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Abstract

A law of large numbers for the empirical distribution of parameters of a one-layer artifi-

cial neural networks with sparse connectivity is derived for a simultaneously increasing

number of both, neurons and training iterations of the stochastic gradient descent.

Keywords: artificial neural network, law of large numbers, random network, sparse

connectivity, stochastic gradient descent, weak convergence

2020 MSC: 60D05, 60G55, 68T07

1. Introduction

Artificial neural networks (ANNs) provide powerful tools for a data-driven gain of

knowledge. The simplest architecture of an ANN is given by a single-layer perceptron

(SLP), i.e., a feed-forward network with one layer and fully connected neurons. For

deep learning, which relies on ANNs with multiple layers, fully connected layers are still5

indispensable [1]. However, connections between neurons in biological neural networks

are typically sparse [2]. This inspired the development of ANNs with sparse connectiv-

ity between neurons, which exhibit – in terms of accuracy – the same quality as their

fully connected counterparts [3]. In the present paper, we provide a theoretical analy-

sis of SLPs with sparse connectivity, which are trained via stochastic gradient descent10

(SGD) [1]. By extending the methods considered in [4], we derive a law of large numbers
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(LLN) for the empirical distribution of parameters for the asymptotic regime, where both,

the number of neurons and training iterations of the SGD are simultaneously increasing.

We consider a model with random sparsity [5], which is – in contrast to the adaptive

approach considered in [3] – pre-defined before training [6]. Connections between input15

data and the different neurons in the hidden layer are removed independently. The con-

sidered model particularly covers the Erdős-Rényi graph, which serves as the initial state

for the adaptive connectivity model in [3]. Section 2 defines our ANN model and gives

the main results. Subsequently, in Section 3, the main results are illustrated by means

of a simulation study. The rest of the paper is dedicated to the proofs, where we follow20

the basic idea of [4] and consider the development of the empirical distribution of the

ANN-parameters as an element in an appropriately chosen Skorokhod space. Then, weak

convergence of these objects in the asymptotic regime mentioned above is obtained by

building on a blueprint that has already been successfully implemented in a variety of

contexts such as those considered in [7, 8, 9]. More precisely, in our case, we show tight-25

ness of the sequence under consideration in the Skorokhod space (Section 5), uniqueness

of the limit (Section 6) and identify the limit (Section 7).

2. Definitions and main results

As in [4], we investigate asymptotic properties of an SLP consisting of an input layer

with d ⩾ 1 nodes and one hidden layer of N ⩾ 1 nodes. More precisely, let x ∈ Rd be30

the input vector, and c1, . . . , cN ∈ R, w1, . . . , wN ∈ Rd be the weights of the SLP for

the output and hidden layer, respectively. Denoting by θ = (c1, . . . , cN , w1, . . . , wN ) ∈

R(1+d)N the weight vector, the SLP g(x,θ) with parameter θ is defined by

g(x,θ) =
1

N

∑
i⩽N

ciσ(x⊤wi), (1)

where we assume that the activation function σ : R → R is a twice differentiable bounded

function with bounded derivatives.35

Formalizing the setup of [3], we modify the above SLP such that for 1 ⩽ i ⩽ N, the

ith node in the hidden layer is influenced only by a certain subset ξi ⊆ {1, . . . , d} of the

coordinates of the input vector. Thus, for each 1 ≤ i ≤ N , we put those coordinates of wi

equal to 0 that do not belong to ξi. Depending on the application context, it may make
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sense to select ξi only from a subset of admissible prunings C ⊂ {A : A ⊆ {1, . . . , d}},40

which is fixed henceforth. An essential example corresponds to the setting, where the

{ξi}i⩾1 are realizations of independent and identically distributed (iid) configurations

{Ξi}i⩾1. For instance, in the simulation study described in Section 3, we consider Erdős-

Rényi pruning with parameter 0 < p ⩽ 1, where P(Ξ1 = ξ) = p#ξ(1− p)d−#ξ.

Now, let {(Xk, Yk)}k⩾1 be a random sequence of iid training data, where for each45

k ≥ 1, the random vector (Xk, Yk) is a copy of a random vector (X,Y ) : Ω → Rd+1.

Then, we train the SLP through SGD with respect to the squared-error loss function

(x, y) 7→ (y − g(x, θ))2 and learning rate αN = α/N for some α > 0. More precisely, we

initialize the network with random weights θ0 and then iteratively update them via

cik+1 = cik +
1

N
g(Xk, Yk,θk)σ(X

⊤
k wi

k),

wi
k+1 = wi

k +
1

N
g(Xk, Yk,θk) c

i
k σ

′(X⊤
k wi

k)Xk(ξ
i),

(2)

where g(Xk, Yk,θk) = α(Yk−g(Xk,θk)) and Xk(ξ
i) denotes the modification of Xk with50

entries of Xk outside ξi set to 0.

The main result of the present paper describes the evolution of the parameter θ if the

number of SGD iterations is of order N . Our key innovation to the analysis in comparison

to [4] is that due to the recursion given in (2), where weights corresponding to different

ξi evolve differently. Hence, when understanding the evolution over time, these groups55

of weights need to be separated. As a result, we obtain a quenched LLN.

The main idea to arrive at the quenched LLN is to choose a tailormade state space

that allows for a smooth extension of the argument used in [4]. More precisely, let

Sξ = R1+d be a separate copy of R1+d for each ξ ∈ C, and let S =
⊔

ξ∈C Sξ, be the

disjoint union of these copies. In this set-up the ith weight vector θi is considered to be60

embedded inside Sξi ⊆ S. Moreover, a function f : S → R corresponds to a collection

of functions f = {fξ}ξ∈C defined on each Sξ. For each ξ ∈ C, a probability measure µ on

S defines a probability measure on Sξ via µξ(·) = µ(·)/µ(Sξ).

In this interpretation, we let νNk = 1
N

∑
i⩽N δθi

k
denote the empirical measure of the

weights after k ⩾ 1 iterations. In particular, νNk is a random element in the spaceM(S) of65

probability measures on S. We interpret g(Xk, ν
N
k ) = ⟨g(Xk, ·), νNk ⟩ =

∫
S
g(Xk, θ)ν

N
k (dθ)

as the integration of the function g(Xk, ·) : R1+d → R, (c, w) 7→ cσ(X⊤
k w) with respect
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to νNk . A similar remark holds for g(Xk, Yk, ν
N
k ). Then, we show that as N → ∞, the

time-rescaled measure µN
t = νN⌊Nt⌋ converges to the solution of an evolution equation

described in (4) below. We think of µN as a random element in the Skorokhod space70

D([0, T ],M(S)). We fix pξ > 0, ξ ∈ C with
∑

ξ∈C pξ = 1 and assume that

(E) limN→∞
1
N #{i ⩽ N : ξi = ξ} = pξ (ergodicity condition),

(M) the random sequences of the initial parameters {ci0}i⩽N and {wi
0}i⩽N are both iid,

independent of each other, and satisfy E[exp(q|ci0|) + |wi
0|4] < ∞ for some q > 0.

Moreover, E[|X|6 + Y 6] < ∞ (moment condition).75

Theorem 1 (Quenched LLN). Under the conditions (E) and (M), the limit trajectory

µ̄· = limN→∞ µN
· exists and decomposes as

µ̄t =
∑
ξ∈C

pξµ̄t,ξ. (3)

Moreover, for each f ∈ C2
b (S), the trajectory {µ̄t}t⩽T satisfies

d

dt
⟨f, µ̄t⟩ = ⟨A(·; µ̄t)∇f, µ̄t⟩ (4)

with A(θ; µ̄t) =
(
Ac(θ; µ̄t), Aw(θ; µ̄t)

)
, where

Ac(θ; µ̄t) = E
[
g(X,Y, µ̄t)σ(X

⊤w)
]
,

Aw(θ; µ̄t) = E
[
g(X,Y, µ̄t)cσ

′(X⊤w)X(ξ)
]

if θ ∈ Sξ ⊆ S.

We now rewrite A(θ; µ̄t) to express it in the shape encountered in [10]. More precisely,

setting g̃(x, θ) = cσ(x⊤w), x ∈ Rd, θ = (c, w) ∈ S, we have A(θ; µ̄t) = ∇V (θ; µ̄t), where

V (θ; µ̄t) = E
[
g(X,Y, µ̄t)g̃(X, θ)

]
. Rewriting the evolution equation (4) in the gradient

form already indicates that the long-time limit of µ̄t can be seen as a solution of a

suitable minimization. We now elaborate on this interpretation in further detail. First,

for a measure µ̄, we define the loss functional E [µ̄] = 1
2E

[
g(X,Y, µ̄)2

]
. Then, an explicit

computation shows that if µ̄t solves the evolution equation (4), then

d

dt
E [µ̄t] = E

[
g(X,Y, µ̄t)

d

dt
g(X,Y, µ̄t)

]
= −E

[
g(X,Y, µ̄t)

〈
∇V (·; µ̄t)∇g̃(X, ·), µ̄t

〉]
.

As this expression equals = −
〈
|∇V (·; µ̄t)|2, µ̄t

〉
, the loss E decays along solution curves.
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While this argument proves that the loss decreases monotonely during training, it does

not yet imply the convergence to a minimum as t → ∞. Concerning a standard, non-

sparsified network, [10, Proposition 3.4] gives sufficient conditions for the convergence

of the loss function E to a global minimum as t → ∞. However, this result does not80

readily apply in our setting since it assumes that the weights w are taken from a compact

manifold. This framework is incompatible with our update equations (2), where we rely

on the vector space structure of Rd. Hence, an extension of the global convergence

property to our setting would require to refine the argumentation in [10, Proposition 3.4]

in such a way that it no longer relies on the compactness of the weight space.85

Besides [4, 10], also [11] relies on interacting particle systems to study SLPs with a

large number of neurons. The long-time asymptotics of the weight evolution is described

in [11, Theorem 6], which shows that the convergence to the long-time limit occurs

at exponential speed. Since [11] does not need to assume that the parameter space is a

compact manifold, it is substantially closer to our setting, and we expect that an extension90

of the arguments to sparse networks is feasible. A technical nuisance of [11, Theorem 6]

is that it requires positivity of the smallest eigenvalue associated with the Hessian of V ,

which could be difficult to verify in specific examples. However, in contrast to [10], there

is no characterization of the limit as the minimum of a suitable loss function. A possible

perspective in this direction is offered by [12, Theorem 3.5], which shows that if there is95

convergence, then the limiting weight distribution minimizes the loss function. However,

the challenge when applying this result in the present setting is that the established

weak convergence is not enough since the methodology from [12] requires convergence

with respect to the 2-Wasserstein distance. Moreover, as discussed in [12, Section D.3],

to ensure regularity properties of specific limiting functions, further assumptions on the100

distribution of (X,Y ) are needed, which may be difficult to verify in specific examples.

3. Simulation study

In this section, we perform simulation studies to illustrate the results of Theorem 1,

see Section 3.1, and to investigate the influence of sparsity on the goodness-of-fit when

using the ANN from (1) for a certain regression problem in Section 3.2.105
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3.1. Empirical distribution of parameters in the asymptotic regime

In order to illustrate the law of large numbers stated in Theorem 1, we approximate

the function f : [0, 1]2 → R defined by f(s, t) = sin(st)
√
log(1 + t)+cos(t2), (s, t) ∈ [0, 12]

by the SLP g(x,θ) after Erdős-Rényi pruning with parameter p = 1/2 as defined in Sec-

tion 2. The activation function is chosen to be σ : R → R with σ(t) = (1−exp(−t))/(2+110

2 exp(−t)). Training is performed via SGD as given in (2) with learning rate α = 100

and the number of iterations is chosen to be KN , where we put K = 1, 000. As train-

ing data, we consider collections of random vectors (X1, f(X1)), . . . , (XKN , f(XKN )),

where X1, . . . , XKN are independent and uniformly distributed on the unit square,

i.e., Xi ∼ U([0, 1]2) for each i ∈ {1, . . . ,KN}. The initial parameter configuration is115

chosen at random, where each of the sequences c10, . . . , c
N
0 and w1

0, . . . , w
N
0 is iid with

c10 ∼ U(−10, 10), w1
0 ∼ U([−10, 10]2).

Figure 1: Probability density function of the real-valued parameter cKN after KN iterations of the SGD

for N ∈ {500, 5000, 25000, 50000}, obtained via kernel density estimation. The distribution is a mixture

of the conditional distributions cKN given that Ξ = ξ, where ξ is a subset of {1, 2}, which are also shown

in each of the four plots. Note that conditional probability density functions are scaled such that their

sum gives the (unconditional) probability density functions of cKN .

For N ∈ {500, 5000, 25000, 50000}, Figure 1 shows the empirical distribution of the

sample c1KN , . . . , cNKN in terms of probability density functions which are obtained by

kernel density estimation with a Gaussian kernel and a fixed bandwidth of 0.5. More-120
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over, the empirical distributions conditioned on the realization of Ξ (defining the net-

work topology as described in Section 2) are shown. This illustrates clearly that the

distribution of cKN is a mixture of the distributions conditioned on realizations of Ξ.

Figure 1 shows the convergence of the distribution of cKN . Only minor changes in

the distribution can be observed between N = 25000 and N = 50000. Additionally,125

the empirical bivariate distributions of the samples (c1KN , (w1
KN )1), . . . , (c

N
KN , (wN

KN )1),

(c1KN , (w1
KN )2), . . . , (c

N
KN , (wN

KN )2), and ((w1
KN )1), (w

1
KN )2), . . . , ((w

1
KN )1), (w

N
KN )2) are

provided as supplementary material.

3.2. Influence of sparsity on the test error

Next, we present a simulation study to support the practical relevance of the new130

model. More precisely, we investigate the influence of the thinning parameter p in the

Erdős-Rényi pruning on the goodness-of-fit, namely on the test error. For this purpose,

we consider the Boston housing data1, see [13], which serves as a benchmark data set

for regression [14]. The data set consists of the median values for owner-occupied homes

in 506 census tracts in Boston together with 13-dimensional covariate vectors. First,135

we randomly split the data into 405 training samples and 101 test samples. Then, we

train the ANN with predefined sparsity from (1) by SGD, where we consider different

numbers of hidden layers, i.e., N ∈ {100, 300, 500, 800, 2000, 5000}. For each choice of

N , the model is trained for p ∈ {0.5, 0.6, . . . , 1.0}. The learning rate α = 100 and the

number of iterations (2.5 · 1011) are kept fix.140

Figure 2 shows the influence of N and p on the MSE of test data. The results shown

here are averaged over 15 realizations of both, the SGD and the random sparsity. We

observe that while the test error decreases with increasing N , thinning up to 50% of the

connections does not deteriorate the prediction quality substantially. In particular, even

a simple and non-adaptive concept of thinning for connection between neurons allows to145

reduce the number of parameters in ANNs without negatively affecting the test error.

1The Boston housing data is, e.g., contained in the package MASS of the statistical software R, see

https://CRAN.R-project.org/package=MASS.
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Figure 2: Mean squared error of the prediction by trained ANNs applied to the test data for different

constellations of the number of hidden layers and the thinning parameter p.

4. Outline of proof

As in [4], we pursue the well-established three-step procedure for weak convergence

towards a limiting process, which has been implemented in [7, 8]. We now state the three

steps in detail and observe that they indeed imply the asserted Theorem 1. The proofs150

of the three results are deferred to Sections 5, 6 and 7.

Proposition 2 (Tightness). Under conditions (E) and (M) the sequence {L(µN )}N⩾1

of distributions of the measures µN is tight.

Proposition 3 (Uniqueness). For a given initial value and given {pξ}ξ∈C with
∑

ξ∈C pξ =

1, Equation (4) has at most one solution µ̄t with µ̄t(Sξ) = pξ.155

Proposition 4 (Limit identification). Under condition (E), any weak accumulation

point of {L(µN )}N⩾1 satisfies Equation (4).

To make the presentation self-contained, we formally conclude the proof of Theorem 1.

Proof of Theorem 1. First, under condition (E), µN
t (Sξ) = 1

N#{i ⩽ N : ξi = ξ} con-

verges to pξ, thereby yielding the decomposition (3). Next, by Proposition 2, any sub-160

sequence of {L(µN
· )}N⩾1 has a weakly convergent subsequence. By Propositions 3 and

4, any such subsequence converges weakly to the unique solution of (4). Hence, also the

entire sequence {L(µN
· )}N⩾1 converges in distribution to that solution.
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5. Tightness

In this section, we show tightness of the sequence {L(µN )}N⩾1 in the Skorokhod165

space D([0, T ],M(S)). To that end, we rely on the established method, which involves

compact containment and regularity, see Theorem 4.5 in [15]. In particular, the following

assertions are true.

Proposition 5 (Compact containment). Let ε > 0.Then, for some compact K ⊆ S,

sup
N⩾1

sup
t⩽T

P(µN
t ̸∈ K) ⩽ ε.

For regularity, we rely on Aldous’ celebrated criterion, see Lemma 16.12 in [16].

Proposition 6 (Aldous’ criterion). Let f ∈ C2
b (Sξ). Then,170

lim
δ→0

lim sup
N→∞

sup
τ

P
(
sup
u⩽δ

|⟨f, µN
τ+u⟩ − ⟨f, µN

τ ⟩| ⩾ ε
)
= 0, (5)

where, τ is taken from the family of all stopping times that are bounded by T .

Note that in order to verify (5) it is sufficient to show that

lim
δ→0

lim sup
N→∞

sup
σ,τ

E
[
|⟨f, µN

σ ⟩ − ⟨f, µN
τ ⟩| ∧ 1

]
= 0,

where τ and σ are taken from the family of stopping times fulfilling σ ≤ τ ≤ σ + δ ⩽ T.

The proof of Proposition 5 is analogous to that of Lemma 2.2 in [4]. Hence, we focus on

Proposition 6, where the arguments that we present differ from those used in [4]. The

reason is that we found it difficult to extend the conditional expectation bounds from [4,175

Lemma 2.3] to our setting of sparsified networks. Hence, we give an alternative proof.

First, we bound the increments of the parameters during SGD. To that end, we

rewrite (2) succinctly as

θik+1 − θik =
1

N
BN

k (θik), (6)

where BN
k (θ) =

(
Bk,c(θ), Bk,w(θ)

)
with BN

k,c(θ) = g(Xk, Yk, ν
N
k )σ(w⊤Xk) and

BN
k,w(θ) = g(Xk, Yk, ν

N
k )cσ′(w⊤Xk)Xk(ξ) if θ ∈ Sξ.

To prove Proposition 6, we first discuss an auxiliary result. Instead of directly bound-

ing the parameters as in Lemma 2.1 of [4], we found it more convenient to concentrate on

the increments. As a preliminary step, we also rely on a related property for independent

random variables, which we state and prove here to make the presentation self-contained.180



5 TIGHTNESS 10

Lemma 7 (Regularity for independent random variables). Let {Zk}k⩾1 be a family of

iid non-negative random variables with finite second moment. Then, as δ tends to 0,

lim sup
N→∞

1

N
E
[
max
k⩽N

∑
k⩽ℓ⩽k+δN

Zℓ

]
∈ O(δ).

Proof. Note that if k ⩽ N and m ⩾ 1 are such that mδN ⩽ k ⩽ (m + 1)δN , then

k + δN ⩽ mδN + 2δN . Hence, we expand the expression under the expectation as

max
k⩽N

k+δN∑
ℓ=k

Zℓ ⩽ max
m⩽1/δ

mδN+2δN∑
ℓ=mδN

Zℓ = 2δNEZ1 +
√
N max

m⩽1/δ

mδN+2δN∑
ℓ=mδN

Zℓ − EZℓ√
N

.

Since
√
N ∈ o(N), it suffices to show that the second moment of the above sum is

bounded for each m. Now, leveraging independence, we get that

Var
(mδN+2δN∑

ℓ=mδN

Zℓ − EZℓ√
N

)
= 2δVarZ1 < ∞.

Lemma 8 (Boundedness of increments). Assume condition (M). Then, as δ tends to 0,

lim sup
N→∞

1

N
E
[
max
k⩽NT

∑
k⩽ℓ⩽k+δN

⟨|BN
ℓ (·)|2, νNℓ ⟩

]
∈ O(δ).

The proof of Lemma 8 is mainly based on arguments of Lemma 2.1 in [9] and is

provided in the supplementary material. Finally, we prove Proposition 6.

Proof of Proposition 6. To ease notation, we omit henceforth the ⌊·⌋-symbols and write

Ns instead of ⌊Ns⌋. In particular, we write µN
t = νNNt. Then, by Taylor expansion, we

find intermediate values {θ̄ik}i⩾1 ⊆ S such that

|⟨f, νNN(τ+u)⟩ − ⟨f, νNNτ ⟩| ⩽
1

N

∑
Nτ⩽ℓ⩽N(τ+u)

∣∣∣⟨BN
ℓ (·)∇f, νNℓ ⟩

∣∣∣
+

1

2N2

∑
i⩽N

∑
Nτ⩽ℓ⩽N(τ+u)

∣∣∣BN
ℓ (θiℓ)∇2f(θ̄iℓ)B

N
ℓ (θiℓ)

⊤
∣∣∣.

By assumption, all first- and second-order partial derivatives of f are uniformly bounded,

which means that there exist C1, C2 > 0 such that

|⟨f, νNN(τ+u)⟩ − ⟨f, νNNτ ⟩| ⩽
C1

N

∑
Nτ⩽ℓ⩽N(τ+u)

(
⟨|BN

ℓ (·)|, νNℓ ⟩+ ⟨|BN
ℓ (·)|2, νNℓ ⟩

)
⩽

C2

N

∑
Nτ⩽ℓ⩽N(τ+u)

(
1 + ⟨|BN

ℓ (·)|2, νNℓ ⟩
)
.

Hence, applying Lemma 8 concludes the proof.
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6. Uniqueness

In this section, we show that Equation (4) admits a unique solution. For this we rely

on a Picard-type argument for the ODE on S of the form

d

dt
θt = A(θt;µt), (7)

with a generic µ· ∈ D([0, T ],M(S)). Writing DT = D([0, T ], S), this system gives rise185

to an operator H : M(DT ) → M(DT ) as follows. First, if µ ∈ M(DT ) describes the

distribution of a random path, then we let µ0 ∈ M(S) denote the distribution of the

initial point. Now, we define H(µ) to be the distribution of the solution {θt}t⩽T to (7)

with initial value distributed according to µ0.

The key observation is that H has a unique fixed point if restricted to a smaller space.190

To introduce this space rigorously, we first put CT = C([0, T ], S) and MT = M(CT ).

Next, proceeding as in [4, p.742], for µ, µ′ ∈ MT let the coupling set P (µ, µ′) denote the

family of all probability measures on CT ×CT coinciding with µ and µ′ when projecting

on the first and second marginal, respectively. Then,

dW,T (µ, µ
′) = inf

ν∈P (µ,µ′)

(∫
1 ∧ sup

s⩽T
|us − vs|44ν(d(u·, v·))

)1/4

(8)

defines the 4-Wasserstein distance, where | · |4 is the ℓ4-distance in S. We write NT ⊆195

M(C([0, T ], S)) for the subspace of all µ ∈ MT such that
∫
sups⩽T |us|44µ(du·) < ∞. By

[4, p.743], NT becomes a Banach space with respect to dW,T .

Lemma 9 (Regularity of solutions). Let µ ∈ M(DT ) and let condition (M) be fulfilled.

Then, H(µ) ∈ NT .

Lemma 10 (Fixed point). If T is sufficiently small, then the restriction of H to the200

space NT admits a unique fixed point.

The proofs of Lemmas 10 and 9 are similar to those of Lemmas 4.1 and 4.3 in [9],

respectively, and thus provided as supplementary material. Finally, we conclude the

proof of Proposition 3.

Proof of Proposition 3. We may choose T to be small enough, so that Lemma 10 applies.205

First, as in Section 4 of [4], general results on Markov processes from [17] yield that
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solutions to (4) correspond uniquely to solutions of (7) by taking µ̄t to be the law of

{θt}t⩽T . In particular, the law of {θt}t⩽T is a fixed point of H and therefore contained in

NT by Lemma 9. Hence, the uniqueness result from Lemma 10 concludes the proof.

7. Limit identification210

Last not least, we prove Proposition 4. That is, any limit point of the processes

{µN
t }t satisfies Equation (4). Fix f ∈ C2

b (S). The central task is to quantify the error of

⟨f, µN
t ⟩ − ⟨f, µN

0 ⟩ in comparison to (4).

Lemma 11 (Deviation from evolution equation). Let t ⩽ T and f ∈ C2
b (S). Then,

∆t(µ
N
· ) = ⟨f, µN

t ⟩ − ⟨f, µN
0 ⟩ −

∫ t

0

⟨A(·;µN
s )∇f, µN

s ⟩ds

converges to 0 in probability as N → ∞.

We elucidate how to derive Proposition 4 from Lemma 11, whose proof will be pro-215

vided in the supplementary material.

Proof of Proposition 4. Let µ· be a process distributed according to a weak accumulation

point Q of {µN
· }N⩾1. It suffices to prove that ∆·(µ·) ≡ 0 as a stochastic process, since

then Q is concentrated on the unique solution of Equation (4). To that end, we verify that

EQ[∆t(µ·)G(µ·)] = 0, for every t > 0 and bounded function G : M(DT ) → [0,∞) that is220

measurable with respect to {µs}s⩽t. Since measurability is considered via the product

σ-algebra, it suffices to fix arbitrary s1 < · · · < sp ⩽ t and g1, . . . , gp ∈ Cb(R1+d),

and then show that EQ∆
′(µ·) = 0, where ∆′(µ·) = ∆t(µ·)⟨gs1 , µs1⟩ · · · ⟨gsp , µsp⟩. Now,

since ∆′(µ·) is bounded and continuous in µ·, and Q is a weak accumulation point

of a subsequence {L(µNj )}j⩾1, we leverage Lemma 11 to deduce that EQ|∆′(µ·)| ⩽225

lim supj→∞ E|∆′(µNj )| ⩽ maxi(|gi|∞) limj→∞ E|∆t(µ
Nj )| = 0, as asserted.
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Supplementary material

As supplementary material, we provide additional proofs as well as extended results270

of the simulation study performed in Section 3.1.

A. Proofs

Proof of Lemma 8. We deal with the cik- and wi
k- increments separately. First, according

to (6) and the boundedness of σ, there are constants C1, C
′
1 > 0 such that for every

k ⩽ ℓ ⩽ k′,

|ciℓ+1| ⩽ |ciℓ|+
C1

N
|Yℓ|+

C1

N
|g(Xℓ, νℓ)| ⩽ |ciℓ|+

C1

N
|Yℓ|+

C ′
1

N2

∑
j⩽N

|cjℓ |. (9)

Hence, writing Y N = 1
N

∑
ℓ⩽N |Yℓ|, we argue as in [4, p.734, line -1] to show that

|ciℓ| ⩽ C2

(
|ci0|+

1

N

∑
j⩽N

|cj0|+ Y N

)
, (10)

for some C2 > 0. In particular, we can find a suitable C3 > 0 such that ⟨BN
ℓ,c(·)2, νNℓ ⟩ ⩽

C3

(
Y 2
ℓ + Y

2

N + C
2

N

)
, where C

2

N = N−1
∑

j⩽N (cj0)
2. Thus, Lemma 7 yields the claim

for the cik-increments. Similarly, for the wi
k-increments, the bound (10) yields suitable

constants C4, C
′
4 > 0 such that∣∣BN

ℓ,w(θ
i
ℓ)
∣∣ ⩽ C4

(
|Yℓ|+

1

N

∑
j⩽N

|cjℓ |
)
|Xℓ||ciℓ| ⩽ C ′

4

(
|Yℓ|+

1

N

∑
j⩽N

|cj0|+ Y N

)
|Xℓ||ciℓ|.

In particular, applying (10) and using abc ⩽ (a3 + b3 + c3)/3 for a, b, c > 0, we get that

⟨|BN
ℓ,w(·)|2, νNℓ ⟩ ⩽ C5

(
Y 2
ℓ + C

2

N + Y
2

N

) |Xℓ|2

N

∑
i⩽N

|ciℓ|2 ⩽ C ′
5

(
Y 6
ℓ + |Xℓ|6 + C

6

N + Y
6

N

)
for suitable C5, C

′
5 > 0. Therefore,∑

k⩽ℓ⩽k′

⟨|BN
ℓ,w(·)|2, νNℓ ⟩ ⩽ C ′

5

∑
k⩽ℓ⩽k′

(Y 6
ℓ + |Xℓ|6) + (k′ − k)C

6

N + (k′ − k)Y
6

N ,

so that an application of Lemma 7 concludes the proof.

Proof of Lemma 9. First, analogously to Lemma 4.1 in [4], there exists a constant C > 0

such that E[(ct−cs)
4] ⩽ C(t−s)4 and E[|wt−ws|4] ⩽ C(E[|c0|4]+1)(t−s)4. These bounds275

imply that the processes {ct}t≥0 and {wt}t≥0 have continuous versions according to the

Kolmogorov-Chentsov criterion, see Theorem 3.23 in [16]. Moreover, they also imply

that the solution curves have bounded fourth moments, so that indeed H(µ·) ∈ NT .



Proof of 10. Having set up the distance notion in (8), we now show that H is a con-

traction with respect to dW,T . First, the evolution equation for ct does not change at

all through our pruning, so that we can import the estimates from Lemma 4.3 in [4] to

conclude that

|c(1)t − c
(2)
t | ⩽ C

∫ t

0

(|w(1)
s − w(2)

s |+ dW,s(µ
(1), µ(2)))ds

for a suitable C > 0. Next, we decompose w
(1)
t − w

(2)
t as

w
(1)
t − w

(2)
t =

∫ t

0

E
[
X(ξ)(g(X,Y, µ(1)

s )− g(X,Y, µ(2)
s ))c(1)s σ′(w(1)

s ·X)
]
ds

+

∫ t

0

E
[
X(ξ)g(X,Y, µ(2)

s )(c(1)s σ′(w(1)
s ·X)− c(2)s σ′(w(2)

s ·X))
]
ds.

The only difference to the corresponding expression in Lemma 4.3 of [4] is that we now see

X(ξ) instead of X. However, in the ensuing estimates X only appears through its length280

|X|. Since |X(ξ)| ⩽ |X|, the arguments extend to the novel setting. Note that Lemma

4.3 in [4] requires that E exp(q|ci0|) < ∞ for some q > 0. More precisely, this expression

appears after an application of Grönwall’s Lemma, see, e.g., Appendix 5 in [18].

It remains to prove Lemma 11.

Proof of Lemma 11. By relying on a Taylor expansion as in the proof of Proposition 6,

we see that∣∣∣⟨f, µN
t ⟩ − ⟨f, µN

0 ⟩ − 1

N

∑
k⩽Nt

⟨Bk(·; νNk )∇f, νNk ⟩
∣∣∣ ⩽ C1

N2

∑
k⩽Nt

⟨|BN
ℓ (·)|2, νNℓ ⟩

for some constant C1 > 0. Now, as in Proposition 6, we deduce that the expression

N−2 E[
∑

k⩽Nt⟨|BN
ℓ (·)|2, νNℓ ⟩] tends to 0 as N → ∞. Thus, it suffices to show that

M(t) =
1

N

∑
k⩽Nt

⟨Bk(·; νNk )∇f, νNk ⟩ −
∫ t

0

⟨A(·;µN
s )∇f, µN

s ⟩ds

=
1

N

∑
k⩽Nt

⟨(Bk(·; νNk )−A(·; νNk ))∇f, νNk ⟩ −
∫ t

⌊Nt⌋/N
⟨A(·; νN⌊Ns⌋)∇f, νN⌊Ns⌋⟩ds

tends to 0 in probability. We even show that it tends to 0 in L1. Since

E|⟨A(·; νN⌊Ns⌋))∇f, νN⌊Ns⌋⟩| ⩽ C2E⟨E[|Y |+ |g(X, ·)|], νN⌊Ns⌋⟩ ⩽ C3 +
C3

N

∑
i⩽N

E|ci⌊Ns⌋|



for some constants C2, C3 > 0, we obtain by (10) that the integral term of M(t) tends to285

0 in L1. Moreover, we show that the sum appearing in the expression of M(t) tends to

0 in L2. By setting Mk = N−1 ⟨(Bk(·; νNk )−A(·; νNk ))∇f, νNk ⟩, we observe that since the

training data {(Xk, Yk)}k⩾1 is iid, the sequence {Mk}k≥1 defines a martingale difference

sequence. Therefore, the cross-terms in the expansion of the square disappear, i.e.,∑
k<k′⩽Nt E[MkMk′ ] = 0 and thus E

(∑
k⩽Nt Mk

)2
=

∑
k⩽Nt EM2

k . Noting that each290

summand EM2
k is of order 1/N concludes the proof.

B. Additional results obtained by simulation studies

We provide further results related to the simulation study presented in Section 3. We

show the empirical bivariate distributions of the samples

(c1KN , (w1
KN )1), . . . , (c

N
KN , (wN

KN )1), (c
1
KN , (w1

KN )2), . . . , (c
N
KN , (wN

KN )2),295

and ((w1
KN )1), (w

1
KN )2), . . . , ((w

1
KN )1), (w

N
KN )2) forN = 500, N = 5000, N = 25000, N =

50000 in Figures 3, 4, 5, respectively. The distributions are shown in terms of probability

density functions estimated by kernel density estimation. For this purpose, a bivariate

Gaussian kernel with a bandwidth of 0.2 is used. The values of the estimated probability

density functions are represented by a heat map on the log-scale. Domains which do not300

belong to the support of the estimated probability density function are represented in

white. Figures 3, 4, 5 nicely show how the considered empirical bivariate distributions

approach the limit distribution with increasing values of N .



Figure 3: Probability density function of the parameter vector (cKN , (wKN )1) after KN iterations of the

SGD for N ∈ {500, 5000, 25000, 50000}, obtained via kernel density estimation. The values of the density

are represented on the log-scale, where domains which do not belong to the support of the estimated

distribution are represented in white.



Figure 4: Probability density function of the parameter vector (cKN , (wKN )2) after KN iterations of the

SGD for N ∈ {500, 5000, 25000, 50000}, obtained via kernel density estimation. The values of the density

are represented on the log-scale, where domains which do not belong to the support of the estimated

distribution are represented in white.



Figure 5: Probability density function of the parameter vector ((wKN )1, (wKN )2) after KN iterations

of the SGD for N ∈ {500, 5000, 25000, 50000}, obtained via kernel density estimation. The values of

the density are represented on the log-scale, where domains which do not belong to the support of the

estimated distribution are represented in white.
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