layer is about 3.5 µm.

For SEMt a FIB for cutting and an SEM for the imaging are positioned in an angle of

50◦–54◦. With the FIB, gallium ions are accelerated towards the surface of the investi-

gated sample provoking a very local sputtering process with spot sizes of 10 nm and less.

The FIB thereby enables to remove slices from the sample, see Fig. 1b. Successive slicing

by FIB and image acquisition by SEM produces a stack of 2D images.

PREPROCESSING

Due to the different angles of the FIB and the SEM the obtained images contain

a significant drift in y-direction that increases in z-direction. Correcting this drift is

essential, as the algorithm described below strongly relies on correct alignment.

To accomplish this, we used a modified version of the least-square difference algo-

rithm described in (Sarjakoski and Lammi, 1996). The algorithm determines the vector

that leads to the smallest difference between two images when they are shifted in the

direction of the vector. We modify this approach by only accounting voxels below a

certain threshold (τshift = 75). This guarantees that the alignment is computed based

on the background structures we try to detect later on. Additionally, we use linear

interpolation to estimate grey intensities for values of non-integral coordinates. The drift

is then determined by computing the difference between slice z and its successor z+ 1

for all shift vectors (sx,sy) ∈ {−10,−9.5,−9, . . . ,9.5,10}2 where we determine the shift

vector that leads to the minimal difference. Finally, we apply a 2D mean value filter with

radius r = 1.0 to the image.

BASIC NOTATION

We denote by I the preprocessed image obtained by SEMt as described above, where

I is a function that maps each voxel location (x,y,z) to its corresponding grey intensity
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I(x,y,z), also denoted by Ixy(z) in the following.

IMAGE SEGMENTATION

In this section we present a new approach to segmentation of SEMt images. This ap-

proach extends the key-principle of local threshold backpropagation described in (Salzer

et al., 2012). There, we detected sudden drops in grey intensity for given x and y co-

ordinates and stepwise increasing z-values. We then used the last grey intensity before

the drop to estimate a reasonable threshold that was used to detect the beginning of the

currently visible structure. This idea, however, was based on the assumption that grey

intensities remain the same within each substructure (while different substructures may

have different grey values). However, this assumption does not hold for all datasets in

particular not for the currently analyzed one: For many substructures we find a huge

variation of the grey intensity. This is caused by various properties of the material that

have an impact on the grey intensity. For example rough surfaces lead to higher grey

intensities than surfaces with similar properties that are smoothed by the sputtering effect

of the FIB. Additionally, some of the electrons that enter the specimen vanish in the

material instead of being reflected by it. These electrons can not be detected by the

sensor which leads to a lower grey value intensity. The sum of these influenceal properties

result in a dataset where neither global nor common local thresholding schemes lead to

sufficiently good results. Even more advanced techniques like the approach presented in

(Salzer et al., 2012) are not able to cover the complexity of the given data. Therefore we

developed a new approach the basic idea of which is given below. ← insert Fig. 2

SEGMENTATION PRINCIPLE

For any given pair (x,y) we consider the 1D restriction Ixy of the image I. Within this

image we detect both phase shifts, i.e. the first and the last occurrence of a substructure,

by looking for local maxima and minima, respectively. This is based on the following

heuristic principle: When a substructure is visible but still located in the background its

5/19



SALZER M et al.: On segmentation of SEMt images

grey intensity at this point is still relatively low. With each layer the FIB cuts off the

structure gets closer to the sensor and the corresponding grey intensity increases. This

continues until the substructure reaches the active slice. Therefore, we assume the grey

intensity to reach a local maximum at the substructure’s first occurrence, see Fig. 2. For

the last occurrence of a substructure an analogous assumption is made. When a structure

is being cut off by the FIB the pore space behind becomes visible. Due to the greater

distance of the following substructure that is separated by the just recently revealed pore

space, the corresponding grey intensity is supposed to be significantly lower. Thus, we

assume to reach a local minimum after the last occurrence of a substructure.

DETECTING LOCAL EXTREMA

We attempt to detect local minima and maxima within a 1D image Ixy, which we

assume to be the last and first occurrence of a substructure, respectively. Due to the above

described variations in grey intensity, we need to distinguish local extrema that represent

the first or last occurrence of substructures from those that are based on variations on grey

intensities within substructures. Therefore we introduce the following definitions for local

extrema. We define that Ixy(z) represents a local minimum if both of the following two

criteria are met: 1) Ixy(z)< Ixy(z+∆) for each ∆ ∈ {−1,1}, and 2) Ixy(z′)− Ixy(z)> τmin,

where z′ denotes the location of the last weak maximum defined by

z′ = max{z′ < z : Ixy(z′)> max{Ixy(z′−1), Ixy(z′+1)}} .

Furthermore, we say that Ixy(z) represents a local maximum if both of the following two

criteria are met: 1) Ixy(z) > Ixy(z+∆) for each ∆ ∈ {−1,1,2}, and 2) Ixy(z)− Ixy(z∗) >

τmax, where z∗ now denotes the location of the last minimum as defined above.

Note that these definitions are not fully symmetric, but there are two major differ-

ences. First, the grey intensity at voxel z is not only tested against the intensity at z± 1

but also against z+2. This is to compensate for the fact that the speed the grey intensity

increases is significantly slower than the decrease we try to detect. Therefore, smaller
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measurement errors, e.g. induced by false alignment, can lead to premature local maxima.

Testing it against one additional grey intensity prevents the detection of some of these

artificial local maxima. The difference in the characterization of local minima and local

maxima is also the reason why we use two different thresholds (τmin and τmax) to check

for significance. When detecting local minima it is useful to use a higher value for τmin

to prevent within-structural variations from being classified as last occurrences. Local

maxima, on the other hand, are ignored when they appear within a structure and therefore

lower values for τmax can be used.

Second, the grey intensity of a local minimum is not compared to the last local maxi-

mum but instead to the last weak local maximum. As the grey intensity of a substructure

may change during time its grey intensity at the first occurrence is not a reasonable point

of reference. The last weak maximum is closer to the currently tested local minimum and

therefore more likely to provide a reasonable grey intensity.

DESCRIPTION OF THE ALGORITHM

We now employ the concepts stated above to give a complete description of the

algorithm. For every pair (x,y) perform the following steps:

1. Denote the first local minimum by b0
xy.

2. Set k to 1.

3. Compute ak
xy = min{z > bk−1

xy : z local maximum}.

4. Compute bk
xy = min{z > ak

xy : z local minimum}. If no local minima are left set bk
xy to

zmax +1 where zmax denotes the highest possible z value.

5. If there are local maxima left, increase k by 1 and continue with step 3.

Every interval [ak
xy,b

k
xy− 1] now represents the estimated life span of a substructure
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and the resulting binary image is given by

Bextrema(x,y,z) =

 255 , if z ∈
∪kmax

xy
k=1 [a

k
xy,b

k
xy−1],

0 , otherwise.

POSTPROCESSING

Due to the complex nature of SEMt images the approach described above is not able to

classify every voxel correctly. However, most of the occurring problems can be removed

by appropriate postprocessing. First, we set B∗extrema(x,y,z) = 0 if I(x,y,z) < τ , where τ

is a manually chosen threshold. Then we remove small isolated clusters of foreground

voxels by applying two 2D range filters (in our case with r1 = 2,α1 = 0.5 and r2 =

10,α2 = 0.15). Finally, we perform a dilation with radius rdil = 4.5, which is limited to

voxel with a grey intensity in the original image I above the previously chosen threshold

τ . This dilation connects otherwise separated voxel to a large set of connected regions

and provides the final outcome of our approach. Figure 3 provides an illustration for all

postprocessing steps.

In the first two steps, the parameter τ and the corresponding radii r1/2 and quantiles

α1/2 for the range filters are chosen to provide a good optical fit. The parameter rdil for

the dilation, which is the most influencual step, is chosen to match the original volume

fraction of the material, which is a commonly known property of most specimen. ← insert Fig. 3

RESULTS

We now present the segmentation results, which have been obtained by our algorithm,

and compare them to those of a global thresholding and a manual segmentation. The

manual segmentation was performed by first applying a certain global threshold and then

manually correcting the images using the software gimp (Thiele et al., 2011). Further-

more, a local thresholding approach has been tested. However the best results were
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obtained for a window size equal to the dimension of the image, i.e., it turned out that

the best local thresholding is identical with global thresholding. ← insert Fig. 4

VISUAL COMPARISION OF SEGMENTED IMAGES

A visual comparison of 2D slices (see Figure 4) indicates a significant improvement

which has been achieved by the automatic segmentation algorithm proposed in the pre-

vious section. This is also reflected by the rate of errounously classified voxels, which

was reduced to 16.7% (thresholding 22.5%), supposing that the manual segmentation is

correct. Both phases are now being detected by a probability above 80%, with background

voxel being detected more often (85.7%) than foreground voxels (80.7%). Visual inspec-

tion shows that some of the missing foreground voxels are false positives in the manual

segmentation, which is, due to the huge time consumption, always limited in detail.

For more information, see Table 1, where the rates for correct and wrong classification

of foreground and background voxels, respectively, are given, comparing the results of

manual segmentation with those of automatic segmentation as proposed in the previous

section. In brackets the corresponding rates are given for the comparision of manual

segmentation and global thresholding.

Although the rates given in Table 1 show a clear advantage of the segmentation

approach proposed in this paper relative to global thresholding, they do not fully capture

the improvement which has been achieved with respect to correct reconstruction of the

3D morphology. This will be discussed in the following section. ← insert Table 1

SPHERICAL CONTACT DISTRIBUTION FUNCTION

The spherical contact distribution function (SCDF) is a common tool in stochastic ge-

ometry to compare the 3D morphologies of random sets (Stoyan et al., 1995). For binary

image data, the empirical SCDF is given by the cumulative distribution function of the

distances of all background (foreground) voxel to their nearest foreground (background)

voxel, respectively. Fig. 5 shows the empirical SCDF of both background and foreground
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for the three segmentation approaches considered in this paper. In both cases the result

provided by the automatic segmentation algorithm proposed in this paper is significantly

closer to the empirical SCDF of the manual segmentation than that corresponding to

thresholding. ← insert Fig. 5

Furthermore, two difference images have been analysed which were constructed by

voxel-wise comparison of the manually segmented image with the automatically seg-

mented image and the image obtained by global thresholding, respectively. The empirical

SCDF of these two difference images are visualized in Fig. 6. They show that in the

automatically segmented image more than half of the misclassified voxels have a correctly

classified neighbour and, therefore, are presumed not to have a larger impact on the

morphological properties of the image. The main difference between the binarisation

obtained by the new approach proposed in this paper and global thresholding occurs for

greater radii between 2 and 6. This suggests that the new approach preserves significantly

more features of the original 3D morphology. ← insert Fig. 6

SUMMARY AND DISCUSSION

We have proposed a new approach to automatic segmentation of SEMt images. This

approach was developed by following the key-principle of analysing the variation of grey

intensities in z-direction which has recently been developed in (Salzer et al., 2012). There-

fore, we introduced the notions of error-tolerant local maxima and minima and introduced

threshold criteria to distinguish them from (smaller) extrema with substructures. These

local maxima and minima then are used as an indicator for the beginning and end of

substructures, respectively. From this preliminary segmentation we derived a final bina-

risation by some postprocessing which consists of a thresholding, cluster-detection and

dilation. The final result was then analysed and compared with those obtained by manual

segmentation and global thresholding. It turned out that the segmented image, which has

been obtained by the new approach considered in this paper, preserves significantly more
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features of the original 3D morphology than this is possible by global thresholding.
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Fig. 1: Membrane electrode assembly with cathode, anode and membrane (a); cavity in
the cathode opened by FIB (b)
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Fig. 2: Schematic 1D example for the detection of local maxima (red) and minima (blue).
The bar below shows the binarised image
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Fig. 3: From left to right: before postprocessing; after thresholding; isolated clusters
removed; dilation and final result
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Fig. 4: From left to right: manual segmentation; automatic segmentation as stated in this
paper; global thresholding
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Fig. 5: Empirical SCDF for foreground (top) and background (bottom)
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Fig. 6: Empirical SCDF for difference images describing sets of misclassified voxels
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classified as FG BG
manually manually

FG automatic 80.7% 14.3%
(FG thresholding) (71.5%) (18.2%)

BG automatic 19.3% 85.7%
(BG thresholding) (28.5%) (81.8%)

Table 1: Detection rates for foreground (FG) and background (BG) voxels
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